首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A series of novel 6-(4-benzylpiperazin-1-yl)benzodioxanes were prepared and screened at selected dopamine receptor subtypes. 6-(4-[4-Chlorobenzyl]piperazin-1-yl)benzodioxane (2d) had high affinity and selectivity for the D4 dopamine receptor subtype and was identified as a D4 antagonist via its attenuation of dopamine-induced GTPγ35S binding at the D4 receptor.  相似文献   

2.
As part of our on-going effort to explore the role of dopamine receptors in drug addiction and identify potential novel therapies for this condition, we have a identified a series of N-(4-(4-phenyl piperazin-1-yl)butyl)-4-(thiophen-3-yl)benzamide D3 ligands. Members of this class are highly selective for D3 versus D2, and we have identified two compounds (13g and 13r) whose rat in vivo IV pharmacokinetic properties that indicate that they are suitable for assessment in in vivo efficacy models of substance use disorders.  相似文献   

3.
A series of N-(1-benzylpyrrolidin-3-yl)arylbenzamides 8 has been prepared, and their structure-activity relationships studied. Potent ligands selective for human D(4) (hD(4)) over hD(2) and alpha(1) have been identified. One example was determined to be an antagonist in a cAMP assay, with an IC(50) of 1500 nM.  相似文献   

4.
Novel benzofuran-2-carboxamide ligands, which are selective for sigma receptors, have been synthesized via a microwave-assisted Perkin rearrangement reaction and a modified Finkelstein halogen-exchange used to facilitate N-alkylation. The ligands synthesized are the 3-methyl-N-phenyl-N-(3-(piperidin-1-yl)propyl)benzofuran-2-carboxamides (KSCM-1, KSCM-5 and KSCM-11). The benzofuran-2-carboxamide structure was N-arylated and N-alkylated to include both N-phenyl and N-(3-(piperidin-1-yl)propyl substituents, respectively. These new carboxamides exhibit high affinity at the sigma-1 receptor with Ki values ranging from 7.8 to 34 nM. Ligand KSCM-1 with two methoxy substituents at C-5 and C-6 of the benzofuran ring, and Ki = 27.5 nM at sigma-1 was found to be more selective for sigma-1 over sigma-2.  相似文献   

5.
A series of 3-(2-pyrrolidin-1-ylethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole derivatives (2) has been prepared using parallel synthesis techniques, and their structure-activity relationships studied. High affinity human 5-HT(1B/1D) (h5-HT(1B/1D)) ligands have been identified.  相似文献   

6.
A novel series of CCR1 antagonists based on the 1-(4-phenylpiperazin-1-yl)-2-(1H-pyrazol-1-yl)ethanone scaffold was identified by screening a compound library utilizing CCR1-expressing human THP-1 cells. SAR studies led to the discovery of the highly potent and selective CCR1 antagonist 14 (CCR1 binding IC50 = 4 nM using [125I]-CCL3 as the chemokine ligand). Compound 14 displayed promising pharmacokinetic and toxicological profiles in preclinical species.  相似文献   

7.
A series of (R)-3-(N-methylpyrrolidin-2-ylmethyl)-5-(1,2,3,6-tetrahydropyridin-4-yl)-1H-indole derivatives (2) have been prepared using parallel synthesis, and their structure-activity relationship studied. High affinity human 5-HT(1B/1D) (h5-HT(1B/1D)) ligands have been identified.  相似文献   

8.
The dopamine D(3) receptor subtype has been targeted as a potential neurochemical modulator of the behavioral actions of psychomotor stimulants, such as cocaine. Previous synthetic studies provided structural requirements for high affinity binding to D(3) receptors which included a 2,3-dichloro-phenylpiperazine linked to an arylamido function via a butyl chain. To reduce lipophilicity of these agents and further investigate optimal conformation, a second series of 15 novel ligands was designed that included heteroaromatic substitution and unsaturated alkyl linkers. These compounds were synthesized and evaluated for binding at rat D(3) and D(2) receptors stably expressed in Sf9 cells. D(3) binding affinities ranged from K(i)=0.6-1080 nM, with a broad range of D(3)/D(2) selectivities (2-97). The discovery of potent, selective and bioavailable D(3) receptor ligands will provide essential molecular probes to elucidate the role D(3) receptors play in the psychomotor stimulant and reinforcing effects of cocaine.  相似文献   

9.
10.
11.
The binding of a series pyridylbutynylamines 6 was examined at alpha4beta2 nACh receptors. Structural modifications, comparing 6 with pyridyl ethers 2, did not consistently result in parallel effects on receptor affinity, suggesting possible differences in their modes of binding. Furthermore, the binding of amine 6a seemed to be accounted for by the newer vector pharmacophore models.  相似文献   

