首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
This article presents selected results of a study carried out in Mexico at the International Maize and Wheat Improvement Center (CIMMYT) to compare the cost-effectiveness of conventional and biotechnology-assisted maize breeding. Costs associated with the use of conventional and marker-assisted selection (MAS) methods at CIMMYT were estimated using a spreadsheet-based budgeting approach. This information was used to compare the costs of conventional and MAS methods for a particular breeding application: introgressing an elite allele at a single dominant gene into an elite maize line (line conversion). At CIMMYT, neither method shows clear superiority in terms of both cost and speed: conventional breeding schemes are less expensive, but MAS-based breeding schemes can be completed in less time. For applications involving tradeoffs between time and money, relative profitability can be evaluated using conventional investment theory. Using a simple model of a plant breeding program, we show that the optimal choice of a breeding technology depends on the availability of operating capital. If operating capital is abundantly available, the "best" breeding method will be the one that maximizes the net present value (i.e., MAS), but if operating capital is constrained, the "best" breeding method will be the one that maximizes the internal rate of return (i.e., conventional selection). This insight may help to explain why private firms tend to invest more aggressively in biotechnology than public breeding programs, which are more likely to face budgetary constraints.  相似文献   

2.
Molecular marker-assisted breeding options for maize improvement in Asia   总被引:2,自引:0,他引:2  
Maize is one of the most important food and feed crops in Asia, and is a source of income for several million farmers. Despite impressive progress made in the last few decades through conventional breeding in the “Asia-7” (China, India, Indonesia, Nepal, Philippines, Thailand, and Vietnam), average maize yields remain low and the demand is expected to increasingly exceed the production in the coming years. Molecular marker-assisted breeding is accelerating yield gains in USA and elsewhere, and offers tremendous potential for enhancing the productivity and value of Asian maize germplasm. We discuss the importance of such efforts in meeting the growing demand for maize in Asia, and provide examples of the recent use of molecular markers with respect to (i) DNA fingerprinting and genetic diversity analysis of maize germplasm (inbreds and landraces/OPVs), (ii) QTL analysis of important biotic and abiotic stresses, and (iii) marker-assisted selection (MAS) for maize improvement. We also highlight the constraints faced by research institutions wishing to adopt the available and emerging molecular technologies, and conclude that innovative models for resource-pooling and intellectual-property-respecting partnerships will be required for enhancing the level and scope of molecular marker-assisted breeding for maize improvement in Asia. Scientists must ensure that the tools of molecular marker-assisted breeding are focused on developing commercially viable cultivars, improved to ameliorate the most important constraints to maize production in Asia.  相似文献   

3.
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.  相似文献   

4.
动物遗传标记辅助选择研究及其应用   总被引:40,自引:1,他引:39  
鲁绍雄  吴常信 《遗传》2002,24(3):359-362
随着分子数量遗传学及其相关学科的发展,有关动物遗传标记辅助选择方面的研究也在不断深入,且已经在动物遗传改良中有了一些成功应用的示例。就如何综合利用表型、系谱和遗传标记信息进行育种值估计的统计学方法研究方面,目前已基本形成了较为完善的统计学方法。同时,在标记辅助选择相对效率及其影响因素,以及标记辅助选择实施方案的研究上也取得了不少喜人的成果。本文综述了动物遗传标记辅助选择研究的一些进展,并对标记辅助选择在动物遗传改良中应用的有关问题进行了讨论。 Abstract:With the development of molecular and quantitative genetics and its related subjects,it made a great progress on the research about animal genetic marker-assisted selection (MAS).There were also some successful examples on the application of MAS to animal genetic improvement.The statistical method which using phenotypic,pedigree and genetic marker information to predict individual breeding values has already been developed.Many achievements were obtained from the researches,which carried on MAS relative efficiency and its affecting factors and selection schemes.The present paper reviewed some progresses of MAS research and discussed some problems about MAS application to animal breeding.  相似文献   

