首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 899 毫秒
1.
The MRE11/RAD50/NBS1 (MRN) complex plays a central role as a sensor of DNA double strand breaks (DSB) and is responsible for the efficient activation of ataxia-telangiectasia mutated (ATM) kinase. Once activated ATM in turn phosphorylates RAD50 and NBS1, important for cell cycle control, DNA repair and cell survival. We report here that MRE11 is also phosphorylated by ATM at S676 and S678 in response to agents that induce DNA DSB, is dependent on the presence of NBS1, and does not affect the association of members of the complex or ATM activation. A phosphosite mutant (MRE11S676AS678A) cell line showed decreased cell survival and increased chromosomal aberrations after radiation exposure indicating a defect in DNA repair. Use of GFP-based DNA repair reporter substrates in MRE11S676AS678A cells revealed a defect in homology directed repair (HDR) but single strand annealing was not affected. More detailed investigation revealed that MRE11S676AS678A cells resected DNA ends to a greater extent at sites undergoing HDR. Furthermore, while ATM-dependent phosphorylation of Kap1 and SMC1 was normal in MRE11S676AS678A cells, there was no phosphorylation of Exonuclease 1 consistent with the defect in HDR. These results describe a novel role for ATM-dependent phosphorylation of MRE11 in limiting the extent of resection mediated through Exonuclease 1.  相似文献   

2.
Nijmegen breakage syndrome is a recessive genetic disorder, characterized by elevated sensitivity to ionizing radiation, chromosome instability and high frequency of malignancies. Since cellular features partly overlap with those of ataxia-telangiectasia (A-T), NBS was long considered an A-T clinical variant. NBS1, the product of the gene underlying the disease, contains three functional regions: the forkhead-associated (FHA) domain and BRCA1 C-terminus (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by ATM and ATR kinases) at a central region and MRE11-binding region at the C-terminus. NBS1 forms a multimeric complex with hMRE11/hRAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA damage by direct binding to histone H2AX, which is phosphorylated by ATM in response to DNA damage. The combination of the FHA/BRCT domains has a crucial role for the binding of NBS1 to H2AX. Thereafter, the NBS1 complex proceeds to rejoin double-strand breaks predominantly by homologous recombination repair in vertebrates, while it also might be involved in suppression of inter-chromosomal recombination even for V(D)J recombination. These processes collaborate with cell cycle checkpoints to facilitate DNA repair, while defects of these checkpoints in NBS cells are partial in nature. A possible explanation for these moderate defects are the redundancy of multiple checkpoint regulations in vertebrates, or the modulator role of NBS1, in which NBS1 amplifies ATM activation by accumulation of the MRN complex at damaged sites. This molecular link of NBS1 to ATM may explain the phenotypic similarity of NBS to A-T.  相似文献   

3.
Chromosomal breakage syndromes and the BRCA1 genome surveillance complex   总被引:6,自引:0,他引:6  
Chromosomal instability can occur when the DNA damage response and repair process fails, resulting in syndromes characterized by growth abnormalities, hematopoietic defects, mutagen sensitivity, and cancer predisposition. Mutations in ATM, NBS1, MRE11, BLM, WRN, and FANCD2 are responsible for ataxia telangiectasia (AT), Nijmegen breakage syndrome, AT-like disorder, Bloom and Werner syndrome, and Fanconi anemia group D2, respectively. This diverse group of disorders is thought to be linked through protein interactions with the breast cancer tumor susceptibility gene product, BRCA1. BRCA1 forms a multi-subunit protein complex referred to as the BRCA1-associated genome surveillance complex (BASC), which includes DNA damage repair proteins such as MSH2-MSH6 and MLH1, as well as ATM, NBS1, MRE11, and BLM. Although still controversial, this finding suggests similarities in the pathogenesis of the human chromosome breakage syndromes and a complementary role for each protein in DNA structure surveillance or damage repair.  相似文献   

