首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
The trpX mutation in Escherichia coli reduces trp operon attenuation in strains carrying wild-type tRNATrp. The trpX? phenotype is alleviated (attenuation is restored) in UGA-suppressor tRNATrp-carrying strains (Yanofsky &; Soll, 1977).The tRNA from various trpX? strains was characterized biochemically. Sequence analyses of wild-type tRNATrp and UGA suppressor tRNATrp, both derived from trpX? strains, reveal an unmodified A in the position (adjacent to the anticodon) normally occupied by the hypermodified base ms2i6A.In addition, several tRNAs from trpX? cells were characterized by RPC-5 column chromatography. We find that only tRNAs normally having ms2i6A exhibit altered elution profiles when compared to the homologous tRNAs from trpX? cells. Introduction of the UGA suppressor into trpX? cells does not restore normal Chromatographic behavior. These results suggest that the trpX gene product is necessary for the synthesis of ms2i6A. Thus, we propose that miaA (for the first gene involved in ms2i6A synthesis) replaces the trpX designation.The results reported here are discussed with regard to a model proposed by Lee &; Yanofsky (1977) in which efficient translation of the tandem trp codons in the leader sequence RNA is required for normal attenuation of the trp operon.  相似文献   

6.
The methylation of transfer RNA in Escherichia coli   总被引:3,自引:0,他引:3  
  相似文献   

7.
In the analysis of DNAase II digestion of chromatin, as described in the preceding paper, interactions between adjacent nucleosomes play an important part. In order to understand the mechanism of DNAase II cleavage we next investigated the role of histone H1 in these interactions and characterized the nucleoprotein particles arising in the course of DNAase II action.H1-free chromatin prepared by three different procedures, using either 0.6 m-NaCl, transfer RNA or an ion-exchange resin, can be cleaved by DNAase II only at the internucleosomal cleavage site leading to 200-bp2 digestion patterns regardless of the ionic conditions. When H1 was added back to the three chromatin preparations the 100-bp cleavage pattern could be restored only with material prepared by the resin method at low concentrations of salt. Addition of polylysine instead of H1 has the same effect, but only with material prepared by that method. A direct correlation between extended and condensed states of chromatin as monitored by electron microscopy and DNAase II cleavage in the 200 and 100-bp modes, respectively, could be established.The continuity of the nucleosome chains in DNAase II-digested chromatin is maintained in spite of intranucleosomal cleavage in the terminal section of the core DNA, even in the absence of H1. Addition of 3 m-urea, however, disrupts the nucleosome chains at the intranucleosomal cleavage sites and leads to the formation of novel nucleoprotein particles as seen in sucrose gradient centrifugations. Those sedimenting between mononucleosomes and dinucleosomes contain, almost exclusively, DNA of 300 bp (mouse) or 315 bp (chicken erythrocyte). They can be formed from particles sedimenting in the absence of urea in the dinucleosome region by either a dissociation process or a massive conformational change.On the basis of the results presented here and in the preceding paper a mechanism for DNAase II cleavage of chromatin in the 200-bp and 100-bp modes is proposed and discussed in the context of structural features of chromatin recognized by DNAase II.  相似文献   

8.
In Escherichia coli cells carrying the srnB+ gene of the F plasmid, rifampin, added at 42 degrees C, induces the extensive rapid degradation of the usually stable cellular RNA (Ohnishi, Y., (1975) Science 187, 257-258; Ohnishi, Y., Iguma, H., Ono, T., Nagaishi, H. and Clark, A.J. (1977) J. Bacteriol. 132, 784-789). We have studied further the necessity for rifampin and for high temperature in this degradation. Streptolydigin, another inhibitor of RNA polymerase, did not induce the RNA degradation. Moreover, the stable RNA of some strains in which RNA polymerase is temperature-sensitive did not degrade at the restrictive temperature in the absence of rifampin. These data suggest that rifampin has an essential role in the RNA degradation, possibly by the modification of RNA polymerase function. A protein (Mr 12 000) newly synthesized at 42 degrees C in the presence of rifampin appeared to be the product of the srnB+ gene that promoted the RNA degradation. In a mutant deficient in RNAase I, the extent of the RNA degradation induced by rifampin was greatly reduced. RNAase activity of cell-free crude extract from the RNA-degraded cells was temperature-dependent. The RNAase was purified as RNAase I in DEAE-cellulose column chromatography and Sephadex G-100 gel filtration. Both in vivo and with purified RNAase I, a shift of the incubation mixture from 42 to 30 degrees C, or the addition of Mg2+ ions, stopped the RNA degradation. Thus, an effect on RNA polymerase seems to initiate the expression of the srnB+ gene and the activation of RNAase I, which is then responsible for the RNA degradation of E. coli cells carrying the srnB+ gene.  相似文献   

9.
10.
Multiprotein complexes that carry out RNA degradation and processing functions are found in cells from all domains of life. In Escherichia coli, the RNA degradosome, a four-protein complex, is required for normal RNA degradation and processing. In addition to the degradosome complex, the cell contains other ribonucleases that also play important roles in RNA processing and/or degradation. Whether the other ribonucleases are associated with the degradosome or function independently is not known. In the present work, IP (immunoprecipitation) studies from cell extracts showed that the major hydrolytic exoribonuclease RNase II is associated with the known degradosome components RNaseE (endoribonuclease E), RhlB (RNA helicase B), PNPase (polynucleotide phosphorylase) and Eno (enolase). Further evidence for the RNase II-degradosome association came from the binding of RNase II to purified RNaseE in far western affinity blot experiments. Formation of the RNase II–degradosome complex required the degradosomal proteins RhlB and PNPase as well as a C-terminal domain of RNaseE that contains binding sites for the other degradosomal proteins. This shows that the RNase II is a component of the RNA degradosome complex, a previously unrecognized association that is likely to play a role in coupling and coordinating the multiple elements of the RNA degradation pathways.  相似文献   