5.
Summary A major objective of the CIMMYT Maize Program is to develop open-pollinated varieties of maize (Zea mays L.) that are well adapted to a wide range of environments. To achieve this breeding goal, it is essential that the program use a stability technique that will identify high-yielding, stable genotypes accurately in international trials conducted under different environmental conditions. The objective of this study was to compare a spatial method with a modified conventional regression analysis method to determine the yield stability of 27 CIMMYT maize varieties evaluated at 37 locations. The methods also were compared on the basis of their consistency in assessing the stability of varieties when certain locations were omitted, and when subsets of varieties were analyzed. The varieties found to be stable by the spatial method with all sites included in the analysis were also stable (1) when the lowest and highest yielding sites were excluded from the analyses, and (2) when the varieties were considered, along with others, as a subset of the original group of materials. Stability parameters determined by regression analysis, however, varied for some varieties when (1) extreme sites were excluded, and (2) a subset of entries was considered in isolation. Because the spatial method was more consistent in identifying high-yielding stable varieties, it was considered the more useful of the two methods.  相似文献   

6.
玉米是世界上种植面积最大、总产量最高的粮食作物,其籽粒重量的70%来自于淀粉。淀粉不仅是人类及其他动物的主要能量来源,同时也是化工等行业的重要原料。利用拟南芥、水稻等模式植物,淀粉合成相关基因克隆与功能研究已取得较多进展。近年来,随着玉米淀粉含量相关遗传学研究的深入开展,通过数量性状位点(quantitative trait locus mapping,QTL)定位、全基因组关联分析(genome-wide association study, GWAS)及各种组学分析方法,发现了较多新的与淀粉含量相关的遗传位点及候选基因,但是尚缺乏归纳总结。综述了玉米籽粒淀粉合成与调控研究进展,对玉米籽粒淀粉含量相关的QTL和基因进行汇总和分析,通过构建一致性物理图谱,提炼玉米籽粒淀粉含量遗传定位热点区间,这为进一步解析玉米籽粒淀粉合成与代谢相关基因的功能提供参考,并为分子标记辅助育种提供遗传资源。  相似文献   

7.
Single large-scale marker-assisted selection (SLS-MAS)   总被引:15,自引:0,他引:15  
This paper presents a new approach for plant improvement that interactively combines the use of DNA markers and conventional breeding. This approach involves selecting plants at early generation with a fixed, favorable genetic background at specific loci, conducting a single large-scale marker-assisted selection (SLS-MAS) while maintaining as much as possible the allelic segregation in the rest of the genome. First, the identification of elite lines presenting high allelic complementarity and being outstanding for traits of interest is required to capture favorable alleles from different parental lines. Second, after identification of the most favorable genomic regions for each selected parental line, those lines are intercrossed to develop segregating populations from which plants homozygous for favorable alleles at target loci are selected. One objective of the scheme is to conduct the marker-assisted selection only once, and it requires the selection of a minimum number of plants to maintain sufficient allelic variability at the unselected loci. Therefore, the selection pressure exerted on the segregating population is quite high and the screening of large populations is required to achieve the objectives of the scheme. No selection is applied outside the target genomic regions, to maintain as much as possible the Mendelian allelic segregation among the selected genotypes. After selection with DNA markers, the genetic diversity at un-selected loci may allow breeders to generate new varieties and hybrids through conventional breeding in response to various local needs. Although the single large-scale MAS scheme described here is oriented toward maize and large-scale breeding programs with substantial resources, the flexibility of this scheme would allow breeding programs to develop options compatible with local resources.  相似文献   

8.
由甘蔗花叶病毒引起的玉米矮花叶病是我国黄淮海地区玉米生产的重要病害,开发抗矮花叶病基因分子标记是开展抗病分子标记辅助育种的基础。本文基于玉米6.00-6.01区域的“一致性抗甘蔗花叶病毒QTL区间”寻找抗病基因的功能保守域,依据序列多态性开发出抗病分子标记InDel-130和InDel-110,在已知抗性的102份玉米自交系中进行验证。通过分析标记抗病带型和感病带型中的抗病和感病自交系数目,卡平方测验表明标记InDel-130在供试自交系中与抗病性的表现独立无关.而标记InDel-110与甘蔗花叶病毒抗性高度相关,为共显性标记,可用于玉米抗甘蔗花叶病毒种质筛选和分子标记辅助育种。  相似文献   

