首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Proteocephalus thymalli and P. torulosus, a contact of the placental type in uterus was shown to be formed at two different levels. At the first level an interaction occurs between outgrowths of uterine epithelium and thin capsule of embryos closely adjacent to uterine wall. The next level is formation of contact between neighboring egg capsules, which allows distributing nutrients among fetuses present in the uterine cavity. Placental interactions in Clestobothrium acheilognathi are limited in time and space. First, a relatively small number of eggs are involved in interaction of the placental type in the uterine sac, while uterine duct is filled with freely lying eggs. Second, the closest contact is observed in eggs with non-sclerosed egg shell. One of the main evolutionary tendencies in cestodes has been shown to be a modification of uterus for formation of close interrelations with embryonic membranes in the course of transition from the extrauterine to the intrauterine type of embryonic development. Uterus in parasites with a polylecital type of the egg is suggested to serve to the greater extent as a reservoir, whereas in cestodes with oligolecital eggs, uterus performs its direct function—supply of developing embryos with nutrients. As a result, modifications of uterine epithelium are formed: from the appearance of the placental type interactions formed repeatedly in phylogenetically distant groups of cestodes to formation of branched outgrowths separating the uterine space into units or disintegration to actively functioning uterine capsules.  相似文献   

2.
The insect-parasitic female of Sphaerularia bombi everts its uterus and associated reproductive structures into the body cavity of its bumblebee host. This uterine sac then takes over the normal functions of the parasite and leads an independent existence. An examination of this sac shows that the surface of the uterine cells are differentiated into a network of saccular indentations separating off fine cytoplasmic extensions. The folding of adjacent cytoplasmic extensions around portions of the host''s hemolymph results in the formation of pinocytotic vacuoles. Intracellular vacuoles are also formed at the base of the saccular indentations. It appears that the first stage of intracellular digestion in S. bombi initially occurs by pinocytosis in the outer surface of the uterine cells. The inner and outer surfaces of the ovary and oviduct are modified into lobelike projections to increase the absorptive surface area, and electron-dense droplets originating in this tissue were also observed in the developing eggs. The hypothesis is presented that soluble nutrients are passed into the ovary-oviduct tissue where, after being reconstituted into droplets, they enter the developing eggs.  相似文献   

3.
Korneva ZhV 《Parazitologiia》2004,38(2):150-159
The fine structure of the female reproductive organs and ducts in two cyclophyllidean cestodes was studied by transmission electron microscopy. All the studied ducts (vitelline, fertilization and vaginal ducts, and oviducts) as well as the uterine and ootype walls have the luminal surface elevated to form apical cytoplasmic lamellae and are surrounded by bands of circular muscules, which are attached to the basement layer. The structure of the studied ducts epithelium corresponds to the pattern described in other ducts of the cestode genital system, namely a nucleate syncytial layer. An exception is the vagina Sobolevicanthus gracilis, in which the surface is lined with not numerous atypical microtriches. The comparison of our results and the data reported for other species is given. It is found out that in different species of cestodes forming oligolecital eggs, there are observed various uterine structures and diverse contacts between the eggs capsules and the uterine epithelium. The formation of special structures and contacts is the evolutionary way from the extrauterine type to more progressive intrauterine type of embryo development in cestodes.  相似文献   

4.
The uterine epithelium of the viviparous Salamandra atra and the ovoviviparous Salamandra salamandra was studied in non pregnant and ovulating females and in females during different stages of pregnancy. The epithelium of both species is organized in a monolayer. The epithelial cells are characterized by a moderate secretory activity, a variable amount of apical granules which include PAS-positive material and by some apical and basal exo- or endocytotic vesicles. Adjacent cells are joined by junctional complexes. The lateral surfaces form a tortuous boundary with adjoining cells which suggest that the epithelium is involved in transport. Sporadic light cells possess highly variable cytoplasmic inclusions and are not joined with neighbouring cells. Possibly they represent migratory cells. The entire epithelium, except for a small cranial portion of the uterus in S. atra, undergoes no remarkable morphological changes during the different physiological stages examined except that flattened cells seem to be more numerous in pregnant females. The results are discussed with regard to the possible supply of the developing young by the mother.  相似文献   

