首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To contrast floristic spatial patterns and the importance of habitat fragmentation in two plant communities (grassland and scrubland) in the context of ecological succession. We ask whether plant assemblages are affected by habitat fragmentation and, if so, at what spatial scale? Does the relative importance of the niche differentiation and dispersal‐limitation mechanisms change throughout secondary succession? Is the dispersal‐limitation mechanism related to plant functional traits? Location A Mediterranean region, the massif of Albera (Spain). Methods Using a SPOT satellite image to describe the landscape, we tested the effect of habitat fragmentation on species composition, determining the spatial scale of the assemblage response. We then assessed the relative importance of dispersal‐related factors (habitat fragmentation and geographical distance) and environmental constraints (climate‐related variables) influencing species similarity. We tested the association between dispersal‐related factors and plant traits (dispersal mode and life form). Results In both community types, plant composition was partially affected by the surrounding vegetation. In scrublands, animal‐dispersed and woody plants were abundant in landscapes dominated by closed forests, whereas wind‐dispersed annual herbs were poorly represented in those landscapes. Scrubby assemblages were more dependent on geographical distance, habitat fragmentation and climate conditions (temperature, rainfall and solar radiation); grasslands were described only by habitat fragmentation and rainfall. Plant traits did not explain variation in spatial structuring of assemblages. Main conclusions Plant establishment in early Mediterranean communities may be driven primarily by migration from neighbouring established communities, whereas the importance of habitat specialization and community drift increases over time. Plant life forms and dispersal modes did not explain the spatial variation of species distribution, but species richness within the community with differing plant traits was affected by habitat patchiness.  相似文献   

2.
Aim Habitat fragmentation is a major driver of biodiversity loss but it is insufficiently known how much its effects vary among species with different life‐history traits; especially in plant communities, the understanding of the role of traits related to species persistence and dispersal in determining dynamics of species communities in fragmented landscapes is still limited. The primary aim of this study was to test how plant traits related to persistence and dispersal and their interactions modify plant species vulnerability to decreasing habitat area and increasing isolation. Location Five regions distributed over four countries in Central and Northern Europe. Methods Our dataset was composed of primary data from studies on the distribution of plant communities in 300 grassland fragments in five regions. The regional datasets were consolidated by standardizing nomenclature and species life‐history traits and by recalculating standardized landscape measures from the original geographical data. We assessed the responses of plant species richness to habitat area, connectivity, plant life‐history traits and their interactions using linear mixed models. Results We found that the negative effect of habitat loss on plant species richness was pervasive across different regions, whereas the effect of habitat isolation on species richness was not evident. This area effect was, however, not equal for all the species, and life‐history traits related to both species persistence and dispersal modified plant sensitivity to habitat loss, indicating that both landscape and local processes determined large‐scale dynamics of plant communities. High competitive ability for light, annual life cycle and animal dispersal emerged as traits enabling species to cope with habitat loss. Main conclusions In highly fragmented rural landscapes in NW Europe, mitigating the spatial isolation of remaining grasslands should be accompanied by restoration measures aimed at improving habitat quality for low competitors, abiotically dispersed and perennial, clonal species.  相似文献   

3.
A number of studies show contrasting results in how plant species with specific life‐history strategies respond to fragmentation, but a general analysis on whether traits affect plant species occurrences in relation to habitat area and isolation has not been performed. We used published data from forests and grasslands in north‐central Europe to analyse if there are general patterns of sensitivity to isolation and dependency of area for species using three traits: life‐span, clonality, and seed weight. We show that a larger share of all forest species was affected by habitat isolation and area as compared to grassland species. Persistence‐related traits, life‐span and clonality, were associated to habitat area and the dispersal and recruitment related trait, seed weight, to isolation in both forest and grassland patches. Occurrence of clonal plant species decreased with habitat area, opposite to non‐clonal plant species, and long‐lived plant species decreased with grassland area. The directions of these responses partly challenge some earlier views, suggesting that further decrease in habitat area will lead to a change in plant species community composition, towards relatively fewer clonal and long‐lived plants with large seeds in small forest patches and fewer clonal plants with small seeds in small grassland patches. It is likely that this altered community has been reached in many fragmented European landscapes consisting of small and isolated natural and semi‐natural patches, where many non‐clonal and short‐lived species have already disappeared. Our study based on a large‐scale dataset reveals general and useful insights concerning area and isolation effects on plant species composition that can improve the outcome of conservation and restoration efforts of plant communities in rural landscapes.  相似文献   

