首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previously, monoclonal antibody FDC-6 was established, which defines a structure specific for fibronectins isolated from fetal and malignant cells and tissues. The presence of the FDC-6-defined structure at type III connecting segment (III CS) is characteristic of oncofetal fibronectin (onf-FN), and its absence is characteristic of normal fibronectin (nor-FN) (Matsuura, H., and Hakomori, S. (1985) Proc. Natl. Acad. Sci. U. S. A. 82, 6517-6521). Hepatoma fibronectin was sequentially digested by various proteases, followed by subsequent chromatography on an FDC-6 affinity column and reverse-phase columns at each step of digestion. A single strongly active glycosylhexapeptide (glycopeptide 1) and an inactive glycosylpentapeptide (glycopeptide 3) were isolated from glycopeptide A containing 35 amino acid residues. The minimum essential structure required for the FDC-6 activity was found to be a hexapeptide sequence Val-Thr-His-Pro-Gly-Tyr having NeuAc alpha 2----3Gal beta 1----3GalNAc or its core (Gal beta 1----3GalNAc or GalNAc) linked at threonine. Various synthetic peptides including the Val-Thr-His-Pro-Gly-Tyr sequence and a glycopeptide having the Val-Thr-His-Pro-Gly pentapeptide with the same glycosylation at threonine were all inactive. Elimination of sialic acid slightly increased the activity, and subsequent elimination of galactose did not alter the activity; however, removal of the Gal beta 1----3GalNAc residue by endo-alpha-N-acetylgalactosaminidase from desialylated glycopeptide A resulted in total inactivation of the reactivity with FDC-6 antibody. Thus, a single glycosylation at a defined threonine residue of the III CS region may induce conformational changes in the peptide to form the specific oncofetal epitope recognized by FDC-6 antibody. This finding opens the possibility that a number of other oncofetal epitopes consist of a peptide and a common O-linked carbohydrate and that the combination produces a conformation specific to cancer or to a stage of development.  相似文献   

2.
The influence of peptide sequence and environment on the initiation and elongation of mucin O-glycosylation is not well understood. The in vivo glycosylation pattern of the porcine submaxillary gland mucin (PSM) tandem repeat containing 31 O-glycosylation sites (Gerken, T. A., Gilmore, M., and Zhang, J. (2002) J. Biol. Chem. 277, 7736-7751) reveals a weak inverse correlation with hydroxyamino acid density (and by inference the density of glycosylation) with the extent of GalNAc glycosylation and core-1 substitution. We now report the time course of the in vitro glycosylation of the apoPSM tandem repeat by recombinant UDP-GalNAc:polypeptide alpha-GalNAc transferases (ppGalNAc transferase) T1 and T2 that confirm these findings. A wide range of glycosylation rates are found, with several residues showing apparent plateaus in glycosylation. An adjustable kinetic model that reduces the first-order rate constants proportional to neighboring glycosylation status, plus or minus three residues of the site of glycosylation, was found to reasonably reproduce the experimental rate data for both transferases, including apparent plateaus in glycosylation. The unique, transferase-specific, positional weighting constants reveal information on the peptide/glycopeptide recognition site for each transferase. Both transferases displayed high sensitivities to neighboring Ser/Thr glycosylation, whereas ppGalNAc T2 displayed additional high sensitivities to the presence of nonglycosylated Ser/Thr residues. This is the first demonstration of the ability to model mucin O-glycosylation kinetics, confirming that under the appropriate conditions neighboring glycosylation status can be a significant factor modulating the first step of mucin O-glycan biosynthesis.  相似文献   