11.
In an RNase III-deficient mutant of Escherichia coli, all 23 S ribosomal RNA in ribosomes is present in an unprocessed form with a double-stranded stem at the base of the molecule stable enough to be detected by electron microscopy under conditions where all other secondary structure is denatured. Molecules with variable stem lengths enter freely into polysomes, consistent with the existence of a similar but much shorter stem in mature 23 S rRNA in wild-type ribosomes.  相似文献   

12.
A spectinomycin resistance mutation was isolated in an Escherichia coli rRNA operon (rrnH) located on a multicopy plasmid. Cell-free protein-synthesizing extracts made from cells containing the plasmid were partially resistant to spectinomycin. Although spectinomycin is an aminoglycoside antibiotic, the mutation did not confer resistance to any other aminoglycoside antibiotic tested.  相似文献   

13.
14.
The existence of a conditional lethal temperature-sensitive mutant affecting peptidyl-tRNA hydrolase in Escherichia coli suggests that this enzyme is essential to cell survival. We report here the isolation of both chromosomal and multicopy suppressors of this mutant in pth, the gene encoding the hydrolase. In one case, the cloned gene responsible for suppression is shown to be lysV, one of three genes encoding the unique lysine acceptor tRNA; 10 other cloned tRNA genes are without effect. Overexpression of lysV leading to a 2- to 3-fold increase in tRNA(Lys) concentration overcomes the shortage of peptidyl-tRNA hydrolase activity in the cell at non-permissive temperature. Conversely, in pth, supN double mutants, where the tRNA(Lys) concentration is reduced due to the conversion of lysV to an ochre suppressor (supN), the thermosensitivity of the initial pth mutant becomes accentuated. Thus, cells carrying both mutations show practically no growth at 39 degrees C, a temperature at which the pth mutant grows almost normally. Growth of the double mutant is restored by the expression of lysV from a plasmid. These results indicate that the limitation of growth in mutants of E.coli deficient in Pth is due to the sequestration of tRNA(Lys) as peptidyl-tRNA. This is consistent with previous observations that this tRNA is particularly prone to premature dissociation from the ribosome.  相似文献   

15.
16.
Summary In order to determine the metabolic role of RNase D in Escherichia coli, we have attempted to isolate strains deficient in this enzyme. One strain containing a temperature-sensitive RNase D was found among a heavily mutagenized stock of strains temperature-sensitive for growth. Genetic mapping of the mutation responsible for the altered RNase D enabled us to define the rnd locus, at 39.5–40.0 min on the E. coli map, which apparently specifies the RNase D structural gene. Using a Tn10 insertion near the rnd locus, we constructed isogenic strains containing RNase D and RNase II mutations, alone or in combination. Although the original mutant isolate displayed temperature-sensitive growth, no growth phenotype was associated with the rnd mutation in wild type background, possibly because a substantial amount of RNase D remained in cells grown at 45° C. However, elucidation of the map position of the rnd locus should prove useful for the isolation of other mutant strains with lower levels of RNase D.This is paper 34 in the series Reactions at the 3 Terminus of tRNA. The previous paper in this series is Cudny et al. (1981 c)  相似文献   

17.
18.
The current model of DNA replication in Escherichia coli postulates continuous synthesis of the leading strand, based on in vitro experiments with purified enzymes. In contrast, in vivo experiments in E. coli and its bacteriophages, in which maturation of replication intermediates was blocked, report discontinuous DNA synthesis of both the lagging and the leading strands. To address this discrepancy, we analyzed nascent DNA species from ThyA+ E. coli cells replicating their DNA in ligase-deficient conditions to block maturation of replication intermediates. We report here that the bulk of the newly synthesized DNA isolated from ligase-deficient cells have a length between 0.3 and 3 kb, with a minor fraction being longer that 11 kb but shorter than the chromosome. The low molecular weight of the replication intermediates is unchanged by blocking linear DNA processing with a recBCD mutation or by blocking uracil excision with an ung mutation. These results are consistent with the previously proposed discontinuous replication of the leading strand in E. coli.  相似文献   

19.
This report describes the sequencing in the Escherichia coli B genome of 36 randomly chosen regions that are present in most or all of the fully sequenced E. coli genomes. The phylogenetic relationships among E. coli strains were examined, and evidence for the horizontal gene transfer and variation in mutation rates was determined. The overall phylogenetic tree indicated that E. coli B and K-12 are the most closely related strains, with E. coli O157:H7 being more distantly related, Shigella flexneri 2a even more, and E. coli CFT073 the most distant strain. Within the B, K-12, and O157:H7 clusters, several regions supported alternative topologies. While horizontal transfer may explain these phylogenetic incongruities, faster evolution at synonymous sites along the O157:H7 lineage was also identified. Further interpretation of these results is confounded by an association among genes showing more rapid evolution and results supporting horizontal transfer. Using genes supporting the B and K-12 clusters, an estimate of the genomic mutation rate from a long-term experiment with E. coli B, and an estimate of 200 generations per year, it was estimated that B and K-12 diverged several hundred thousand years ago, while O157:H7 split off from their common ancestor about 1.5-2 million years ago.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号