4.
Habitat restoration is a key measure to counteract negative impacts on biodiversity from habitat loss and fragmentation. To assess success in restoring not only biodiversity, but also functionality of communities, we should take into account the re‐assembly of species trait composition across taxa. Attaining such functional restoration would depend on the landscape context, vegetation structure, and time since restoration. We assessed how trait composition of plant and pollinator (bee and hoverfly) communities differ between abandoned, restored (formerly abandoned) or continuously grazed (intact) semi‐natural pastures. In restored pastures, we also explored trait composition in relation to landscape context, vegetation structure, and pasture management history. Abandoned pastures differed from intact and restored pastures in trait composition of plant communities, and as expected, had lower abundances of species with traits associated with grazing adaptations. Further, plant trait composition in restored pastures became increasingly similar to that in intact pastures with increasing time since restoration. On the contrary, the trait composition of pollinator communities in both abandoned and restored pastures remained similar to intact pastures. The trait composition for both bees and hoverflies was influenced by flower abundance and, for bees, by connectivity to other intact grasslands in the landscape. The divergent responses across organism groups appeared to be mainly related to the limited dispersal ability and long individual life span in plants, the high mobility of pollinators, and the dependency of semi‐natural habitat for bees. Our results, encompassing restoration effects on trait composition for multiple taxa along a gradient in both time (time since restoration) and space (connectivity), reveal how interacting communities of plants and pollinators are shaped by different trait–environmental relationships. Complete functional restoration of pastures needs for more detailed assessments of both plants dispersal in time and of resources available within pollinator dispersal range.  相似文献   

5.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   

6.
Jan Plue  Sara A. O. Cousins 《Oikos》2018,127(6):780-791
Metacommunity theory emphasizes that seed dispersal not only limits but equally maintains plant diversity, though the latter receives little empirical attention. Discerning the temporal and spatial components of seed dispersal and understanding how their interaction shapes fragmented communities and maintains their diversity may be pivotal to further our ecological understanding of spatial and temporal seed dispersal and its implications for landscape‐scale conservation management. To investigate the relative importance of spatial and temporal seed dispersal and their roles in maintaining plant diversity, the herb layer and seed bank of grassland communities were inventoried in 77 sites across abandoned and intact rotational grazing networks in a 100 km2 fragmented grassland landscape in the Stockholm archipelago (Baltic Sea, Sweden). Besides analysing alpha‐ and beta‐diversity patterns, nestedness analyses connect deterministic community changes and diversity losses with dispersal‐related life‐history traits and habitat specialization to identify the mechanism driving community changes and maintaining local diversity. The loss of rotational grazing networks caused community diversity declines via non‐random extinctions of spatially and temporally poor dispersers, particularly among grassland specialists. Temporal seed dispersal halted further community disassembly, maintaining diversity in the abandoned grazing networks. Spatial dispersal within the intact grazing networks was found to be an overriding, homogenizing agent conserving diversity in both the herb layer and seed bank. This empirical evidence establishes how spatial and temporal seed dispersal interact to maintain diversity in fragmented landscapes. Poorly connected grasslands appear limited by spatial dispersal, yet are maintained by temporal seed dispersal. In fragmented landscapes where grazing networks are rarely present, temporal rather than spatial seed dispersal may be more important in maintaining species diversity, since effective spatial dispersal may be significantly diminished. The grazing network's efficacy at boosting spatial dispersal and upholding community diversity presents a powerful management tool to conserve local and regional species diversity.  相似文献   