3.
UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltrans- ferases (ppGalNAc Ts) comprise a large family of glycosyltransferases that initiate mucin-type protein O-glycosylation, transferring alpha-GalNAc to Thr and Ser residues of polypeptide acceptors. Families of ppGalNAc Ts are found across diverse eukaryotes with orthologs identifiable from mammals to single-cell organisms. The peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly understood. Previously, we reported a series of oriented random peptide substrate libraries for quantitatively determining the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 (Gerken TA, Raman J, Fritz TA, Jamison O. 2006. Identification of common and unique peptide substrate preferences for the UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases T1 & T2 (ppGalNAc T1 & T2) derived from oriented random peptide substrates. J Biol Chem. 281:32403-32416). With these substrates, previously unknown features of the transferases were revealed. Utilizing these and a new lengthened set of random peptides, studies have now been performed on PGANT5 and PGANT2, the Drosophila orthologs of T1 and T2. The results from these studies suggest that the major peptide substrate determinants for these transferases are contained within 2 to 3 residues flanking the site of glycosylation. It is further found that the mammalian and fly T1 orthologs display very similar peptide substrate preferences, while the T2 orthologs are nearly indistinguishable, suggesting similar peptide preferences amongst orthologous pairs have been maintained across evolution. This conclusion is further supported by sequence homology comparisons of each of the transferase orthologs, showing that the peptide substrate and UDP binding site residues are more highly conserved between species relative to their remaining catalytic and lectin domain residues.  相似文献   

4.
MUC1 mucin is a large transmembrane glycoprotein, of which the extracellular domain is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is underglycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above) as well as the normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc), and TF (Gal beta1-3 GalNAc) carbohydrates. In the present study, NMR methods were used to correlate the effects of cryptic glycosylation outside of the PDTRP core epitope region to the recognition and binding of a monoclonal antibody, Mab B27.29, raised against the intact tumor-associated MUC1 mucin. Four peptides were studied: a MUC1 16mer peptide of the sequence Gly1-Val2-Thr3-Ser4-Ala5-Pro6-Asp7-Thr8-Arg9-Pro10-Ala11-Pro12-Gly13-Ser14-Thr15-Ala16, two singly Tn-glycosylated versions of this peptide at either Thr3 or Ser4, and a doubly Tn-glycosylated version at both Thr3 and Ser4. The results of these studies showed that the B27.29 MUC1 B-cell epitope maps to two separate parts of the glycopeptide, the core peptide epitope spanning the PDTRP sequence and a second (carbohydrate) epitope comprised of the Tn moieties attached at Thr3 and Ser4. The implications of these results are discussed within the framework of developing a glycosylated second-generation MUC1 glycopeptide vaccine.  相似文献   

5.
MUC1 mucin is a large transmembrane glycoprotein, the extracellular domain of which is formed by a repeating 20 amino acid sequence, GVTSAPDTRPAPGSTAPPAH. In normal breast epithelial cells, the extracellular domain is densely covered with highly branched complex carbohydrate structures. However, in neoplastic breast tissue, the extracellular domain is under-glycosylated, resulting in the exposure of a highly immunogenic core peptide epitope (PDTRP in bold above), as well as in the exposure of normally cryptic core Tn (GalNAc), STn (sialyl alpha2-6 GalNAc) and TF (Gal beta1-3 GalNAc) carbohydrates. Here, we report the results of 1H NMR structural studies, natural abundance 13C NMR relaxation measurements and distance-restrained MD simulations designed to probe the structural and dynamical effects of Tn-glycosylation within the PDTRP core peptide epitope. Two synthetic peptides were studied: a nine-residue MUC1 peptide of the sequence, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6-Arg7-Pro8-Ala9, and a Tn-glycosylated version of this peptide, Thr1-Ser2-Ala3-Pro4-Asp5-Thr6(alphaGalNAc)-Arg7-Pro8-Ala9. The results of these studies show that a type I beta-turn conformation is adopted by residues PDTR within the PDTRP region of the unglycosylated MUC1 sequence. The existence of a similar beta-turn within the PDTRP core peptide epitope of the under-glycosylated cancer-associated MUC1 mucin protein might explain the immunodominance of this region in vivo, as the presence of defined secondary structure within peptide epitope regions has been correlated with increased immunogenicity in other systems. Our results have also shown that Tn glycosylation at the central threonine within the PDTRP core epitope region shifts the conformational equilibrium away from the type I beta-turn conformation and toward a more rigid and extended state. The significance of these results are discussed in relation to the possible roles that peptide epitope secondary structure and glycosylation state may play in MUC1 tumor immunogenicity.  相似文献   