4.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder characterized by microcephaly, chromosomal instability, radiation sensitivity, and an increased incidence of malignancies. NBS1, the protein responsible for NBS, forms a complex with MRE11 and RAD50, and plays a vital role in DNA repair, cell cycle checkpoint, and telomere maintenance. Here, we show that a BRCA carboxyl terminus (BRCT) domain-containing region of NBS1 interacts with a nuclear dots-associated protein, SP100. The SP100 and NBS1 proteins co-localized in PODs and APBs in normal human fibroblast MRC5 and ALT line VA13 at G2 phase, respectively. Introduction of PML and SP100 into NT2 cells, which express no detectable amount of PML or SP100 proteins, resulted in localization of NBS1 in ectopically expressed PODs. These results indicate that NBS1 is recruited into PODs via interaction with SP100 protein. Thus, interaction between the NBS1 and SP100 proteins may be involved in genomic stability and telomere maintenance.  相似文献   

5.
Human telomeres are associated with ATM and the protein complex consisting of MRE11, RAD50 and NBS1 (MRN), which are central to maintaining genomic stability. Here we show that when targeted to telomeres, wild-type RAD50 downregulates telomeric association of TRF1, a negative regulator of telomere maintenance. TRF1 binding to telomeres is upregulated in cells deficient in NBS1 or under ATM inhibition. The TRF1 association with telomeres induced by ATM inhibition is abrogated in cells lacking MRE11 or NBS1, suggesting that MRN and ATM function in the same pathway controlling TRF1 binding to telomeres. The ability of TRF1 to interact with telomeric DNA in vitro is impaired by ATM-mediated phosphorylation. We propose that MRN is required for TRF1 phosphorylation by ATM and that such phosphorylation results in the release of TRF1 from telomeres, promoting telomerase access to the ends of telomeres.  相似文献   

6.
MRE11 and NBS1 function together as components of a MRE11/RAD50/NBS1 protein complex, however deficiency of either protein does not result in the same clinical features. Mutations in the NBN gene underlie Nijmegen breakage syndrome (NBS), a chromosomal instability syndrome characterized by microcephaly, bird-like faces, growth and mental retardation, and cellular radiosensitivity. Additionally, mutations in the MRE11A gene are known to lead to an ataxia-telangiectasia-like disorder (ATLD), a late-onset, slowly progressive variant of ataxia-telangiectasia without microcephaly. Here we describe two unrelated patients with NBS-like severe microcephaly (head circumference -10.2 SD and -12.8 SD) and mutations in the MRE11A gene. Both patients were compound heterozygotes for a truncating or missense mutation and carried a translationally silent mutation. The truncating and missense mutations were assumed to be functionally debilitating. The translationally silent mutation common to both patients had an effect on splicing efficiency resulting in reduced but normal MRE11 protein. Their levels of radiation-induced activation of ATM were higher than those in ATLD cells.  相似文献   

7.
Treatment of PARP-1-expressing cells with the combination of a DNA methylating agent (MMS) and the PARP inhibitor 4-amino-1,8-naphthalimide (4-AN) leads to an ATR/Chk1-dependent S phase checkpoint and cell death by apoptosis. Activation of ATM/Chk2 is involved in sustaining the S phase checkpoint, and double strand break (DSB) accumulation was demonstrated. NBS1, part of the MRN complex that responds to DSBs, is known to modulate ATR- and ATM-dependent checkpoint responses to UV and IR, but a role in the response to PARP inhibition has not been addressed. Here we show that the S phase checkpoint observed 4-8h after MMS+4-AN treatment was absent in cells deficient in NBS1, but was present in NBS1-complemented (i.e., functionally wild-type) cells, indicating a critical role for NBS1 in this checkpoint response. NBS1 was phosphorylated in response to MMS+4-AN treatment, and this was partially ATR- and ATM-dependent, suggesting involvement of both upstream kinases. NBS1 expression had little effect on ATR-mediated phosphorylation of Chk1 and ATM-mediated phosphorylation of Chk2 in response to MMS+4-AN. Phosphorylation of SMC1 was also observed in response to MMS+4-AN treatment. In the absence of ATM and NBS1, phosphorylation of SMC1 was weak, especially at early times after MMS+4-AN treatment. In the absence of ATR activation, reduced SMC1 phosphorylation was seen over a 24h time course. These results suggested that both ATR and ATM phosphorylate SMC1 in response to MMS+4-AN and that this phosphorylation is enhanced by phospho-NBS1. The loss of the MMS+4-AN-induced S phase checkpoint in NBS1-deficient cells may be due to a reduced cellular level of the critical downstream effector, phospho-SMC1.  相似文献   