12.
A series of 4-hydroxy-1-[3-(5-(1,2,4-triazol-4-yl)-1H-indol-3-yl)propyl] piperidines was investigated as potential selective h5-HT1D agonists for the treatment of migraine. The 4-[(N-benzyl-N-methyl)amino]methyl analog 12a was found to be a full agonist at the h5-HT1D receptor with good binding selectivity over the h5-HT1B receptor.  相似文献   

13.
A series of dopamine D(4) antagonists was synthesized and evaluated as potential candidates for development as positron emission tomography (PET) radioligands. All new compounds display high affinity and selectivity for the D(4) receptors and compounds 5b, 5d, and 5e were identified as candidates for radioligand development.  相似文献   

14.
A series of 4-(4-hydroxyphenyl)-6-phenylpyrimidin-2(1H)-ones were identified by HTS as inhibitors of CDC7. Molecular modeling and medicinal chemistry techniques were employed to explore the SAR for this series with a focus on removing potential metabolic liabilities and improving cellular potency.  相似文献   

15.
Piperazinyl derivatives of 1-(arylsulfonyl)-2,3-dihydro-1H-quinolin-4-ones have been identified with high binding affinities for 5-HT6 receptor. In particular, 2-methyl-5-(N-methyl-piperazin-1-yl)-1-(naphthalene-2-sulfonyl)-2,3-dihydro-1H-quinolin-4-one (8g) exhibits high binding affinity toward 5-HT6 (IC50 = 8 nM) receptor with good selectivity over other serotonin and dopamine receptors.  相似文献   

16.
G-protein-coupled receptor kinase (GRK)-2 and -5 are emerging therapeutic targets for the treatment of cardiovascular disease. In our efforts to discover novel small molecules to inhibit GRK-2 and -5, a class of compound based on 3-(benzo[d]oxazol-2-yl)-5-(1-(piperidin-4-yl)-1H-pyrazol-4-yl)pyridin-2-amine was identified as a novel hit by high throughput screening campaign. Structural modification of parent benzoxazole scaffolds by introducing substituents on phenyl displayed potent inhibitory activities toward GRK-2 and -5.  相似文献   

17.
A novel series of 1,2,3 triazole compounds possessing 1,2,4 oxadiazole ring were efficiently synthesized. Synthesized compounds were evaluated for their in vitro antifungal activities using standard cup plate method. SAR for the series has been developed by comparing their MIC values with miconazole and fluconazole. Compound 11a from the series was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus flavus (MIC-10) whereas equipotent with miconazole against Fusarium oxysporum (MIC-25) and Aspergillus niger (MIC-12.5). Also compound 11h was more potent than miconazole against Candida albicans (MIC-20) and Aspergillus niger (MIC-10) and equipotent with miconazole against Fusarium oxysporum. Compound 11h was equipotent with fluconazole against Aspergillus niger (MIC-10).  相似文献   

18.
4-(Piperazin-1-yl methyl)-N1-arylsulfonyl indole derivatives were designed and synthesized as 5-HT6 receptor (5-HT6R) ligands. The lead compound 6a, from this series shows potent in vitro binding affinity, good PK profile, no CYP liabilities and activity in animal models of cognition.  相似文献   

19.
A series of tetrahydroisoquinolines functionalized with carbamates is reported here as highly selective ligands on the dopamine D2 receptor. These compounds were selected by means of a molecular modeling study. The studies were carried out in three stages: first an exploratory study was carried out using combined docking techniques and molecular dynamics simulations. According to these results, the bioassays were performed; these experimental studies corroborated the results obtained by molecular modeling. In the last stage of our study, a QTAIM analysis was performed in order to determine the main molecular interactions that stabilize the different ligand-receptor complexes. Our results show that the adequate use of combined simple techniques is a very useful tool to predict the potential affinity of new ligands at dopamine D1 and D2 receptors. In turn the QTAIM studies show that they are very useful to evaluate in detail the molecular interactions that stabilize the different ligand-receptor complexes; such information is crucial for the design of new ligands.  相似文献   

20.
This letter describes the synthesis and structure activity relationship (SAR) studies of structurally novel M4 antagonists, based on a 3-(4-aryl/heteroarylsulfonyl)piperazin-1-yl)-6-(piperidin-1-yl)pyridazine core, identified from a high-throughput screening campaign. A multi-dimensional optimization effort enhanced potency at human M4 (hM4 IC50s < 200 nM), with only moderate species differences noted, and with enantioselective inhibition. Moreover, CNS penetration proved attractive for this series (rat brain:plasma Kp = 2.1, Kp,uu = 1.1). Despite the absence of the prototypical mAChR antagonist basic or quaternary amine moiety, this series displayed pan-muscarinic antagonist activity across M1-5 (with 9- to 16-fold functional selectivity at best). This series further expands the chemical diversity of mAChR antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号