6.
The glyco-hexapeptide sequence H-Val-(GalNAc-alpha)Thr-His-Pro-Gly-Tyr-OH, was synthesized in solution by the segment condensation procedure and the stepwise procedure. A peracetylated, O-galactosaminyl threonine derivative was used for incorporating the glycosylated amino acid residue into the peptide chain. A consistent racemization occurred during the acylation of H-His-Pro-Gly-Tyr(Bzl)-OBzl with Z-Val-[GalNAc(Ac)3-alpha]Thr-OH by the BOP-HOBt procedure and the D-allothreonine containing glyco-hexapeptide was isolated in about 20% yield. Stepwise elongation of the C-terminal tetrapeptide with Fmoc-[GalNAc(Ac)3-alpha]Thr-OH and Z-Val-OH, in the presence of the same coupling reagents, yielded the L-threonine containing diastereoisomer without detectable racemization. A side product, the Nim-ethoxycarbonylated hexapeptide derivative, formed during the EEDQ-mediated condensation of Fmoc-[GalNAc(Ac)3-alpha]Thr-OH with the C-terminal tetrapeptide, was isolated and characterized. Preliminary studies showed that the synthetic glycohexapeptide is a good competitive inhibitor of the binding of the FDC-6 monoclonal antibody to the oncofetal fibronectin, supporting the idea that it should represent the minimum essential structure required for the FDC-6 activity.  相似文献   

7.
Mucin O-glycosylation is initiated by a transfer of N-acetyl-d-galactosamine (GalNAc) to Ser and Thr residues in polypeptides with a family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (pp-GalNAc-Ts). In this paper, four human pp-GalNAc-Ts (pp-GalNAc-T1, T2, T3, and T4) were tested for their preferential orders of GalNAc incorporation into FITC-PTTTPITTTTK, a portion of the tandem repeat of human MUC2. The products were separated by reverse-phase HPLC and characterized by MALDI-TOF MS and peptide sequencing. pp-GalNAc-T1 showed preference for acceptor sites, but the order of the incorporation into these sites seemed to be random. In contrast, the GalNAc incorporation by pp-GalNAc-T2, T3, or T4 was not only site-specific but also according to the specific orders. Furthermore, pp-GalNAc-T2, T3, or T4 had distinct maximum numbers of GalNAc incorporations into this peptide.  相似文献   

8.
GalNAc transferase activities of 6 human intestinal cancerous tissues were examined using bovine submaxillary gland mucin and its desialylated derivative, asialomucin, as acceptors. A Triton X-100 extract of these tissues was used as an enzyme source. All the tissues examined had GalNAc transferase that catalyzes the transfer of GalNAc from UDP-GalNAc to serine or threonine residues of the polypeptide chain. One of 6 specimens showed in addition UDP-GalNAc:GalNAc-mucin α-GalNAc transferase activity, synthesizing a disaccharide unit, GalNAcα→ GalNAc, when asialomucin was used as an acceptor. This carbohydrate structure was deduced on the basis of results of gel filtration, exoglycosidase digestion, and high-voltage paper electrophoresis.GalNAc transferaseHuman intestinal cancerous tissueBovine submaxillary gland mucin O-Glycosidically linked sugar chain  相似文献   