8.
Fanconi anemia (FA), a rare inherited disorder, exhibits a complex phenotype including progressive bone marrow failure, congenital malformations and increased risk of cancers, mainly acute myeloid leukaemia. At the cellular level, FA is characterized by hypersensitivity to DNA cross-linking agents and by high frequencies of induced chromosomal aberrations, a property used for diagnosis. FA results from mutations in one of the eleven FANC (FANCA to FANCJ) genes. Nine of them have been identified. In addition, FANCD1 gene has been shown to be identical to BRCA2, one of the two breast cancer susceptibility genes. Seven of the FANC proteins form a complex, which exists in four different forms depending of its subcellular localisation. Four FANC proteins (D1(BRCA2), D2, I and J) are not associated to the complex. The presence of the nuclear form of the FA core complex is necessary for the mono-ubiquitinylation of FANCD2 protein, a modification required for its re-localization to nuclear foci, likely to be sites of DNA repair. A clue towards understanding the molecular function of the FANC genes comes from the recently identified connection of FANC to the BRCA1, ATM, NBS1 and ATR genes. Two of the FANC proteins (A and D2) directly interact with BRCA1, which in turn interacts with the MRE11/RAD50/NBS1 complex, which is one of the key components in the mechanisms involved in the cellular response to DNA double strand breaks (DSB). Moreover, ATM, a protein kinase that plays a central role in the network of DSB signalling, phosphorylates in vitro and in vivo FANCD2 in response to ionising radiations. Moreover, the NBS1 protein and the monoubiquitinated form of FANCD2 seem to act together in response to DNA crosslinking agents. Taken together with the previously reported impaired DSB and DNA interstrand crosslinks repair in FA cells, the connection of FANC genes to the ATM, ATR, NBS1 and BRCA1 links the FANC genes function to the finely orchestrated network involved in the sensing, signalling and repair of DNA replication-blocking lesions.  相似文献   

9.
The genetic syndrome Fanconi anemia (FA) is characterized by aplastic anemia, cancer predisposition and hypersensitivity to DNA interstrand crosslinks (ICLs). FA proteins (FANCs) are thought to work in pathway(s) essential for dealing with crosslinked DNA. FANCs interact with other proteins involved in both DNA repair and S-phase checkpoint such as BRCA1, ATM and the RAD50/MRE11/NBS1 (RMN) complex. We deciphered the previously undefined pathway(s) leading to the ICLs-induced S-phase checkpoint and the role of FANCs in this process. We found that ICLs activate a branched pathway downstream of the ATR kinase: one branch depending on CHK1 activity and the other on the FANCs-RMN complex. The transient slow-down of DNA synthesis was abolished in cells lacking ATR, whereas CHK1-siRNA-treated cells, NBS1 or FA cells showed partial S-phase arrest. CHK1 RNAi in NBS1 or FA cells abolished the S-phase checkpoint, suggesting that CHK1 and FANCs/NBS1 proteins work on parallel pathways. Furthermore, we found that ICLs trigger ATR-dependent FANCD2 phosphorylation and FANCD2/ATR colocalization. This study demonstrates a novel relationship between the FA pathway(s) and the ATR kinase.  相似文献   

10.
The Fanconi anemia pathway and the DNA interstrand cross-links repair   总被引:4,自引:0,他引:4  
Rosselli F  Briot D  Pichierri P 《Biochimie》2003,85(11):1175-1184
Fanconi anemia (FA) is a genetic cancer-predisposition syndrome characterized by bone marrow failure and cellular and chromosomal hypersensitivity to DNA cross-linking agents. Seven FA genes have been isolated and their products associate to form a pathway that interacts functionally or physically with several DNA-damage response proteins involved in cell cycle checkpoints and/or DNA repair. These proteins include BLM, ATM, BRCA1, XPF and the MRE11/RAD50/NBS1 complex. In spite of several recent striking progresses in the biochemistry and the molecular biology of the disorder, the precise function(s) of the FA proteins remain(s) poorly determined. However, several recent data indicate that the FA pathway could be involved in the coordination of both cell cycle checkpoints and DNA repair.  相似文献   

