首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Entamoeba histolytica andGiardia lamblia are microaerophilic protists, which have long been considered models of ancient pre-mitochondriate eukaryotes. As transitional eukaryotes, amoebae and giardia appeared to lack organelles of higher eukaryotes and to depend upon energy metabolism appropriate for anaerobic conditions early in the history of the planet. However, our studies have shown that amoebae and giardia contain splicoeosomal introns, ras-family signal-transduction proteins, ATP-binding casettes (ABC)-family drug transporters, Golgi, and a mitochondrion-derived organelle (amoebae only). These results suggest that most of the organelles of higher eukaryotes were present in the common ancestor of all eukaryotes, and so dispute the notion of transitional eukaryotic forms. In addition, phylogenetic studies suggest many of the genes encoding the fermentation enzymes of amoebae and giardia derive from prokaryotes by lateral gene transfer (LGT). While LGT has recently been shown to be an important determinant of prokaryotic evolution, this is the first time that LGT has been shown to be an important determinant of eukaryotic evolution. Further, amoebae contain cyst wall-associated lectins, which resemble, but are distinct from lectins in the walls of insects (convergent evolution). Giardia have a novel microtubule-associated structure which tethers together pairs of nuclei during cell division. It appears then that amoebae and giardia tell us less about the origins of eukaryotes and more about the origins of eukaryotic diversity.  相似文献   

2.
Ferredoxins, iron-sulfur (Fe-S) cluster proteins, play a key role in oxidoreduction reactions. To date, evolutionary analysis of these proteins across the domains of life have been confined to observing the abundance of Fe-S cluster types (2Fe-2S, 3Fe-4S, 4Fe-4S, 7Fe-8S (3Fe-4s and 4Fe-4S) and 2[4Fe-4S]) and the diversity of ferredoxins within these cluster types was not studied. To address this research gap, here we propose a subtype classification and nomenclature for ferredoxins based on the characteristic spacing between the cysteine amino acids of the Fe-S binding motif as a subtype signature to assess the diversity of ferredoxins across the living organisms. To test this hypothesis, comparative analysis of ferredoxins between bacterial groups, Alphaproteobacteria and Firmicutes and ferredoxins collected from species of different domains of life that are reported in the literature has been carried out. Ferredoxins were found to be highly diverse within their types. Large numbers of alphaproteobacterial species ferredoxin subtypes were found in Firmicutes species and the same ferredoxin subtypes across the species of Bacteria, Archaea, and Eukarya, suggesting shared common ancestral origin of ferredoxins between Archaea and Bacteria and lateral gene transfer of ferredoxins from prokaryotes (Archaea/Bacteria) to eukaryotes. This study opened new vistas for further analysis of diversity of ferredoxins in living organisms.  相似文献   

3.
A gene coding for the ferredoxin of the primordial, strictly anaerobic and hyperthermophilic bacterium Thermotoga maritima was cloned, sequenced and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 60 amino acids that incorporates a single 4Fe-4S cluster. T. maritima ferredoxin expressed in E. coli is a heat-stable, monomeric protein, the spectroscopic properties of which show that its 4Fe-4S cluster is correctly assembled within the mesophilic host, and that it remains stable during purification under aerobic conditions. Removal of the iron-sulfur cluster results in an apo-ferredoxin that has no detectable secondary structure. This observation indicates that in vivo formation of the ferredoxin structure is coupled to the insertion of the iron-sulfur cluster into the polypeptide chain. Sequence comparison of T. maritima ferredoxin with other 4Fe-4S ferredoxins revealed high sequence identities (75% and 50% respectively) to the ferredoxins from the hyperthermophilic members of the Archaea, Thermococcus litoralis and Pyrococcus furiosus. The high sequence similarity supports a close relationship between these extreme thermophilic organisms from different phylogenetic domains and suggests that ferredoxins with a single 4Fe-4S cluster are the primordial representatives of the whole protein family. This observation suggests a new model for the evolution of ferredoxins.  相似文献   