7.
Ecological and evolutionary processes influence community assembly at both local and regional scales. Adding a phylogenetic dimension to studies of species turnover allows tests of the extent to which environmental gradients, geographic distance and the historical biogeography of lineages have influenced speciation and dispersal of species throughout a region. We compare measures of beta diversity, phylogenetic community structure and phylobetadiversity (phylogenetic distance among communities) in 34 plots of Amazonian trees across white‐sand and clay terra firme forests in a 60 000 square kilometer area in Loreto, Peru. Dominant taxa in white‐sand forests were phylogenetically clustered, consistent with environmental filtering of conserved traits. Phylobetadiversity measures found significant phylogenetic clustering between terra firme communities separated by geographic distances of <200–300 km, consistent within recent local speciation at the watershed scale in the Miocene‐aged clay‐soil forests near the foothills of the Andes. Although both distance and habitat type yielded statistically significant effects on both species and phylogenetic turnover, the patterns we observed were more consistent with an effect of habitat specialization than dispersal limitation. Our results suggest a role for both broad‐scale biogeographic and evolutionary processes, as well as habitat specialization, influencing community structure in Amazonian forests.  相似文献   

8.
Seed dispersal via ingestion and defecation by large herbivores provides a possible aid for ecological restoration of plant communities, by connecting source communities of target species with habitat restoration sites. It is also a possible threat due to invasion of weeds, grasses or exotic species. Insight into the factors determining internal seed dispersal could therefore improve the management of grazed ecosystems.

We recorded viable seed density in cattle, sheep and pony dung samples and monitored dung pat colonisation in the field. In addition, we counted the distribution of dung pats in plots spread over all habitat units in our study site.

The three herbivore species appeared to disperse large quantities of many species (61 in total) from a variety of plant families, monocots as well as dicots. The density of viable seeds in herbivore dung and the colonisation of dung pats were positively correlated with Ellenberg nitrogen indicator values and seed supply, but not with seed mass or shape.

The results imply that many seeds are dispersed from high productive to low productive parts of the grazed area. In free-ranging systems, we therefore recommend enclosure and separate management of plant communities on nutrient-poor soils with high conservation interest. For habitat restoration sites we recommend integrated grazing only with target plant communities on nutrient-poor soils and not with plant communities on nutrient-richer soils.  相似文献   


9.
Habitat loss is a major threat to biodiversity and ecosystem function. As habitats are lost, one factor affecting their community structures is the niche-width demand of species, which ranges from specialist to generalist. This study focused on specialist and generalist species in plant–pollinator interactions and tested the hypothesis that plant and pollinator communities become more generalized as habitat loss increases. The study was made in seven selected sites in southern Ontario, Canada, at the level of landscape that is characterized by distributed forests within intensively managed agricultural fields. We quantified both the degree of habitat loss and the degree of specialization/generalization for each of the plant and insect communities using a sampling method of hexagonal transects. Regression analysis indicated a significant relationship between the increase of habitat loss and the shift to generalization in insect, but not in plant, communities. Our results suggest that, in plant–pollinator interactions, insect communities are more sensitive and/or quicker than plant communities to respond to the effects of habitat loss.  相似文献   

10.
安太堡矿区复垦地植被种间关系及土壤因子分析   总被引:1,自引:0,他引:1  
为研究安太堡矿区植被复垦过程中不同植物群落类型的种间关系及影响群落稳定性的外部环境因子, 作者对矿区的植物群落和自然生境进行了野外调查。对森林、灌丛和草地3种群落分别在10 m×10 m、 4 m×4 m和1 m×1 m的尺度上, 采用校正的χ2检验、Spearman秩相关分析研究了不同群落类型中出现频率较高的物种之间的联结性, 同时应用灰色关联识别对影响群落稳定性的土壤因子进行了识别。结果表明: 草地群落中物种组成贫乏, 以旱生种为优势类群, 物种间既具有一定的联结性, 又具有相当独立的分布格局。灌丛群落主要种整体呈现正联结, 其组成成分仍以旱生或中旱生物种为主, 部分中生性物种的出现及其与优势种的正相关关系都在一定程度上指示了灌丛群落向正向演替方向进行。森林群落主要种也整体呈现正联结, 表明群落处于植被演替进程中一个相对稳定的过渡阶段。土壤因子与植物群落稳定性的关联顺序为: 有机质> N > P> K> Cu> Mn > pH > Zn>电导率。总的来看, 矿区现有森林群落配置方式是较灌丛群落和草地群落配置方式更适合于矿区特殊生境的群落类型, 而土壤因子中有机质在决定群落稳定性方面发挥重要作用。此研究结果对制定该矿区植被恢复计划具有参考价值。  相似文献   