9.
A large family of UDP-GalNAc:polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAc Ts) catalyzes the first step of mucin-type protein O-glycosylation by transferring GalNAc to serine and threonine residues of acceptor polypeptides. The acceptor peptide substrate specificity and specific protein targets of the individual ppGalNAc T family members remain poorly characterized and poorly understood, despite the fact that mutations in two individual isoforms are deleterious to man and the fly. In this work a series of oriented random peptide substrate libraries, based on the GAGAXXXTXXXAGAGK sequence motif (where X = randomized positions), have been used to obtain the first comprehensive determination of the peptide substrate specificities of the mammalian ppGalNAc T1 and T2 isoforms. ppGalNAc T-glycosylated random peptides were isolated by lectin affinity chromatography, and transferase amino acid preferences were determined by Edman amino acid sequencing. The results reveal common and unique position-sensitive features for both transferases, consistent with previous reports of the preferences of ppGalNAc T1 and T2. The random peptide substrates also reveal additional specific features that have never been described before that are consistent with the x-ray crystal structures of the two transferases and furthermore are reflected in a data base analysis of in vivo O-glycosylation sites. By using the transferase-specific preferences, optimum and selective acceptor peptide substrates have been generated for each transferase. This approach represents a relatively complete, facile, and reproducible method for obtaining ppGalNAc T peptide substrate specificity. Such information will be invaluable for identifying isoform-specific peptide acceptors, creating isoform-specific substrates, and predicting O-glycosylation sites.  相似文献   

10.
Synthetic O-glycopeptides containing one or two GalNAc residues attached to Ser or Thr were used as substrates to investigate the effect of peptide structure on the activity of crude preparations of UDP-Gal:GalNAc alpha-R beta 3-Gal-transferase from pig stomach and pig and rat colonic mucosa and of a partially purified enzyme preparation from rat liver. High-performance liquid chromatography used to separate enzyme products revealed that uncharged glycopeptides with an acetyl group at the amino-terminal end and a tertiary butyl or an amide group at the carboxy-terminal end were resistant to proteolysis in crude preparations. The activity of beta 3-Gal-transferase varied with the sequence and length of the peptide portion of the substrate, the presence of protecting groups, the attachment site of GalNAc, and the number of GalNAc residues in the substrate. The presence and position of Pro had little effect on enzyme activity; ionizing groups near the GalNAc unit interfered with enzyme activity. Since the GalNAc-Thr moieties in many of these O-glycopeptides have been shown to assume similar rigid conformations, the variation in enzyme activity indicates that the beta 3-Gal-transferase recognizes both the peptide and carbohydrate moieties of the substrate. Rat and pig colonic mucosal homogenates contain beta 3- and beta 6-GlcNAc-transferases that synthesize respectively O-glycan core 3 (GlcNAc beta 3GalNAc alpha-R) and core 4 [GlcNAc beta 6(GlcNAc beta 3)GalNAc alpha-R]. These enzymes also showed variations in activity with different peptide structures; these effects did not parallel those observed with beta 3-Gal-transferase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Mucin O-glycosylation in cancer is characterized by aberrant expression of immature carbohydrate structures leading to exposure of simple mucin-type carbohydrate antigens and peptide epitopes. Glycosyltransferases controlling the initial steps of mucin O-glycosylation are responsible for the altered glycosylation observed in cancer. We studied the expression in gastric cell lines of six UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (GalNAc-T1, T2, T3, T4, T6, T11) that catalyze the initial key step in the regulation of mucin O-glycosylation, the transfer of GalNAc from UDP-GalNAc to serine and threonine residues. We also studied the expression of ST6GalNAc-I, the enzyme responsible for the synthesis of Sialyl-Tn antigen (NeuAcalpha2,6GalNAc) and the ST3Gal-I, the enzyme responsible for the synthesis of Sialyl-T antigen (NeuAcalpha2,3Galbeta1,3GalNAc). This study was done using specific monoclonal antibodies, enzymatic assays, and RT-PCR. Our results showed that GalNAc-T1, -T2, and -T3 have an ubiquitous expression in all gastric cell lines, whereas GalNAc-T4, -T6, and -T11 show a restricted expression pattern. The immunoreactivity with MAb VU-2-G7 suggests that, apart from GalNAc-T4, another GalNAc transferase is involved in the glycosylation of the Thr in the PDTR region of the MUC1 tandem repeat. The expression of ST3Gal-I correlates with the expression of the Sialyl-T antigen in gastric cell lines and in the control cell lines studied. The expression of ST6GalNAc-I is low in gastric cell lines, in accordance with the low/absent expression of the Sialyl-Tn antigen.  相似文献   