11.
Nijmegen breakage syndrome (NBS) is an autosomal genetic disease demonstrating a variety of phenotypic abnormalities, including premature aging, increased cancer incidence, chromosome instability, and sensitivity to ionizing radiation. The gene involved in NBS, NBS1, is part of the MRE11/RAD50/NBS1 (MRN) complex that also includes MRE11 and RAD50, which is involved in DNA repair and cell cycle regulation in response to DNA damage. The MRN complex is also involved in telomere maintenance, as demonstrated by the shortened telomeres in NBS primary human fibroblasts and the association of NBS1 with the telomere-binding protein TRF2. To learn more about how a deficiency in telomere maintenance might contribute to chromosome instability in NBS, we have investigated the stability of telomeres in two telomerase-positive human tumor cell clones, BNmt-On and BNmt-Off, expressing an inducible NBS1(S278A/S343A) gene containing mutations at serines 278 and 343 phosphorylated by ATM. The results demonstrate an increased rate of telomere loss in both clones following expression of NBS1(S278A/S343A). The absence of detectable changes in average telomere length suggests that NBS1-associated telomere loss results from stochastic events involving complete telomere loss or loss of telomere capping function. The recombination events associated with telomere loss were found to be similar to those shown previously to result in breakage/fusion/bridge cycles, suggesting that telomere loss can contribute to chromosome instability in NBS1-deficient cells. Telomere loss showed no correlation with radiosensitivity or radioresistant DNA synthesis, demonstrating that NBS1(S278A/S343A) promotes telomere loss through a separate pathway from these other phenotypes associated with NBS.  相似文献   

12.
Phosphorylation of NBS1, the product of the gene mutated in Nijmegen breakage syndrome (NBS), by ataxia telangiectasia mutated (ATM), the product of the gene mutated in ataxia telangiectasia, is required for activation of the S phase checkpoint in response to ionizing radiation (IR). However, NBS1 is also thought to play additional roles in the cellular response to DNA damage. To clarify these additional functions of NBS1, we generated NBS cell lines stably expressing various NBS1 mutants from retroviral vectors. The ATM-dependent activation of CHK2 by IR was defective in NBS cells but was restored by ectopic expression of wild-type NBS1. The defects in ATM-dependent activation of CHK2, S phase checkpoint control, IR-induced nuclear focus formation, and radiation sensitivity apparent in NBS cells were not corrected by expression of NBS1 mutants that lack an intact MRE11 binding domain, suggesting that formation of the NBS1-MRE11-RAD50 complex is required for the corresponding normal phenotypes. Expression of NBS1 proteins with mutated ATM-targeted phosphorylation sites (serines 278 or 343) did not restore S phase checkpoint control but did restore the ability of IR to activate CHK2 and to induce nuclear focus formation and normalized the radiation sensitivity of NBS cells. Expression of NBS1 containing mutations in the forkhead-associated or BRCA1 COOH terminus domains did not correct the defects in radiation sensitivity or nuclear focus formation but did restore S phase checkpoint control in NBS cells. Together, these data demonstrate that multiple functional domains of NBS1 are required for ATM-dependent activation of CHK2, nuclear focus formation, S phase checkpoint control, and cell survival after exposure to IR.  相似文献   

13.
Immortalized human cells are able to maintain their telomeres by telomerase or by a recombination-mediated DNA replication mechanism known as alternative lengthening of telomeres (ALT). We showed previously that overexpression of Sp100 protein can suppress ALT and that this was associated with sequestration of the MRE11/RAD50/NBS1 (MRN) recombination protein complex by Sp100. In the present study, we determined whether MRN proteins are required for ALT activity. ALT cells were depleted of MRN proteins by small hairpin RNA-mediated knockdown, which was maintained for up to 100 population doublings. Knockdown of NBS1 had no effect on the level of RAD50 or MRE11, but knockdown of RAD50 also depleted cells of NBS1, and knockdown of MRE11 depleted cells of all three MRN proteins. Depletion of NBS1, with or without depletion of other members of the complex, resulted in inhibition of ALT-mediated telomere maintenance, as evidenced by decreased numbers of ALT-associated promyelocytic leukemia bodies and decreased telomere length. In some clones there was an initial period of rapid shortening followed by stabilization of telomere length, whereas in others there was continuous shortening at a rate within the reported range for normal human somatic cells lacking a telomere maintenance mechanism. In contrast, depletion of NBS1 in telomerase-positive cells did not result in telomere shortening. A recent study showed that NBS1 was required for the formation of extrachromosomal telomeric circles (Compton, S. A., Choi, J. H., Cesare, A. J., Ozgur, S., and Griffith, J. D. (2007) Cancer Res. 67, 1513-1519), also a marker for ALT. We conclude that the MRN complex, and especially NBS1, is required for the ALT mechanism.  相似文献   