5.
Female reproductive tracts of the viviparous neo-tropical onychophoran Peripatus acacioi have been examined at different times throughout the year, and the altering relationship between the developing embryo and the uterus is described. Depending on her age and time of year, the female may have one or two generations of embryos within her uterus. The uterine wall consists of a thin outer epithelium and basal lamina, three layers of muscles, and a thick basal lamina beneath an inner epithelium lining the uterus lumen. These layers are consistent along the length of the uterus apart from the inner epithelial lining, which varies according to position in the uterus and the developmental stage of embryos contained in the uterus. Early embryos are positioned along the length of the uterus and therefore have space in which to grow. During cleavage and segment formation, each embryo is contained within a fluid-filled embryo cavity that increases in size as the embryo grows. Morulae and blastulae are separated by lengths of empty uterus in which the epithelial lining appears vacuolated. Until the process of segment formation is complete, the embryos are attached to a placenta by a stalk and remain in the same part of the upper region of the uterus. As these embryos grow, the lengths of vacuolated cell-lined uterus between them decrease. Each embryo cavity is surrounded by the epithelial sac, the maternal uterine epithelium, which becomes overlaid by a thin layer of cells, the embryo sac, which is believed to be of embryonic origin. The placenta is a syncytial modification of the epithelial sac located at the ovarian end of each embryo cavity covered by the embryo sac and is analogous to the mammalian noninvasive epitheliochorial placenta. Segment-forming embryos have their heads directed toward the ovary. As the embryo gets longer during segment formation, its posture changes from coiled to flexed. Once segment formation is complete, the embryo loses contact with its stalk, an embryonic cuticle forms, and the embryo turns around so that its head is directed toward the vagina. The embryo escapes from its embryo sac and moves to the lower part of the uterus. In the lower part of the uterus, the straightened fetuses are first unpigmented but subsequently become pigmented as the secondary papillae on the body surface form and an adult-type cuticle forms beneath the embryonic cuticle. While the embryos are contained within their embryo cavities, nutrients are supplied by the placenta. Throughout development the mouth is open and in the mature fetus the gut is lined by peritrophic membrane and material is present in the gut lumen. Trachea have been observed only in fetuses that were ready for birth. Insemination, cyclical changes in the uterine epithelium, and the nature of the cuticle shed at parturition are discussed. © 1995 Wiley-Liss, Inc.  相似文献   

6.
The morphology of the reproductive system at different stages of ontogenesis and ultrastructural peculiarities of the copulatory organs and uterine in Monocercus arionis (Sibold, 1850) Villot, 1982 (Cyclophyllidea) have been studied. The muscle of the outer wall of the cirrus bag has a higher organizational level than typical smooth-muscle cells in cestodes. The cirrus is armed with typical filamentous and bladelike microtriches. The uterine epithelium contacts the thin capsule of the developing embryos located closely to the uterus wall, and the embryos contact each other in the uterine cavity in what can be interpreted as placental interactions. The specificity of the structure and arming of the copulatory apparatus has been considered, and the ultrastructural peculiarities of the uterus in the members of different orders of cestodes have been compared and analyzed.  相似文献   

7.
8.
An ultrastructural study of the uterus of Xiphinema coomansi reveal that the numerous uterine spines present in this species are not anchored to the inner wall of the tubular uterus, but are symmetrically arranged and attached in a membranous network suspended throughout the entire length of the uterus. The spines are solid, hexagonal structures enveloped and connected in tri-radial fashion to each other, as well as to the inner uterine wall by a continuous thin undulating membrane. The network membrane thus formed encloses numerous compartments on the luminal side of the uterus, which seems to create a type of barrier between the plicated uterine wall and a rather constricted central lumen. No such membranous intrauterine network has been reported previously in the reproductive system of nematodes.  相似文献   

9.
Although pregnant viviparous squamates are sometimes claimed to be able to resorb inviable eggs and embryos from the uterus, definitive evidence for such resorption is not available. After placing pregnant female Pseudemoia pagenstecheri into conditions under which embryonic development is terminated, we periodically harvested the gravid oviducts and examined them histologically. Females contained abnormal and degenerating eggs and embryos that had died in various stages of development. Dead embryos had undergone extensive cytolysis, dissolution, and aseptic necrosis and vitelline masses showed signs of deterioration and passage down the oviduct. The uterine mucosa lay in direct contact with the vitelline material, with no intact shell membrane intervening between them. Yolk was sometimes displaced into the exocoelom and allantoic cavity due to rupture of the extraembryonic membranes. Histological examination revealed no evidence of the uptake of yolk by the uterine epithelium or its accumulation in the subepithelial connective tissue. In many specimens, the uterine epithelium showed minuscule, apical granules. The position, appearance, and staining properties of the granules suggests them to be secretory, a manifestation of placentotrophy. Our observations indicate that P. pagenstecheri females retain dead eggs and embryos for several weeks or longer, yet do not resorb them during that period. This lizard is the second placentotrophic skink species in which resorption has been suspected, but in which abortive eggs appear to be retained or extruded instead of being resorbed by the oviducts. Researchers should not assume that squamates can digest and resorb oviductal eggs without definitive morphological evidence.  相似文献   