11.
Aim This study tests the hypothesis that linear, woody habitat patches surrounding small, sunken rural roads not only function as an unstable sink but also as a true, sustainable habitat for forest plants. Furthermore, factors affecting the presence of forest plant species in sunken roads are determined. Finally, the implications of these findings for the overall metapopulation dynamics of forest plant species in fragmented agricultural landscapes are assessed. Location The study area, c. 155 km2 in size, is situated in a fragmented agricultural landscape within the loamy region of central Belgium. Methods Forest species presence–absence data were collected for 389 sunken roads. The effect of area, depth, age and isolation on sunken road species richness was assessed using linear regression and analysis of variance (anova ). Analysis of covariance was employed to study the interaction between age and isolation. Differences in plant community dispersal spectra in relation to sunken road age and isolation were analysed by means of linear regression and anova . Results Sunken roads proved to function as an important habitat for forest plants. The sink‐hypothesis was falsified by a clear species accumulation in time: sunken road species richness significantly increased with the age of the elements. Sunken road age mainly affected species richness through effects on both area and depth, affecting habitat quality and diversity. Furthermore, sunken road isolation had a significant impact on species richness as well, with the number of forest species decreasing with increasing isolation of the elements, indicating dispersal limitation in sunken road habitats. Moreover, a significant age × isolation interaction effect was demonstrated. Differences in regression slopes for isolation between age classes revealed that the effect of isolation intensified with increasing age of the elements. Differential colonization in relation to forest species dispersal capacities probably account for this, as confirmed by the analysis of sunken road plant community dispersal spectra, with the fraction of species with low dispersal capacities increasing with increasing age and decreasing isolation of the elements. Main conclusions During sunken road development, area and depth increase and, gradually, suitable habitat conditions for forest plant species arise. Depending on their ecological requirements and dispersal capacities, forest species progressively colonize these habitats as a function of the element's isolation. The functioning of sunken roads as a sustainable habitat for forest species enhances the metapopulation viability of forest plants in agricultural landscapes and has important consequences for forest restoration practices. Moreover, the results of this work call for integrating the presence of forest species in small‐scaled linear habitat patches in forest fragmentation studies.  相似文献   

12.
  • Meta‐communities of habitat islands may be essential to maintain biodiversity in anthropogenic landscapes allowing rescue effects in local habitat patches. To understand the species‐assembly mechanisms and dynamics of such ecosystems, it is important to test how local plant‐community diversity and composition is affected by spatial isolation and hence by dispersal limitation and local environmental conditions acting as filters for local species sorting.We used a system of 46 small wetlands (kettle holes)—natural small‐scale freshwater habitats rarely considered in nature conservation policies—embedded in an intensively managed agricultural matrix in northern Germany. We compared two types of kettle holes with distinct topographies (flat‐sloped, ephemeral, frequently plowed kettle holes vs. steep‐sloped, more permanent ones) and determined 254 vascular plant species within these ecosystems, as well as plant functional traits and nearest neighbor distances to other kettle holes.Differences in alpha and beta diversity between steep permanent compared with ephemeral flat kettle holes were mainly explained by species sorting and niche processes and mass effect processes in ephemeral flat kettle holes. The plant‐community composition as well as the community trait distribution in terms of life span, breeding system, dispersal ability, and longevity of seed banks significantly differed between the two habitat types. Flat ephemeral kettle holes held a higher percentage of non‐perennial plants with a more persistent seed bank, less obligate outbreeders and more species with seed dispersal abilities via animal vectors compared with steep‐sloped, more permanent kettle holes that had a higher percentage of wind‐dispersed species. In the flat kettle holes, plant‐species richness was negatively correlated with the degree of isolation, whereas no such pattern was found for the permanent kettle holes.Synthesis: Environment acts as filter shaping plant diversity (alpha and beta) and plant‐community trait distribution between steep permanent compared with ephemeral flat kettle holes supporting species sorting and niche mechanisms as expected, but we identified a mass effect in ephemeral kettle holes only. Flat ephemeral kettle holes can be regarded as meta‐ecosystems that strongly depend on seed dispersal and recruitment from a seed bank, whereas neighboring permanent kettle holes have a more stable local species diversity.
  相似文献   