9.
Whole-genome strategies for marker-assisted plant breeding   总被引:3,自引:0,他引:3  
Molecular breeding for complex traits in crop plants requires understanding and manipulation of many factors influencing plant growth, development and responses to an array of biotic and abiotic stresses. Molecular marker-assisted breeding procedures can be facilitated and revolutionized through whole-genome strategies, which utilize full genome sequencing and genome-wide molecular markers to effectively address various genomic and environmental factors through a representative or complete set of genetic resources and breeding materials. These strategies are now increasingly based on understanding of specific genomic regions, genes/alleles, haplotypes, linkage disequilibrium (LD) block(s), gene networks and their contribution to specific phenotypes. Large-scale and high-density genotyping and genome-wide selection are two important components of these strategies. As components of whole-genome strategies, molecular breeding platforms and methodologies should be backed up by high throughput and precision phenotyping and e-typing (environmental assay) with strong support systems such as breeding informatics and decision support tools. Some basic strategies are discussed in this article, including (1) seed DNA-based genotyping for simplifying marker-assisted selection (MAS), reducing breeding cost and increasing scale and efficiency, (2) selective genotyping and phenotyping, combined with pooled DNA analysis, for capturing the most important contributing factors, (3) flexible genotyping systems, such as genotyping by sequencing and arraying, refined for different selection methods including MAS, marker-assisted recurrent selection and genomic selection (GS), (4) marker-trait association analysis using joint linkage and LD mapping, and (5) sequence-based strategies for marker development, allele mining, gene discovery and molecular breeding.  相似文献   

10.
Genetic maps are useful for detecting quantitative trait loci (QTL) associated with quantitative traits and for marker-assisted selection (MAS) in breeding. In this research, we used the wheat × maize method to develop a doubled haploid (DH) population derived from the synthetic hexaploid wheat (SHW) line TA4152-60 and the North Dakota hard red spring wheat line ND495. The population consisted of 213 lines, of which a subset of 120 lines was randomly selected and used to construct linkage maps of all 21 chromosomes and for QTL detection. The whole genome maps consisted of 632 markers including 410 SSRs, 218 TRAPs, 1 RFLP, and 3 phenotypic markers, and spanned 3,811.5 cM with an average density of one marker per 6.03 cM. Telomere sequence-based TRAPs allowed us to define the ends of seven linkage groups. Analysis revealed major QTLs associated with the traits of days to heading on chromosomes 5A and 5B, plant height on chromosomes 4D and 5A, and spike characteristics on chromosomes 3D, 4A, 4D, 5A and 5B. The DH population and genetic map will be a useful tool for the identification of disease resistance QTL and agronomically important loci, and will aid in the identification and development of markers for MAS. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture.  相似文献   

11.
Hospital F 《Genetica》2009,136(2):303-310
The basic principle of Marker-Assisted Selection (MAS) is to exploit Linkage Disequilibrium (LD) between markers and QTLs. With strong enough LD, MAS should in theory be easier, faster, cheaper, or more efficient than classical (phenotypic) selection. I briefly review the major MAS methods, describing some ‘success stories’ where MAS was applied successfully in the context of plant breeding, and detailing other cases where efficiency was not as high as expected. I discuss the possible causes explaining the difference between theoretical expectations and practical observations. Finally, I review the principal challenges and issues that must be tackled to make marker-assisted selection in plants more effective in the future, namely: managing and controlling QTL stability to apply MAS to complex traits, and integrating MAS in traditional breeding practices to make it more economically attractive and applicable in developing countries.  相似文献   

12.
The tropical maize race Tuxpeño is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP) markers. This panel included 321 core accessions of Tuxpeño race from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank collection, 94 CIMMYT maize lines (CMLs) and 54 U.S. Germplasm Enhancement of Maize (GEM) lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants). Clustering analyses (CA) based on Modified Rogers Distance (MRD) clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the Tuxpeño core set. Various breeding strategies for using the Tuxpeño core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the Tuxpeño core, a minicore subset of 64 Tuxpeño accessions (20% of its usual size) representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the Tuxpeño landrace for maize improvement through the core and/or minicore subset available to the maize community.  相似文献   