10.
The epithelium of the mammalian vagina arises from two distinct germ layers, endoderm from the urogenital sinus and mesoderm from the lower fused Müllerian ducts. While previously it has been reported that neonatal vaginal epithelium can be induced to differentiate as uterus, which normally develops from the middle portion of the Müllerian ducts, it has not been determined whether this ability is shared by both mesoderm- and endoderm-derived vaginal epithelia. To test if germ layer origin influences the ability of vaginal epithelium to undergo uterine differentiation, we have isolated sinus-derived and Müllerian-derived vaginal epithelia from newborn mice, combined them with uterine mesenchyme, and grown them for 4 weeks in female mice. Mesoderm-derived Müllerian vaginal epithelium in combination with uterine mesenchyme formed the simple columnar epithelium typical of uterus. Similar results were obtained with neonatal cervical epithelium, another mesodermal Müllerian duct derivative. On the other hand, sinus vaginal epithelium combined with uterine mesenchyme formed small cysts lined by a stratified squamous vaginal-like epithelium. This epithelium never showed evidence of cycling between the cornified and mucified states as is typically seen in vaginal epithelium combined with vaginal stroma. These results indicate that the ability of epithelium to form uterus is limited to mesoderm-derived epithelia and suggest that endoderm-derived sinus vaginal epithelium cannot undergo the typical differentiative modifications in response to the hormonal fluctuations of the estrous cycle when associated with uterine stroma.  相似文献   

11.
The ultrastructure of the reticular uterus has been analyzed in pregravid and gravid proglottids of cyclophillid cestodes dwelling in water (Alcataenia dominicana and A. larina) and in terrestrial hosts (Arostrilepis tenuicirrosa). Cells of the medullary parenchyma surrounding the uterus are filled with lipid inclusions in all species investigated. The hypertrophic development of small excretory ducts that surround the uterus, contact the uterine epithelium, and penetrate the diverticula is characteristic of Alcataenia dominicana and Arostrilepis tenuicirrosa. A comparative analysis of the results and the data available for other cestode species allow for the assumption that the reticulate structure of the uterus, lipid accumulation, and contacts between the uterine epithelium and the excretory ducts are morphological and functional adaptations that enable matrotrophy and the attainment of maximal fecundity by cyclophillid cestodes.  相似文献   

12.
Embryos of the viviparous dwarf ornate wobbegong shark (Orectolobus ornatus) develop without a placenta, unattached to the uterine wall of their mother. Here, we present the first light microscopy study of the uterus of O. ornatus throughout pregnancy. At the beginning of pregnancy, the uterine luminal epithelium and underlying connective tissue become folded to form uterine ridges. By mid to late pregnancy, the luminal surface is extensively folded and long luminal uterine villi are abundant. Compared to the nonpregnant uterus, uterine vasculature is increased during pregnancy. Additionally, as pregnancy progresses the uterine epithelium is attenuated so that there is minimal uterine tissue separating large maternal blood vessels from the fluid that surrounds developing embryos. We conclude that the uterus of O. ornatus undergoes an extensive morphological transformation during pregnancy. These uterine modifications likely support developing embryos via embryonic respiratory gas exchange, waste removal, water balance, and mineral transfer.  相似文献   