13.
Aim Species specialization is often considered as a stable species characteristic over the short term. However, this assumption has hardly been tested, even though it may impair our ability to track the impoverishment of biodiversity induced by the rapid replacement of specialists by generalists. We tested whether species specialization in birds varied over a short period of time, and assessed whether variations in species specialization influence community‐level metrics of biotic homogenization. Location France. Methods We studied the variations in specialization to habitat closure of 94 bird species over the period 2002–08, accounting for species variations in mean density, habitat preference and migratory status. We then quantified the temporal changes in a community specialization index, which measures functional homogenization. Results Specialization decreased over time for 35 species (37%), while 46 (49%) showed non‐significant negative trends and 13 (14%) had null or non‐significant positive trends. The more a species was specialized at the beginning of the study, the more it generalized. We additionally found that changes in the specialization level were density dependent: 34 species (36%) became more generalist in years of higher densities while only one became more specialized. At the community level, accounting for this inter‐annual variability in species specialization accentuated the trend in the functional homogenization of bird communities. Main conclusions Habitat specialization is a labile ecological trait, which may change in the short term following habitat degradation, density dependence and source–sink dynamics. Accounting for short‐term temporal variations in observed habitat specialization of species can increase our understanding of the effects of global changes on species strategies and community dynamics.  相似文献   

14.
Metacommunity theory proposes that a collection of local communities are linked by dispersal and the resulting compositions are a product of both niche‐based (species sorting) and spatial processes. Determining which of these factors is most important in different habitats can provide insight into the regulation of community assembly. To date, the metacommunity organization of heterotrophic soil bacteria is largely unknown. Spatial variation of soil bacterial communities could arise from (1) the resource heterogeneity produced by plant communities through root exudation and/or litter inputs; (2) the heterogeneity of soil environmental properties; and (3) pure spatial processes, including dispersal limitation and stochastic assembly. Understanding the relative importance of these factors for soil bacterial community structure and function could increase our ability to restore soil communities. We utilized an ongoing tallgrass prairie restoration experiment in northeastern Kansas to assess if restoring native plant communities produced changes in bacterial communities 6 years after restoration. We further examined the relative importance of the spatial heterogeneity of plant communities, soil properties, and pure spatial effects for bacterial community structure in the old‐field restoration site. We found that soil bacterial communities were not influenced by plant restoration, but rather, by the local heterogeneity of soil environmental properties (16.9% of bacterial community variation) and pure spatial effects (11.1%). This work also stresses the idea that restoring bacterial communities can take many years to accomplish due to the inherent changes that occur to the soil after cultivation and the time it takes for the re‐establishment of soil quality.  相似文献   