12.
We previously reported that cultured cells incubated with beta-xylosides synthesized alpha-GalNAc-capped GAG-related xylosides, GalNAc alpha GlcA beta Gal beta Gal beta Xyl beta-R and GalNAc alpha GlcA beta GalNAc beta GlcA beta Gal beta Gal beta Xyl beta-R, where R is 4-methylumbelliferyl or p-nitrophenyl (Manzi et al., 1995; Miura and Freeze, 1998). In this study, we characterized an alpha-N-acetylgalactosaminyltransferase (alpha-GalNAc-T) that probably adds the alpha-GalNAc residue to the above xylosides. Microsomes from several animal cells and mouse brain contained the enzyme activity which requires divalent cations, and has a relatively broad pH optimal range around neutral. The apparent K(m) values were in the submillimolar range for the acceptors tested, and 19 microM for UDP-GalNAc. 1H-NMR analysis of the GlcA-beta-MU acceptor product showed the GalNAc residue is transferred in alpha 1,4-linkage to the glucuronide, which is consistent with previous results reported on alpha-GalNAc-capped Xyl-MU (Manzi et al., 1995). Various artificial glucuronides were tested as acceptors to assess the influence of the aglycone. Glucuronides with a bicyclic aromatic ring, such as 4-methylumbelliferyl beta-D-glucuronide (GlcA-beta-MU) and alpha-naphthyl beta-D-glucuronide, were the best acceptors. Interestingly, a synthetic acceptor that resembles the HNK-1 carbohydrate epitope but lacking the sulfate group, GlcA beta 1,3Gal beta 1,4GlcNAc beta-O-octyl (delta SHNK-C8), was a better acceptor for alpha-GalNAc-T than the glycosaminoglycan-protein linkage region tetrasaccharyl xyloside, GlcA beta 1,3Gal beta 1,3Gal beta 1,4Xyl beta-MU. GlcA-beta-MU and delta SHNK-C8 competed for the alpha-GalNAc-T activity, suggesting that the same activity catalyzes the transfer of the GalNAc residue to both acceptors. Taken together, the results show that the alpha-GalNAc-T described here is not restricted to GAG-type oligosaccharide acceptors, but rather is a UDP-GalNAc:glucuronide alpha 1-4-N-acetylgalactosaminyltransferase.  相似文献   

13.
Little is known of the degree that polypeptide sequence and the local environment modulate the structures of O-linked glycans. Toward this understanding, the site-specific mono- (GalNAc-O-), di- (beta-Gal-1,3-alpha-GalNAc-O-), and trisaccharide (alpha-Fuc-1,2-beta-Gal-1,3-alpha-GalNAc-O-) distributions have been determined for 29 of the 31 O-glycosylated Ser/Thr residues in the tandem repeat domains of blood group A-negative porcine submaxillary gland mucin. The glycosylation patterns obtained from three individual animals are in agreement with earlier incomplete determinations on a pooled mucin (Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1997) J. Biol. Chem. 272, 9709-9719; Gerken, T. A., Owens, C. L., and Pasumarthy, M. (1998) J. Biol. Chem. 273, 26580-26588), confirming that the addition of the peptide-linked GalNAc and its substitution by beta-1,3-Gal are sensitive to local peptide sequence in a highly reproducible manner in vivo. The present data further support earlier suggestions of an inverse correlation of the density of hydroxyamino acid residues (and by inference the density of peptide GalNAc) with the extent of substitution of the peptide-linked GalNAc by beta-1,3-Gal. This effect is highly correlated for Ser-linked glycans but not for Thr-linked glycans. A similar correlation is observed with respect to the in vivo peptide GalNAc glycosylation pattern. In contrast, the addition of alpha-1,2-Fuc to beta-Gal shows no apparent correlation with hydroxyamino acid density, although a marked elevation in the fucosylation of Ser-linked glycans compared with Thr-linked glycans is observed. The above effects may represent both steric and conformational factors acting to alter the relative accessibility and activity of the glycosyltransferases toward substrate. These results demonstrate that the porcine submaxillary gland core 1 beta 3-galactosyltransferase and alpha2-fucosyltransferase exhibit unique peptide/glycopeptide sensitivities that may provide mechanisms for the modulation of O-linked side chain structures.  相似文献   