13.
The left ovary of the bonnethead shark, Sphyrna tiburo, is rudimentary, and the right ovary supplies both oviducts which share a common ostium situated in the falciform ligament. Preceding ovulation the nidamental gland of each oviduct hypertrophies and the caudal two-thirds of each oviduct is modified to form a uterus. In the Florida-Caribbean area Sphyrna tiburo probably mates in March and 3–7 eggs are fertilized in the vicinity of the nidamental gland of each oviduct. The developing embryo is nourished during the first 3–4 months of gestation by yolk stored in its extensive yolk sac. Approximately three and one-half months after fertilization, the distal portion of the yolk sac becomes convoluted and interdigitates with deep folds in the uterine wall to form a yolk-sac placenta. As the placenta develops, the maternal uterine epithelium is reduced from columnar cells to squamous cells, and the foetal yolk-sac epithelium is reduced from columnar and cuboidal cells to squamous cells. Exchange between the maternal and foetal blood systems takes place through maternal endothelium, reduced maternal epithelium, egg-case membrane, reduced foetal epithelium, and foetal endothelium.  相似文献   

14.
Although the majority of onychophorans are viviparous or ovoviviparous, oviparity has been described in a number of species found exclusively in Australia and New Zealand. Light microscopy and scanning and transmission electron microscopy were used to examine developing eggs and the reproductive tract of the oviparous Planipapillus mundus. Deposited eggs and fully developed eggs dissected from the terminal end of the uteri have an outer thick, slightly opaque chorion, and an inner thin, transparent vitelline membrane. The chorion comprises an outermost extrachorion, sculptured with domes equally spaced over the surface; a middle exochorion, with pores occurring in a pattern of distribution equivalent to that of the domes of the extrachorion above; and an innermost, thick endochorion consisting of a spongelike reticulum of cavities comparable to the respiratory network found in insect eggs. The vitelline membrane lies beneath the chorion, from which it is separated by a fluid‐filled space. The vitelline membrane tightly invests the developing egg. Examination of oocytes in the ovary and developing eggs at various stages of passage through the uterus indicate that the majority of chorion deposition occurs in the midregion of the uterus, where vast networks of endoplasmic reticulum are present in the columnar epithelium. The vitelline membrane, however, is believed to begin its development as a primary egg membrane, surrounding the developing oocytes in the ovary. The vitelline membrane is transformed after fertilization, presumably by secretions from the anterior region of the uterus; hence, it should be more accurately referred to as a fertilization membrane. Aspects of the reproductive biology of P. mundus are also included. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

15.
In the viviparous lizard Trachylepis ivensi (Scincidae) of central Africa, reproducing females ovulate tiny ~1 mm eggs and supply the nutrients for development by placental means. Histological study shows that this species has evolved an extraordinary placental pattern long thought to be confined to mammals, in which fetal tissues invade the uterine lining to contact maternal blood vessels. The vestigial shell membrane disappears very early in development, allowing the egg to absorb uterine secretions. The yolk is enveloped precocially by the trilaminar yolk sac and no isolated yolk mass or yolk cleft develops. Early placentas are formed from the chorion and choriovitelline membranes during the neurula through pharyngula stages. During implantation, cells of the chorionic ectoderm penetrate between uterine epithelial cells. The penetrating tissue undergoes hypertrophy and hyperplasia, giving rise to sheets of epithelial tissue that invade beneath the uterine epithelium, stripping it away. As a result, fetal epithelium entirely replaces the uterine epithelium, and lies in direct contact with maternal capillaries and connective tissue. Placentation is endotheliochorial and fundamentally different from that of all other viviparous reptiles known. Further, the pattern of fetal membrane development (with successive loss and re‐establishment of an extensive choriovitelline membrane) is unique among vertebrates. T. ivensi represents a new extreme in placental specializations of reptiles, and is the most striking case of convergence on the developmental features of viviparous mammals known. J. Morphol. 2011. © 2011 Wiley Periodicals, Inc.  相似文献   

16.
The study investigated the gross and microscopic anatomy of the genital organs of 20 agoutis at different stages of the estrous cycle and four in the final trimester of pregnancy. Specimens were euthanized and their reproductive organs were fixed in a 4% paraformaldehyde or 2.5% glutaraldehyde solution and submitted to routine histological techniques for light and scanning electron microscopy. In the ovary, during the proestrus phase, we observed developing follicles and corpus luteum (CL) in regression; during estrus, there were Graafian follicles; during metestrus, there was a hemorrhagic corpus, whereas in diestrus, there was a mature CL. The uterus was partially double because the cervix was cranially septate but caudally, the septum disappeared, forming a single ostium that opened into the vagina. Changes occurred along the estrous cycle in the uterine and vaginal epithelia, that is, an increase in the uterine epithelium height accompanied by an increase of thickness of the vaginal epithelium during the follicular phase and a decrease of thickness of both epithelia during the luteal phase. The endometrial lining was composed of a simple cuboidal epithelium to simple columnar epithelium with basal nuclei. The vaginal mucosa consisted of epithelium that varied from nonkeratinized stratified squamous (luteal phase) to keratinized stratified squamous (follicular phase). The clitoris was external to the vagina. It presented two protruding lateral keratinized spicules and a centralized urethra, with no common parts between the urinary and genital tracts. Anatomical and histological changes were observed mainly in the cervix, vagina and spicules of the clitoris during the EC.  相似文献   