15.
The question of whether species co‐occurrence is random or deterministic has received considerable attention, but little is known about how anthropogenic disturbance mediates the outcomes. By combining experiments, field surveys and analysis against null models, we tested the hypothesis that anthropogenic habitat modification disrupts species co‐occurrence in stream invertebrates across spatial scales. Whereas communities in unmodified conditions were structured deterministically with significant species segregation, catchment‐scale conversion to agriculture and sediment deposition at the patch‐ or micro‐habitat scale apparently randomized species co‐occurrences. This shift from non‐random to random was mostly independent of species richness, abundance and spatial scale. Data on community‐wide life‐history traits (body size, dispersal ability and predatory habits) and beta‐diversity indicated that anthropogenic modification disrupted community assembly by affecting biotic interactions and, to a lesser extent, altering habitat heterogeneity. These data illustrate that the balance between predictable and stochastic patterns in communities can reflect anthropogenic modifications that not only transcend scales but also change the relative forces that determine species coexistence. Research into the effects of habitat modification as a key to understanding global change should extend beyond species richness and composition to include species co‐occurrence, species interactions and any functional consequences.  相似文献   

16.
The conservation of dry calcareous grasslands in the French Prealps strongly depends on the maintenance of low-intensity farming systems supported by agri-environmental schemes. An experimental assessment of the effect of current agro-pastoral management on the biodiversity of plant communities was conducted during a six-year permanent plot survey in four sites with contrasting habitat conditions (mesic to xeric). Analyses of species changes showed: (i) a strong increase in species richness and open grassland species frequencies four years after shrub-clearing, and (ii) a noticeable recovery of rare annuals and perennial species of conservation interest establishing in gaps created by grazing. At the community level, the restoration effect was evaluated by a between-year Correspondence Analysis, explaining 10.9% of the total floristic variability versus 29.5% for the site effect (between-site CA). Species ordination by between-year CA showed similar trajectories of vegetation changes during restoration despite different habitat conditions and grazing regimes between sites. The successful restoration of prealpine calcareous grasslands was explained by the availability of seed sources during the study in adjacent grazed or mown grasslands. Thus, restoration assessment should focus on dispersal possibilities and functional roles of species rather than species richness only. Finally, the spatial (i.e. the area of patches that need to be restored) and temporal (i.e. the frequency of shrub-clearing) implications for the large-scale conservation of prealpine calcareous grasslands by current agro-pastoral management are discussed.  相似文献   

17.
Invasive species are capable of causing change in native plant communities, but invasion is often associated with other anthropogenic impacts on natural areas, such as habitat fragmentation and associated dispersal limitation for native species. Consequently, invasive species removal alone may not always be sufficient to meet restoration objectives. We tested if invasion and dispersal limitation interact to limit plant community restoration within a forest fragment invaded by Euonymus fortunei. Removal of Euonymus alone did not lead to the recolonization of native plant species. However, planting seedlings increased total native cover in invaded, Euonymus removal, and uninvaded control treatments. The consistent establishment of native plant seedlings across all treatments indicates that Euonymus invasion may have limited ability to displace established plants. In contrast, plant species that we added as seed were unable to establish in invaded plots, indicating that Euonymus invasion limits recruitment of native plant species from seed. Over the course of our experiment, a number of setbacks and surprises occurred, including high levels of herbivory, a windstorm, and extreme drought, all of which likely limited restoration success. Overall, our results indicate that Euonymus may contribute to native species declines, but other factors are important. Thus, invasive species removal alone may not be sufficient to reestablish a diverse native plant community. Instead, impacts on natural areas may need to be mitigated along with invasive species removal for restoration to be successful.  相似文献   

18.

Motivation

Although dispersal ability is one of the key features determining the spatial dynamics of plant populations and the structure of plant communities, it is also one of the traits for which we still lack data for most species. We compiled a comprehensive dataset of seed dispersal distance classes and predominant dispersal modes for most European vascular plants. Our seed dispersal dataset can be used in functional biogeography, dynamic vegetation modelling and ecological studies at local to continental scales.

Main Types of Variables Contained

Species were classified into seven ordered classes with similar dispersal distances estimated based on the predominant dispersal mode, the morphology of dispersal units (diaspores or propagules), life form, plant height, seed mass, habitat and known dispersal by humans. We evaluated our results by comparing them with dispersal distances calculated using the ‘dispeRsal’ function in R.

Spatial Location

Europe.