14.
Differentiation of T lymphocytes is characterized by variable expression of CD8/CD4 co-receptor molecules and changes in the glycosylation pattern. In this work, O-glycosylation was analyzed in microsomes from murine thymocytes purified with the PNA and Amaranthus leucocarpus (ALL) lectins, specific for the T antigen (Gal beta1,3GalNAc1,0 Ser/Thr) in cortical and medullary thymocytes, respectively. Three peptides were used as acceptors for UDP-N-acetylgalactosamine: polypeptide N-acetylgalactosaminyl-transferase (GalNAc transferase); the peptide motif TTSAPTTS was the best glycosylated one. Cortical ALL-PNA+ thymocytes showed two-fold higher GalNAc transferase activity than ALL+PNA- thymocytes; however, capillary electrophoresis showed a higher proportion of di- versus mono-glycosylated peptides for ALL+PNA- than for ALL-PNA+. We compared the GalNAc transferase activity of thymocytes from dexamethasone-treated mice versus control mice. GalNAc transferase activity was six-fold higher in thymocytes from control mice than from dexamethasone-treated mice; the rate of di-glycosylated peptides for dexamethosone-resistant ALL+ was two-fold higher than for ALL- thymocytes. Our results confirm an upregulated biosynthesis of O-glycosidically linked glycans on T cell surface glycoproteins, and suggest that the modification of GalNAc transferase activity plays a relevant role during the maturation process of thymic cells.  相似文献   

15.
Carbon-13 NMR spectroscopic studies of native and sequentially deglycosylated ovine submaxillary mucin (OSM) have been performed to examine the effects of glycosylation on the conformation and dynamics of the peptide core of O-linked glycoproteins. OSM is a large nonglobular glycoprotein in which nearly one-third of the amino acid residues are Ser and Thr which are glycosylated by the alpha-Neu-NAc(2-6)alpha-GalNAc- disaccharide. The beta-carbon resonances of glycosylated Ser and Thr residues in intact and asialo mucin display considerable chemical shift heterogeneity which, upon the complete removal of carbohydrate, coalesces to single sharp resonances. This chemical shift heterogeneity is due to peptide sequence variability and is proposed to reflect the presence of sequence-dependent conformations of the peptide core. These different conformations are thought to be determined by steric interactions of the GalNAc residue with adjacent peptide residues. The absence of chemical shift heterogeneity in apo mucin is taken to indicate a loss in the peptide-carbohydrate steric interactions, consistent with a more relaxed random coiled structure. On the basis of the 13C relaxation behavior (T1 and NOE) the dynamics of the alpha-carbons appear to be unique to each amino acid type and glycosylation state, with alpha-carbon mobilities decreasing in the order Gly greater than Ala = Ser greater than Thr much greater than monoglycosylated Ser/Thr approximately greater than disaccharide linked Ser/Thr.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
目的:为了获得有催化活性的人乙酰半乳糖胺转移酶3(GALNT3),构建了GALNT3可溶性区域(GALNT3-sol)的真核分泌表达载体,在巴斯德毕赤酵母中表达并纯化GALNT3-sol蛋白,体外检测其转糖基活性。方法:以构建好的pET15b/GALNT3-sol为模板进行PCR,扩增编码人GALNT3-sol的cDNA片段(1 755 bp),将其克隆至真核表达载体pPIC9K,载体线性化后采用电击法转化毕赤酵母GS115。通过MD平板和G418平板筛选出阳性高拷贝重组菌株。阳性菌株经过甲醇诱导表达人GALNT3-sol重组蛋白,表达上清进行Ni-NAT分离纯化。分别采用SDS-PAGE和Western blot鉴定纯化的重组蛋白,并使用HPLC和MALDI-TOF/MS分析其转糖基化反应的活性。结果:成功构建了能够分泌表达GALNT3-sol的毕赤酵母菌株。阳性表达菌株在BMMY培养基(pH 6.0)中20℃培养,经0.5%甲醇诱导表达96 h,摇瓶表达量可达5mg/L。SDS-PAGE和Western blot结果显示表达重组蛋白为糖基化形式。活性检测显示表达的重组蛋白具有转糖基活性。结论:成功获得可以高效分泌表达具有活性的人GALNT3-sol蛋白的毕赤酵母菌株,为进一步研究人GALNT3的性质及其应用提供了基础。  相似文献   