14.
DNA double-strand breaks (DSBs) trigger accumulation of the MRE11-RAD50-Nijmegen breakage syndrome 1 (NBS1 [MRN]) complex, whose retention on the DSB-flanking chromatin facilitates survival. Chromatin retention of MRN requires the MDC1 adaptor protein, but the mechanism behind the MRN-MDC1 interaction is unknown. We show that the NBS1 subunit of MRN interacts with the MDC1 N terminus enriched in Ser-Asp-Thr (SDT) repeats. This interaction was constitutive and mediated by binding between the phosphorylated SDT repeats of MDC1 and the phosphate-binding forkhead-associated domain of NBS1. Phosphorylation of the SDT repeats by casein kinase 2 (CK2) was sufficient to trigger MDC1-NBS1 interaction in vitro, and MDC1 associated with CK2 activity in cells. Inhibition of CK2 reduced SDT phosphorylation in vivo, and disruption of the SDT-associated phosphoacceptor sites prevented the retention of NBS1 at DSBs. Together, these data suggest that phosphorylation of the SDT repeats in the MDC1 N terminus functions to recruit NBS1 and, thereby, increases the local concentration of MRN at the sites of chromosomal breakage.  相似文献   

15.
NBS1在DNA断裂损伤反应和维持端粒稳定中的作用   总被引:2,自引:0,他引:2  
NBS1作为MRE11/RAD50/NBS1复合物的组分之一,是细胞应答DNA损伤的一个关键蛋白质,在DNA双链断裂修复和维持基因组稳定中发挥重要的作用。端粒是染色体末端由DNA重复序列和蛋白质构成的复合体,其独特结构与DNA双链断裂非常相似。最近几年的研究发现NBS1与端粒也有着十分密切的联系。综述了NBS1在DNA损伤反应中的作用,并探讨NBS1参与维持端粒稳定中的分子机制。  相似文献   

16.
The ability of plants to repair DNA double-strand breaks (DSBs) is essential for growth and fertility. The Arabidopsis DSB repair proteins AtRAD50 and AtMRE11 form part of an evolutionarily conserved complex that, in Saccharomyces cerevisiae and mammals, includes a third component termed XRS2 and NBS1, respectively. The MRN complex (MRX in yeast) has a direct role in DSB repair and is also required for DNA damage signaling and checkpoint activation in a pathway mediated by the protein kinase ATM. This study characterizes Arabidopsis and maize NBS1 orthologues that share conserved protein motifs with human NBS1. Both plant NBS1 proteins interact with the corresponding MRE11 orthologues, and deletion analysis of AtNBS1 defines a region towards the C-terminus (amino acids 465-500) that is required for interaction with AtMRE11. Arabidopsis lines homozygous for a T-DNA insertional mutation in AtNBS1 display hypersensitivity to the DNA cross-linking reagent mitomycin C, and this phenotype can be rescued by complementation with the wild-type gene, consistent with a function for AtNBS1 in plant DSB repair. Analysis of atnbs1-1 atatm double mutants revealed a role for AtNBS1 in meiotic recombination. While atatm mutants produce reduced seed numbers, plants deficient in both AtATM and AtNBS1 are completely infertile. Cytological analysis of these double mutants revealed incomplete chromosome pairing and synapsis in meiotic prophase, and extensive chromosome fragmentation in metaphase I and subsequent stages. These results suggest a novel role for AtNBS1 that is independent of AtATM-mediated signaling and functions in the very early stages of meiosis.  相似文献   