Time Period

Present.

Major Taxa and Level of Measurement

The seed dispersal dataset contains information on dispersal distance classes and the predominant dispersal mode for 10,327 most frequent and locally dominant European vascular plant species.

Software Format

Data are available in .csv format.  相似文献   

19.
Ecological Theory and Community Restoration Ecology   总被引:18,自引:0,他引:18  
Community ecological theory may play an important role in the development of a science of restoration ecology. Not only will the practice of restoration benefit from an increased focus on theory, but basic research in community ecology will also benefit. We pose several major thematic questions that are relevant to restoration from the perspective of community ecological theory and, for each, identify specific areas that are in critical need of further research to advance the science of restoration ecology. We ask, what are appropriate restoration endpoints from a community ecology perspective? The problem of measuring restoration at the community level, particularly given the high amount of variability inherent in most natural communities, is not easy, and may require a focus on restoration of community function (e.g., trophic structure) rather than a focus on the restoration of particular species. We ask, what are the benefits and limitations of using species composition or biodiversity measures as endpoints in restoration ecology? Since reestablishing all native species may rarely be possible, research is needed on the relationship between species richness and community stability of restored sites and on functional redundancy among species in regional colonist “pools.” Efforts targeted at restoring system function must take into account the role of individual species, particularly if some species play a disproportionate role in processing material or are strong interactors. We ask, is restoration of habitat a sufficient approach to reestablish species and function? Many untested assumptions concerning the relationship between physical habitat structure and restoration ecology are being made in practical restoration efforts. We need rigorous testing of these assumptions, particularly to determine how generally they apply to different taxa and habitats. We ask, to what extent can empirical and theoretical work on community succession and dispersal contribute to restoration ecology? We distinguish systems in which succession theory may be broadly applicable from those in which it is probably not. If community development is highly predictable, it may be feasible to manipulate natural succession processes to accelerate restoration. We close by stressing that the science of restoration ecology is so intertwined with basic ecological theory that practical restoration efforts should rely heavily on what is known from theoretical and empirical research on how communities develop and are structured over time.  相似文献   

20.
The subjects of this study are the life strategies and life strategy species groups of plant communities in relation to changing habitat conditions along ecological gradients in the xerothermic vegetation complex of the Lower Unstrut Valley (Saxony‐Anhalt. Germany). The nine plant communities studied (Galio‐Carpinetum, Geranio‐Dictamnetum, Adonido‐Brachypodietum, Festuco‐Stipetum, Trinio‐Caricetum. Poo‐Allietum. Teucrio‐Seslerietum, Teucrio‐Melicetum, Onopordetum) could be characterized by significant life strategies ranging from Perennial stayers with diaspore years to Fugitives and Annual shuttle species. Life strategy species groups are of great synstrategic relevance for the respective plant community. They allow a functional and species‐related characterization of plant communities. Most of the plant communities are characterized by small numbered species groups which are thought to be the functional nucleus of the community and relevant to nature conservation and the biotope net discussion. A correlation of life strategies, dispersal and reproduction ecology is given in a special chapter and diagram. It reveals a strong correlation of life strategies – as a system of co‐evolved adaptive traits – to habit at conditions resp. ecological gradients. For example: Annual shuttle species are adapted to open habitats (gaps); Fugitives are mostly restricted to disturbed habitats; Short‐lived shuttle species dominate on ruderal sites; Colonists on naturally disturbed sites; Cryptophytes in the summer‐shaded herb layer of the xerothermic forests; and the moderate and stable habitats are built up by Perennial stayers. Additionally, in the tree layer of the Galio‐Carpinetum, Perennial stayers are set apart of diaspore years. Exclusive long‐range dispersal only reaches a maximum in the tree layer of the Galio Carpinetum, short‐range dispersal dominates on stable, undisturbed, extreme habitats without broader human impact. The dominance of clonal reproduction in the herb layer of the Galio‐Carpineturn is extraordinary. This reproduction type is also relatively high in most of the xerothermic communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号