17.
Glycopeptides containing a tumor-associated carbohydrate antigen (mono-, tri- or hexa-Tn antigen) as a B-cell epitope and a CD4+ T-cell epitope (PV: poliovirus or TT: tetanus toxin) were prepared for immunological studies. Several Tn antigen residues [FmocSer/Thr (alpha-GalNAc)-OH] were successively incorporated into the peptide sequence with unprotected carbohydrate groups. The tri- and hexa-Tn glycopeptides were recognized by MLS128, a Tn-specific monoclonal antibody. The position of the tri-Tn motif in the peptide sequence and the peptide backbone itself do not alter its antigenicity. As demonstrated by both ELISA and FACS analysis, the glycopeptides induced high titers of anti-Tn antibodies in mice, in the absence of a carrier molecule. In addition, the generated antibodies recognized the native Tn antigen on cancer cells. The antibody response obtained with a D-(Tn3)-PV glycopeptide containing three alpha-GalNAc-D-serine residues is similar that obtained with the Tn6-PV glycopeptide. These results demonstrate that short synthetic glycopeptides are able to induce anticancer antibody responses.  相似文献   

18.
To determine the epitopic structure for an anti-GalNAc alpha-Ser(Thr) (anti-Tn) monoclonal antibody, MLS 128, asialo-ovine submaxillary mucin was digested with various proteases, and the digests were fractionated by immunoaffinity column chromatography and high performance liquid chromatography. From the tryptic digest, a glycopeptide, GP-I, and five other glycopeptides, GP-1-5, were obtained as bound and unbound fractions, respectively, of the immunoaffinity column. By solid phase radioimmunoassaying, it was found that GP-I was strongly immunoreactive, whereas GP-1-5 were poorly immunoreactive. On treatment with V8 protease, GP-I was converted to two glycopeptides, one with poor reactivity and the other with intermediate reactivity. From the thermolysin digest, the smallest fragment, GP-II, was isolated, which was as strongly immunoreactive as GP-I. GP-II corresponded to a part of GP-I, its sequence being Leu-Ser*-Glu-Ser*-Thr*-Thr*-Gln-Leu-Pro-Gly, where asterisks denote amino acids to which an alpha-GalNAc residue is attached. Other anti-Tn monoclonal antibodies, NCC-LU-35 and CA 3239, showed essentially the same reactivity to these glycopeptides as MLS 128 did. The glycopeptides (GP-1-5), which exhibited poor immunoreactivity, contained various GalNAc-containing structures, such as GalNAc-Ser, GalNAc-Thr, GalNAc-Ser-(GalNAc)-Ser, and GalNAc-Thr-(GalNAc)-Thr. These results indicate that a glycopeptide including a cluster structure, Ser*-Thr*-Thr*, is an essential part of the epitope recognized by anti-Tn antibodies.  相似文献   