17.
Adult Nassarius burchardi and N. jonasii were maintained in a laboratory, allowed to spawn and their early life stages described. N. burchardi veligers hatched from bulliform, oval capsules and N. jonasii veligers hatched from circular capsules with axial ridges. The capsules are compared with those described for other Nassariidae. All eggs developed within the capsules and hatching occurred within six to eight days in the laboratory. The planktotrophic veligers developed in four to five weeks before settling and metamorphosing. The veligers of both species were of comparable size and morphology and spent similar times developing as other Nassarius species from temperate waters. The two species differ in protoconch microsculpture.  相似文献   

18.
19.
The uterus of the viviparous skink Chalcides ocellatus tiligugu was studied by SEM and LM during the annual cycle. Three functional phases were identified: preovulatory (spring), gestatory (summer), and quiescent (autumn-winter), characterized by changes in the uterine wall (mainly the endometrial layer). In the preovulatory phase, the uterine wall increases in thickness; its luminal epithelium has ciliated cells and two types of unciliated secretory cells. The first type secretes sulfated glycosaminoglycans (GAGs), which form the amorphous inner layer of the eggshell membrane; the second type secretes acidic glycoproteins that form the intrafibrillar matrix of the outer layer of the eggshell membrane. The lamina propria contains simple alveolar glands that secrete the collagen fibers of the eggshell membrane. During the gestatory phase, the glycoproteins produced by secretory cells of the second type have histotrophic activity for the developing embryo. The uterus widens to form incubation chambers with two hemispheres, one embryonic and the other abembryonic. Both a chorioallantoic placenta and an omphaloplacenta with histotrophic activity are present in late gestation. The chorioallantoic placenta, with aspects of a Weekes (1935) Type III placenta, develops in the embryonic hemisphere. The omphaloplacenta forms at the vegetative pole of the egg and shows cellular hypertrophy of the bilaminar omphalopleure and uterus. During the quiescent phase, the uterus gradually decreases in thickness and activity; its luminal epithelium does not show secretory activity. The annual variations in the myometrial layer involved the inner circular and the outer longitudinal muscle layers.  相似文献   

20.
Ovarian structure and folliculogenesis of females at different reproductive stages are described for the viviparous placentotrophic lizard Mabuya mabouya. The small ovaries have a thin wall formed by the ovarian epithelium and a thin tunica albuginea. One to two germinal beds that contain numerous oogonia and developing primordial follicles are derived from the ovarian epithelium and are next to the ovarian hilum. The ovarian cortex contains follicles at different stages of development, corpora lutea, and atretic follicles. The yolk nucleus and Balbiani complex were not evident in the ooplasm of previtellogenic follicles. The follicular epithelium of these follicles is polymorphic, as in other species of Squamata, but the larger cells are spherical and monolayered rather than pyriform. The zona radiata of the preovulatory follicles is less developed than in lecithotrophic species. These features suggest a decrease in metabolic and absorptive processes during follicular growth. In preovulatory follicles (1.5-1.8 mm diameter), primordial yolk vacuoles and small cortical granules are deposited in the ooplasm instead of fatty yolk platelets, so that only one stage of vitellogenesis is observed. Polyovular atretic follicles occur in some females. Follicular atresia is minimal for preovulatory follicles, but is more frequent in follicles with polymorphic epithelia. In the corpus luteum, the luteal tissue is formed from granulosa cells and luteolysis occurs during the late gastrula -- late neurula embryonic stages. Thus, the maintenance of gestation from the pharyngula to preparturition stages seems to be related to secretion of extraluteal progesterone, possibly of placental origin. These observed ovarian features are related to the high degree of placental complexity of this species and show that the evolution of advanced placentotrophy in species of this lineage has been accompanied by concomitant changes in ovarian function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号