13.
Marker-assisted wheat breeding: present status and future possibilities   总被引:5,自引:0,他引:5  
Wheat production and productivity in the past witnessed a remarkable growth. However, this growth rate could not be sustained during the last decade, causing concern among world wheat community. Marker-assisted selection (MAS), which is being practiced for improvement of a variety of traits in wheat around the world, may at least partly help in providing the desired solution. Marker-trait associations are now known for a number of simple, but difficult-to-score traits, so that MAS has been found useful for improvement of several of these important economic traits. Breeding strategies including marker-assisted backcrossing, forward breeding, MAS involving doubled haploid technology and F2 enrichment have been successfully utilized for this purpose. However, for improvement of complex polygenic traits, newer technologies based on high throughput genotyping associated with new marker systems (e.g., DArT and SNP), and new selection strategies such as AB-QTL, mapping-as-you-go, marker-assisted recurrent selection and genome-wide selection will have to be tried in future. The progress made in all these aspects of marker-assisted wheat breeding, and the limitations and future prospects of this emerging technology have been reviewed in this article.  相似文献   

14.
Most of the major livestock breeding organizations in the world are actively involved in using the emerging tools for genome analysis to obtain a better understanding of the molecular architecture of their favourite production traits. This is bound to generate a considerable amount of novel biological information that will provide a competitive advantage to those that have access to it. At present, the preferred avenue to exploit this information is via marker-assisted selection (MAS), and several breeding organisations are starting to implement MAS in breeding programs. However, it seems unlikely that the exploitation of genomics information will be limited to MAS in the future. Even though it is difficult to anticipate the ultimate impact of genomics on animal production, it would be very surprising if it were not to revolutionize this industry as it is already revolutionizing the biomedical and plant breeding industries.  相似文献   

15.
The primary aim of plant breeders is to develop new cultivars in order to improve productivity and to combat threats from pests and diseases. Recent advances in genomics have been recognised as providing important tools for plant breeders in the form of molecular genetic markers that can be used to tag genes of interest. However, the cost-effective use of marker technology is dependent on the nature and timing of the use of such markers. A conventional potato breeding programme typically creates a large breeding population and then employs phenotypic recurrent selection over a number of generations to identify superior genotypes. Marker-assisted selection (MAS) provides the advantage of being applicable at the seedling or an early generation stage. We have analysed the cost of MAS and compared it to conventional screening, then modelled the respective costs against the breeding population size of the generation in which they would be applied to determine whether MAS in the early generations of a potato breeding programme would be cost-effective. As various potato breeding programmes employ different selection rates in early generations, these rates have also been modelled to determine the effect. Our results indicate that MAS could be applied cost-effectively in the second clonal generation for all models currently employed in potato breeding.  相似文献   

16.
The tropical maize race Tuxpe?o is a well-known race of Mexican dent germplasm which has greatly contributed to the development of tropical and subtropical maize gene pools. In order to investigate how it could be exploited in future maize improvement, a panel of maize germplasm accessions was assembled and characterized using genome-wide Single Nucleotide Polymorphism (SNP) markers. This panel included 321 core accessions of Tuxpe?o race from the International Maize and Wheat Improvement Center (CIMMYT) germplasm bank collection, 94 CIMMYT maize lines (CMLs) and 54 U.S. Germplasm Enhancement of Maize (GEM) lines. The panel also included other diverse sources of reference germplasm: 14 U.S. maize landrace accessions, 4 temperate inbred lines from the U.S. and China, and 11 CIMMYT populations (a total of 498 entries with 795 plants). Clustering analyses (CA) based on Modified Rogers Distance (MRD) clearly partitioned all 498 entries into their corresponding groups. No sub clusters were observed within the Tuxpe?o core set. Various breeding strategies for using the Tuxpe?o core set, based on grouping of the studied germplasm and genetic distance among them, were discussed. In order to facilitate sampling diversity within the Tuxpe?o core, a minicore subset of 64 Tuxpe?o accessions (20% of its usual size) representing the diversity of the core set was developed, using an approach combining phenotypic and molecular data. Untapped diversity represents further use of the Tuxpe?o landrace for maize improvement through the core and/or minicore subset available to the maize community.  相似文献   