19.
To investigate the influence of flanking amino acid sequence on the O-glycosylation of a single threonine residue in vitro, we have examined a series of 52 related peptides. The substrates were based upon a sequence from human von Willebrand factor which is known to be glycosylated in vivo (-6PHMAQVTVGPGL+5). Each residue of the parent peptide was substituted, in turn, with isoleucine, alanine, proline, glutamic acid, or arginine. Peptides were glycosylated using a UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase purified 15,000-fold from bovine colostrum by chromatography on DEAE-Sephacel, SP-Sephadex, Sephacryl S-300, Affi-Gel Blue, and 5-mercuri-UDP-GalNAc thiopropyl-Sepharose. Single amino acid changes in the sequences flanking the threonine could profoundly alter the glycosylation of the substrate peptides. Substitution of any amino acid tested at positions +3, -3, and -2 markedly decreased O-glycosylation, as did the presence of a charged residue at position -1. The substitution of amino acids at the other positions of the peptide substrate had little effect on the incorporation of GalNAc. Statistical analysis of sequences flanking known glycosylated threonine and serine residues suggests that they should be glycosylated with equal efficiency in the same sequence context (O'Connell et al., 1991). However, the bovine colostrum transferase failed to glycosylate a peptide derived from human erythropoietin which contains a serine that is glycosylated in vivo (-5PPDAASAAPLR+5). When a threonine was substituted for the serine in this peptide (-5PPDAATAAPLR+5), the substrate proved to be an excellent acceptor of GalNAc. These observations indicate that although flanking amino acid sequence is important for the O-glycosylation of specific hydroxyamino acids, discrete threonine- and serine-specific transferases may exist.  相似文献   

20.
In our studies of the genes constituting the porcine A0 blood group system, we have characterized a cDNA, encoding an alpha(1,3)N-acetylgalactosaminyltransferase, that putatively represents the blood group A transferase gene. The cDNA has a 1095-bp open reading frame and shares 76.9% nucleotide and 66.7% amino acid identity with the human ABO gene. Using a somatic cell hybrid panel, the cDNA was assigned to the q arm of pig chromosome 1, in the region of the erythrocyte antigen A locus (EAA), which represents the porcine blood group A transferase gene. The RNA corresponding to our cDNA was expressed in the small intestinal mucosae of pigs possessing EAA activity, whereas expression was absent in animals lacking this blood group antigen. The UDP-N-acetylgalactosamine (UDP-GalNAc) transferase activity of the gene product, expressed in Chinese hamster ovary (CHO) cells, was specific for the acceptor fucosyl-alpha(1,2)galactopyranoside; the enzyme did not use phenyl-beta-D-galactopyranoside (phenyl-beta-D-Gal) as an acceptor. Because the alpha(1,3)GalNAc transferase gene product requires an alpha(1,2)fucosylated acceptor for UDP-GalNAc transferase activity, the alpha(1,2)fucosyltransferase gene product is necessary for the functioning of the alpha(1,3)GalNAc transferase gene product. This mechanism underlies the epistatic effect of the porcine S locus on expression of the blood group A antigen. ABBREVIATIONS: CDS: coding sequence; CHO: Chinese Hamster Ovary; EAA: erythrocyte antigen A; FCS: foetal calf serum; Fucalpha(1,2)Gal: fucosyl-alpha(1,2)galactopyranoside; Gal: galactopyranoside; GGTA1: Galalpha(1,3)Gal transferase; PCR: polymerase chain reaction; phenyl-beta-D-Gal: phenyl-beta-D-galactopyranoside; R: Galbeta1-4Glcbeta1-1Cer; UDP-GalNAc: uridine diphosphate N-acetylgalactosamine  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号