4.
We proposed long ago the following sequence as one of the main pathways in the evolution of energy-yielding metabolism: fermentation→nitrate fermentation→nitrate respiration→oxygen respiration. In the present report our concept is presented in a more general form: (1) fermentation→ →(2) fermentation with H2 release→(3) inorganic types of fermentation→(4) anaerobic respirations →(5) oxygen respiration, based upon recent biological and physical information. The energy-yielding efficiency increased gradually together with the evolution. (2) is characterized by the participation of ferredoxin, (3) by the establishment of electron transfer chain, and (4) by the participation of cytochrome and oxidative phosphorylation. The close relationship between the primary structure of ferredoxins of anaerobic bacteria and that of a cytochrome (cytochromec 3) was demonstrated. It reveals that the transition from inorganic types of fermentation to anaerobic respirations was direct and accompanied by the transition from ferredoxins to cytochromes, and it further supports our concept that the cytochrome system, and consequently the oxidative phosphorylation, were induced at this evolutionary step. Our concept based upon biological observations is consistent with a physical theory recently proposed by M. Shimizu.  相似文献   

5.
The amino acid sequence of a [2Fe-2S] ferredoxin from a red alga, Rhodymenia palmata in the family Florideophyceae, was determined by conventional methods. The ferredoxin is composed of 97 amino acid residues having five cysteines, but lacking methionine and tryptophan. It possesses a number of structural features of particular interest. The amino acid sequence is compared with those previously determined for ferredoxins from two red algae in the family Bangiophyceae. Conclusions from a comparison of the structures, by noting features such as the presence of gaps in the sequences and by constructing a phylogenetic tree, were consistent with the proposed taxonomic relationship among these algae.  相似文献   

6.
An extremely thermostable [4Fe-4S] ferredoxin was isolated under anaerobic conditions from a hyperthermophilic archaeon Thermococcus profundus, and the ferredoxin gene was cloned and sequenced. The nucleotide sequence of the ferredoxin gene shows the ferredoxin to comprise 62 amino acid residues with a sequence similar to those of many bacterial and archaeal 4Fe (3Fe) ferredoxins. The unusual Fe-S cluster type, which was identified in the resonance Raman and EPR spectra, has three cysteines and one aspartate as the cluster ligands, as in the Pyrococcus furiosus 4Fe ferredoxin. Under aerobic conditions, a ferredoxin was purified that contains a [3Fe-4S] cluster as the major Fe-S cluster and a small amount of the [4Fe-4S] cluster. Its N-terminal amino acid sequence is the same as that of the anaerobically-purified ferredoxin up to the 26th residue. These results indicate that the 4Fe ferredoxin was degraded to 3Fe ferredoxin during aerobic purification. The aerobically-purified ferredoxin was reversibly converted back to the [4Fe-4S] ferredoxin by the addition of ferrous ions under reducing conditions. The anaerobically-purified [4Fe-4S] ferredoxin is quite stable; little degradtion was observed over 20 h at 100 degrees C, while the half-life of the aerobically-purified ferredoxin is 10 h at 100 degrees C. Both the anaerobically- and aerobically-purified ferredoxins were found to function as electron acceptors for the pyruvate-ferredoxin oxidoreductase purified from the same archaeon.  相似文献   

7.
A ferredoxin has been purified from Streptomyces griseus grown in soybean flour-containing medium. The homogeneous protein has a molecular weight near 14000 as determined by both PAGE and size exclusion chromatography. The iron and labile sulfide content is 6–7 atoms/mole protein. EPR spectroscopy of native S. griseus ferredoxin shows an isotropic signal at g=2.01 which is typical of [3Fe-4S]1+ clusters and which quantitates to 0.9 spin/mole. Reduction of the ferredoxin by excess dithionite at pH 8.0 produces an EPR silent state with a small amount of a g=1.95 type signal. Photoreduction in the presence of deazaflavin generates a signal typical of [4Fe-4S]1+ clusters at much higher yields (0.4–0.5 spin/mole) with major features at g-values of 2.06, 1.94, 1.90 and 1.88. This latter EPR signal is most similar to that seen for reduced 7Fe ferredoxins, which contain both a [3Fe-4S] and [4Fe-4S] cluster. In vitro reconstitution experiments demonstrate the ability of the S. grisues ferredoxin to couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation. This represents a possible physiological function for the S. griseus ferredoxin, which if true, would be the first functional role demonstrated for a 7Fe ferredoxin.  相似文献   