17.
Genotype × environment (GE) interaction is a common characteristic for quantitative traits, and has been a subject of great concern for breeding programs. Simulation studies were conducted to investigate the effects of GE interaction on genetic response to marker-assisted selection (MAS). In our study we demonstrated that MAS is generally more efficient than phenotypic selection in the presence of GE interaction, and this trend is more pronounced for developing broadly adaptable varieties. The utilization of different QTL information dramatically influences MAS efficiency. When MAS is based on QTLs evaluated in a single environment, the causal QTL × environment (QE) interactions usually reduce general response across environments, and the reduction in the cumulative general response is a function of the proportion of QE interactions for the trait studied. However, MAS using QTL information evaluated in multiple environments not only yields higher general response, but the general response obtained is also reasonably robust to QE interactions. The total response achieved by MAS in a specific environment depends largely on the total heritability of traits and is slightly subject to relative changes between general heritability and GE interaction heritability. Two breeding strategies, breeding experiments conducted in one environment throughout and in two environments alternately, were also examined for the implementation of marker-based selection. It was thus concluded that plant breeders should be cautious to utilize QTL information from only one environment and execute breeding studies in another.  相似文献   

18.
Evaluation of marker-assisted selection through computer simulation   总被引:20,自引:0,他引:20  
Computer simulation was used to evaluate responses to marker-assisted selection (MAS) and to compare MAS responses with those typical of phenotypic recurrent selection (PRS) in an allogamous annual crop species such as maize (Zea mays L.). Relative to PRS, MAS produced rapid responses early in the selection process; however, the rate of these responses diminished greatly within three to five cycles. The gains from MAS ranged from 44.7 to 99.5% of the maximum potential, depending on the genetic model considered. Linkage distance between markers and quantitative trait loci (QTLs) was the factor which most limited the responses from MAS. When averaged across all models considered, flanking QTLs within two marker loci produced 38% more gain than did selection based on single markers if markers were loosely-linked to a QTL (20% recombination). Flanking markers were much less advantageous when markers were closely-linked to a QTL (5% recombination), producing an advantage over single markers of only 11%. Markers were most effective in fully exploiting the genetic potential when fewer QTLs controlled the trait. Large QTL numbers exacerbated the problem of marker-QTL recombination by requiring more generations for fixation. In annual crop species, MAS may offer a primary advantage of enabling two selection cycles per year versus the 2 years per cycle required by most PRS schemes for the evaluation of testcross progeny. MAS thus appears to allow very rapid gains for the first 2–3 years of recurrent selection, after which time conventional methods might replace MAS to achieve further responses.Publication number 19, 330 of the Minnesota Agricultural Experiment Station  相似文献   

19.
QTL×环境互作对标记辅助选择响应的影响   总被引:2,自引:0,他引:2  
刘鹏渊  朱军  陆燕 《遗传学报》2006,33(1):63-71
基因型×环境互作是植物数量性状的普通属性和遗传育种改良的关注重点.采用Monte Carlo模拟方法研究了基因型×环境互作对标记辅助选择(Marker-assisted selection,简称MAS)响应的影响,揭示了育种上利用QTL(Quantitafivetrait locus,简称QTL)应当同时考虑其环境互作效应.存在基因型×环境互作下,MAS比普通表型选择更有效.特别以选育广适应性的品种为目标,MAS的优越性更明显.基于单个环境QTLs的MAS,QTL×环境互作效应通常降低了一般选择响应,一般选择响应累积量的降低程度与改良性状的QTL×环境互作效应大小相关.基于多个环境QTLs的MAS,不但产生较高的一般选择响应,而且获得的一般选择响应不受其QTL×环境互作效应大小的影响.但在某一特定环境下获得的总体选择响应仅与改良性状的总遗传率大小有关,普通遗传率和基因型与环境互作遗传率的相对变化对其影响很小.还比较研究了单地和穿梭选择对MAS遗传响应的影响.植物育种者应谨慎将某一环境的QTL信息用于实施另一环境的育种研究.  相似文献   

20.
DNA markers have enormous potential to improve the efficiency and precision of conventional plant breeding via marker-assisted selection (MAS). The large number of quantitative trait loci (QTLs) mapping studies for diverse crops species have provided an abundance of DNA marker-trait associations. In this review, we present an overview of the advantages of MAS and its most widely used applications in plant breeding, providing examples from cereal crops. We also consider reasons why MAS has had only a small impact on plant breeding so far and suggest ways in which the potential of MAS can be realized. Finally, we discuss reasons why the greater adoption of MAS in the future is inevitable, although the extent of its use will depend on available resources, especially for orphan crops, and may be delayed in less-developed countries. Achieving a substantial impact on crop improvement by MAS represents the great challenge for agricultural scientists in the next few decades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号