17.
DNA double-strand breaks represent the most potentially serious damage to a genome; hence, many repair proteins are recruited to nuclear damage sites by as yet poorly characterized sensor mechanisms. Here, we show that NBS1, the gene product defective in Nijmegen breakage syndrome (NBS), physically interacts with histone, rather than damaged DNA, by direct binding to gamma-H2AX. We also demonstrate that NBS1 binding can occur in the absence of interaction with hMRE11 or BRCA1. Furthermore, this NBS1 physical interaction was reduced when anti-gamma-H2AX antibody was introduced into normal cells and was also delayed in AT cells, which lack the kinase activity for phosphorylation of H2AX. NBS1 has no DNA binding region but carries a combination of the fork-head associated (FHA) and the BRCA1 C-terminal domains (BRCT). We show that the FHA/BRCT domain of NBS1 is essential for this physical interaction, since NBS1 lacking this domain failed to bind to gamma-H2AX in cells, and a recombinant FHA/BRCT domain alone can bind to recombinant gamma-H2AX. Consequently, the FHA/BRCT domain is likely to have a crucial role for both binding to histone and for relocalization of hMRE11/hRAD50 nuclease complex to the vicinity of DNA damage.  相似文献   

18.
The MRE11‐RAD50‐NBS1 (MRN) complex is essential for the detection of DNA double‐strand breaks (DSBs) and initiation of DNA damage signaling. Here, we show that Rad17, a replication checkpoint protein, is required for the early recruitment of the MRN complex to the DSB site that is independent of MDC1 and contributes to ATM activation. Mechanistically, Rad17 is phosphorylated by ATM at a novel Thr622 site resulting in a direct interaction of Rad17 with NBS1, facilitating recruitment of the MRN complex and ATM to the DSB, thereby enhancing ATM signaling. Repetition of these events creates a positive feedback for Rad17‐dependent activation of MRN/ATM signaling which appears to be a requisite for the activation of MDC1‐dependent MRN complex recruitment. A point mutation of the Thr622 residue of Rad17 leads to a significant reduction in MRN/ATM signaling and homologous recombination repair, suggesting that Thr622 phosphorylation is important for regulation of the MRN/ATM signaling by Rad17. These findings suggest that Rad17 plays a critical role in the cellular response to DNA damage via regulation of the MRN/ATM pathway.  相似文献   

19.
As recently as six years ago, three human diseases with similar phenotypes were mistakenly believed to be caused by a single genetic defect. The three diseases, Ataxia-telangiectasia, Nijmegen breakage syndrome, and an AT-like disorder are now known, however, to have defects in three separate genes: ATM, NBS1, and MRE11. Furthermore, new recent studies have shown now that all three gene products interact; the ATM kinase phosphorylates NBS1, which, in turn, associates with MRE11 to regulate DNA repair. Remarkably or expectedly, depending on one's point of view, the similarity in disease phenotypes is evidently due to defects in a common DNA repair pathway.  相似文献   

20.
Recombination-like structures formed at origins of DNA replication may contribute to replication fidelity, sister chromatid cohesion, chromosome segregation, and overall genome stability. The Epstein-Barr Virus (EBV) origin of plasmid replication (OriP) provides episomal genome stability through a poorly understood mechanism. We show here that recombinational repair proteins MRE11 and NBS1 are recruited to the Dyad Symmetry (DS) region of OriP in a TRF2- and cell cycle-dependent manner. Depletion of MRE11 or NBS1 by siRNA inhibits OriP replication and destabilized viral episomes. OriP plasmid maintenance was defective in MRE11 and NBS1 hypomorphic fibroblast cell lines and only integrated, non-episomal forms of EBV were detected in a lympoblastoid cell line derived from an NBS1-mutated individual. Two-dimensional agarose gel analysis of OriP DNA revealed that recombination-like structures resembling Holliday-junctions form at OriP in mid S phase. MRE11 and NBS1 association with DS coincided with replication fork pausing and origin activation, which preceded the formation of recombination structures. We propose that NBS1 and MRE11 promote replication-associated recombination junctions essential for EBV episomal maintenance and genome stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号