8.
Schizosaccharomyces pombe (Sp) ferredoxin contains a C-terminal electron transfer protein ferredoxin domain (etpFd) that is homologous to adrenodoxin. The ferredoxin has been characterized by spectroelectrochemical methods, and Mössbauer, UV-Vis and circular dichroism spectroscopies. The Mössbauer spectrum is consistent with a standard diferric [2Fe-2S]2+ cluster. While showing sequence homology to vertebrate ferredoxins, the E°' and the reduction thermodynamics for etpFd (− 0.392 V) are similar to plant-type ferredoxins. Relatively stable Cys to Ser derivatives were made for each of the four bound Cys residues and variations in the visible spectrum in the 380-450 nm range were observed that are characteristic of oxygen ligated clusters, including members of the [2Fe-2S] cluster IscU/ISU scaffold proteins. Circular dichroism spectra were similar and consistent with no significant structural change accompanying these mutations. All derivatives were active in an NADPH-Fd reductase cytochrome c assay. The binding affinity of Fd to the reductase was similar, however, Vmax reflecting rate limiting electron transfer was found to decrease ~ 13-fold. The data are consistent with relatively minor perturbations of both the electronic properties of the cluster following substitution of the Fe-bond S atom with O, and the electronic coupling of the cluster to the protein.  相似文献   

9.
Ferredoxin was purified from the thermophilic blue-green alga, Mastigocladuslaminosus. The physicochemical properties of this ferredoxin are similar to those of other [2Fe-2S] plant ferredoxins except for its unusual thermal stability. The primary structure of the protein was determined and consists of 98 amino acid residues, 5 of which are cysteines. The positions of 4 cysteines which bind the iron atoms of the active centre are identical to those in other ferredoxins. The primary structure of the ferredoxin does not reveal any special features to account for its high thermal stability.  相似文献   

10.
BACKGROUND: [2Fe-2S] ferredoxins, also called plant-type ferredoxins, are low-potential redox proteins that are widely distributed in biological systems. In photosynthesis, the plant-type ferredoxins function as the central molecule for distributing electrons from the photolysis of water to a number of ferredox-independent enzymes, as well as to cyclic photophosphorylation electron transfer. This paper reports only the second structure of a [2Fe-2S] ferredoxin from a eukaryotic organism in its native form. RESULTS: Ferredoxin from the green algae Chlorella fusca has been purified, characterised, crystallised and its structure determined to 1.4 A resolution - the highest resolution structure published to date for a plant-type ferredoxin. The structure has the general features of the plant-type ferredoxins already described, with conformational differences corresponding to regions of higher mobility. Immunological data indicate that a serine residue within the protein is partially phosphorylated. A slightly electropositive shift in the measured redox potential value, -325 mV, is observed in comparison with other ferredoxins. CONCLUSIONS: This high-resolution structure provides a detailed picture of the hydrogen-bonding pattern around the [2Fe-2S] cluster of a plant-type ferredoxin; for the first time, it was possible to obtain reliable error estimates for the geometrical parameters. The presence of phosphoserine in the protein indicates a possible mechanism for the regulation of the distribution of reducing power from the photosynthetic electron-transfer chain.  相似文献   

11.
 Seven-iron ferredoxins from the thermoacidophilic archaea Acidianus ambivalens, A. infernus, Metalosphaera prunae and Sulfolobus metallicus were extensively characterised, allowing study of their expression under aerobic and anaerobic growth conditions as well as the putative role in thermal stability of a recently described zinc centre. The archaeon S. metallicus was found to express, under the same growth conditions, two ferredoxins in almost identical amounts, a novelty among Archaea. Most interestingly, these two ferredoxins differ at the N-terminal amino acid sequence in that one has a zinc binding motif (FdA) and the other does not (FdB); in agreement with these findings, FdA contains a zinc ion and FdB does not. These two ferredoxins have identical thermal stabilities, indicating that the zinc atom is not determinant in the protein thermostability. Further, the presence of the additional zinc centre does not interfere with the redox properties of the iron-sulfur clusters since their reduction potentials are almost identical. From the other three archaea, independently of the growth mode in respect to oxygen, only a single zinc-containing ferredoxin was found. EPR studies on the purified proteins, both in the oxidised and dithionite reduced states, allowed the identification of one [3Fe-4S]1+/0 centre and one [4Fe-4S]2+/1+ centre in all proteins studied. The complete sequence of A. ambivalens ferredoxin is reported. Together with the data gathered in this study, the properties of the seven-iron ferredoxins from Sulfolobales so far known are re-discussed. Received: 10 June 1998 / Accepted: 25 June 1998  相似文献   

12.
Oscillatoria agardhii contained a single ferredoxin. It was a [2Fe-2S] protein of MW 11 075, with a midpoint redox potential (? 380 mV) characteristic of ferredoxins from non-nitrogen-fixing cyanobacteria and different from that of the nitrogen-fixing Oscillatoria limnetica.  相似文献   

13.
The lactate and malate dehydrogenases comprise a complex protein superfamily with multiple enzyme homologues found in eubacteria, archaebacteria, and eukaryotes. In this study we describe the sequence and phylogenetic relationships of a malate dehydrogenase (MDH) gene from the amitochondriate diplomonad protist, Giardia lamblia. Parsimony, distance, and maximum-likelihood analyses of the MDH protein family solidly position G. lamblia MDH within a eukaryote cytosolic MDH clade, to the exclusion of chloroplast, mitochondrial, and peroxisomal homologues. Furthermore, G. lamblia MDH is specifically related to a homologue from Trichomonas vaginalis. This MDH topology, together with published phylogenetic analyses of β-tubulin, chaperonin 60, valyl-tRNA synthetase, and EF-1α, suggests a sister-group relationship between diplomonads and parabasalids. Since these amitochondriate lineages contain genes encoding proteins which are characteristic of mitochondria and α-proteobacteria, their shared ancestry suggests that mitochondrial properties were lost in the common ancestor of both groups. Received: 14 September 1998 / Accepted: 29 December 1998  相似文献   

14.
The sequence and expression of mRNA homologous to a cDNA encoding a non-photosynthetic ferredoxin (Fd1) from Citrus fruit was investigated. The non-photosynthetic nature of this ferredoxin was deduced from: (1) amino acid sequence alignments showing better scores with non-photosynthetic than with photosynthetic ferredoxins, (2) higher expression in tissues containing plastids other than chloroplast such as petals, young fruits, roots and peel of fully coloured fruits, and (3) the absence of light-dark regulation characteristic of photosynthetic ferredoxins. In a phylogenetic tree constructed with higher-plant ferredoxins, Citrus fruit ferredoxin clustered together with root ferredoxins and separated from the photosynthetic ferredoxins. Non photosynthetic (root and fruit) ferredoxins, but not the photosynthetic ferredoxins, have their closest homologs in cyanobacteria. Analysis of ferredoxin genomic organization suggested that non-photosynthetic ferredoxins exist in Citrus as a small gene family. Expression of Fd1 is developmentally regulated during flower opening and fruit maturation, both processes may be mediated by ethylene in Citrus. Exogenous ethylene application also induced the expression of Fd1 both in flavedo and leaves. The induction of non-photosynthetic ferredoxins could be related with the demand for reducing power in non-green, but biosynthetically active, tissues.  相似文献   

15.
The 9 kDa polypeptide from spinach photosystem I (PS I) complex was isolated with iron-sulfur cluster(s) by an n-butanol extraction procedure under anaerobic conditions. The polypeptide was soluble in a saline solution and contained non-heme irons and inorganic sulfides. The absorption spectrum of this iron-sulfur protein was very similar to those of bacterial-type ferredoxins. The amino acid sequence of the polypeptide was determined by using a combination of gas-phase sequencer and conventional procedures. It was composed of 80 amino acid residues giving a molecular weight of 8,894, excluding iron and sulfur atoms. The sequence showed the typical distribution of cysteine residues found in bacterial-type ferredoxins and was highly homologous (91% homology) to that deduced from the chloroplast gene, frxA, of liverwort, Marchantia polymorpha. The 9 kDa polypeptide is considered to be the iron-sulfur protein responsible for the electron transfer reaction in PS I from center X to [2Fe-2S] ferredoxin, namely a polypeptide with center(s) A and/or B in PS I complex. It is noteworthy that the 9 kDa polypeptide was rather hydrophilic and a little basic in terms of the primary structure. A three-dimensional structure was simulated on the basis of the tertiary structure of Peptococcus aerogenes [8Fe-8S] ferredoxin, and the portions in the molecule probably involved in contacting membranes or other polypeptides were indicated. The phylogenetic implications of the structure of the present polypeptide as compared with those of several bacterial-type ferredoxins are discussed.  相似文献   

16.
Two ferredoxins from Desulfovibrio desulfuricans, Norway Strain, were investigated by EPR spectroscopy. Ferredoxin I appears to be a conventional [4Fe-4S]2+;1+ ferredoxin, with a midpoint reduction potential of ?374 mV at pH 8. Ferredoxin II when reduced, at first showed a more complex spectrum, indicating an interaction between two [4Fe-4S] clusters, and probably, has two clusters per protein subunit. Upon reductive titration ferredoxin II changed to give a spectrum in which no intercluster interaction was seen. The midpoint potentials of the native and modified ferredoxin at pH 8 were estimated to be ?500 and ?440 mV, respectively.  相似文献   

17.
The temperature dependence of EPR spectra of oxidized [4Fe-4S1](?1, ?2) ferredoxins (previously designated HiPIP) and a reduced [4Fe-4S1](?2,?3) ferredoxin have been analyzed so as to determine the energy of a low-lying excited electronic state. The values obtained were: Center S-3 from beef heart, 44 cm?1; Center S-3 from mung bean, 53 cm?1; the [4Fe-4S1](?1,?2) ferredoxin from Thermus thermophilus, 78 cm?1; Center N-2 of NADH ubiquinone reductase, 83 cm?1. Increasing axial distortion in the EPR spectra of the [4Fe-4S1](?1,?2) ferredoxins was associated with higher energy differences. Center N-2, a [4Fe-4S1](?2,?3) iron-sulfur cluster does not fit this relationship.  相似文献   

18.
Escherichia coli contains a soluble, [2Fe-2S] ferredoxin of unknown function (Knoell, H.-E., and Knappe, J. (1974) Eur. J. Biochem. 50, 245-252). Using antiserum to the purified protein to screen E. coli genomic expression libraries, we have cloned a gene (designated fdx) encoding this protein. The DNA sequence of the gene predicts a polypeptide of 110 residues after removal of the initiator methionine (polypeptide M(r) = 12,186, holoprotein M(r) = 12,358). The deduced amino acid sequence is strikingly similar to those of the ferredoxins found in animal mitochondria which function with cytochrome P450 enzymes and to the ferredoxin from Pseudomonas putida which functions with P450cam. The overall sequence identity is approximately 36% when compared with human mitochondrial and P. putida ferredoxins, and the identities include 4 cysteine residues proposed to coordinate the iron cluster. The protein was overproduced approximately 500-fold using an expression plasmid, and the holoprotein was assembled and accumulated in amounts exceeding 30% of the total cell protein. The overexpressed ferredoxin exhibits absorption, circular dichroism, and electron paramagnetic resonance spectra closely resembling those of the animal ferredoxins and P. putida ferredoxin.  相似文献   

19.
Analysis of the genome of the hyperthermophilic bacterium Aquifex aeolicus has revealed the presence of a previously undetected gene potentially encoding a plant- and mammalian-type [2Fe-2S] ferredoxin. Expression of that gene in Escherichia coli has yielded a novel thermostable [2Fe-2S] ferredoxin (designated ferredoxin 5) whose sequence is most similar to those of ferredoxins involved in the assembly of iron-sulfur clusters (Isc-Fd). It nevertheless differs from the latter proteins by having deletions near its N- and C-termini, and no cysteine residues other than those involved in [2Fe-2S] cluster coordination. Resonance Raman, low-temperature MCD and EPR studies show close spectral similarities between ferredoxin 5 and the Isc-Fd from Azotobacter vinelandii. M?ssbauer spectra of the reduced protein were analyzed with an S = 1/2 spin Hamiltonian and interpreted in the framework of the ligand field model proposed by Bertrand and Gayda. The redox potential of A. aeolicus ferredoxin 5 (-390 mV) is in keeping with its relatedness to Isc-Fd. Unfolding experiments showed that A. aeolicus ferredoxin 5 is highly thermostable (T(m) = 106 degrees C at pH 7), despite being devoid of features (e.g., high content of charged residues) usually associated with extreme thermal stability. Searches for genes potentially encoding plant-type [2Fe-2S] ferredoxins have been performed on the sequenced genomes of hyperthermophilic organisms. None other than the two proteins from A. aeolicus were retrieved, indicating that this otherwise widely distributed group of proteins is barely represented among hyperthermophiles.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号