首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
COS-7 cells were transfected with DNAs containing mutations in the NCp7 sequences of human immunodeficiency virus. Selective incorporation into the virus of tRNA(Lys) was measured by two-dimensional polyacrylamide gel electrophoresis, and Pr160(gag-pol) incorporation into the virus was detected in Western blots of viral protein. Mutations tested included cysteine and histidine mutations in either of the Cys-His boxes, as well as mutations in the N- and C-terminal flanking regions and in the linker region between the two Cys-His boxes. Of 10 mutations tested, only 2 inhibited tRNA(Lys) incorporation: a P31L mutation in the linker region and a deletion which removed both Cys-His boxes and the linker region (deltaK14-T50). The P31L mutation prevents the incorporation of Pr160(gag-pol) into the virus. Cotransfection of COS cells with both P31L DNA and a plasmid coding only for unprocessed Pr160(gag-pol) resulted in the viral incorporation of Pr160(gag-pol) and the rescue of selective packaging of tRNA(Lys) into the virion. In the deltaK14-T50 mutant, Pr160(gag-pol) is incorporated into the virus. Selective tRNA(Lys) packaging is not rescued by cotransfection with a plasmid coding for Pr160(gag-pol) but is rescued by cotransfection with DNA coding for wild-type Pr55(gag). Since Pr55(gag) does not by itself selectively package tRNA(Lys), the deltaK14-T50 mutation may be affecting tRNA(Lys) binding to a cytoplasmic Pr55(gag)/Pr160(gag-pol) complex.  相似文献   

7.
Y Huang  J Mak  Q Cao  Z Li  M A Wainberg    L Kleiman 《Journal of virology》1994,68(12):7676-7683
Human immunodeficiency virus (HIV) particles produced in COS-7 cells transfected with HIV type 1 (HIV-1) proviral DNA contain 8 molecules of tRNA(3Lys) per 2 molecules of genomic RNA and 12 molecules of tRNA1,2Lys per 2 molecules of genomic RNA. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a human tRNA3Lys gene, there is a large increase in the amount of cytoplasmic tRNA3Lys per microgram of total cellular RNA, and the tRNA3Lys content in the virus increases from 8 to 17 molecules per 2 molecules of genomic RNA. However, the total number of tRNALys molecules per 2 molecules of genomic RNA remains constant at 20; i.e., the viral tRNA1,2Lys content decreases from 12 to 3 molecules per 2 molecules of genomic RNA. All detectable tRNA3Lys is aminoacylated in the cytoplasm of infected cells and deacylated in the virus. When COS-7 cells are transfected with a plasmid containing both HIV-1 proviral DNA and a mutant amber suppressor tRNA3Lys gene (in which the anticodon is changed from TTT to CTA), there is also a large increase in the relative concentration of cytoplasmic tRNA3Lys, and the tRNA3Lys content in the virus increases from 8 to 15 molecules per 2 molecules of genomic RNA, with a decrease in viral tRNA1,2Lys from 12 to 5 molecules per 2 molecules of genomic RNA. Thus, the total number of molecules of tRNALys in the virion remains at 20. The alteration of the anticodon has little effect on the viral packaging of this mutant tRNA in spite of the fact that it no longer contains the modified base mcm 5s2U at position 34, and its ability to be aminoacylated is significantly impaired compared with that of wild-type tRNA3Lys. Viral particles which have incorporated either excess wild-type tRNA3Lys or mutant suppressor tRNA3Lys show no differences in viral infectivity compared with wild-type HIV-1.  相似文献   

8.
9.
10.
11.
12.
13.
14.
Accumulating evidence indicates that human immunodeficiency virus type 1 (HIV-1) acquires various cellular membrane proteins in the lipid bilayer of the viral envelope membrane. Although some virion-incorporated cellular membrane proteins are known to potently affect HIV-1 infectivity, the virological functions of most virion-incorporated membrane proteins remain unclear. Among these host proteins, we found that CD63 was eliminated from the plasma membranes of HIV-1-producing T cells after activation, followed by a decrease in the amount of virion-incorporated CD63, and in contrast, an increase in the infectivity of the released virions. On the other hand, we found that CD63 at the cell surface was preferentially embedded on the membrane of released virions in an HIV-1 envelope protein (Env)-independent manner and that virion-incorporated CD63 had the potential to inhibit HIV-1 Env-mediated infection in a strain-specific manner at the postattachment entry step(s). In addition, these behaviors were commonly observed in other tetraspanin proteins, such as CD9, CD81, CD82, and CD231. However, L6 protein, whose topology is similar to that of tetraspanins but which does not belong to the tetraspanin superfamily, did not have the potential to prevent HIV-1 infection, despite its successful incorporation into the released particles. Taken together, these results suggest that tetraspanin proteins have the unique potential to modulate HIV-1 infectivity through incorporation into released HIV-1 particles, and our findings may provide a clue to undiscovered aspects of HIV-1 entry.  相似文献   

15.
16.
17.
APOBEC3G is promiscuous with respect to its antiretroviral effect, requiring that it be packaged into diverse retrovirus particles. Here, we show that most virally encoded human immunodeficiency virus type 1 particle components are dispensable for APOPEC3G incorporation. However, replacement of the nucleocapsid (NC) Gag domain with a leucine zipper abolished APOBEC3G incorporation. Moreover, coprecipitation analysis showed that APOBEC3G-Gag interaction requires NC and nonspecific RNA. These observations suggest that APOBEC3G exploits an essential property of retroviruses, namely, RNA packaging, to infiltrate particles. Because it is, therefore, difficult to evolve specific sequences that confer escape from APOBEC3G, these findings may explain why lentiviruses evolved an activity that induces its destruction.  相似文献   

18.
19.
Ordered and accurate processing of the human immunodeficiency virus type 1 (HIV-1) GagPol polyprotein precursor by a virally encoded protease is an indispensable step in the appropriate assembly of infectious viral particles. The HIV-1 protease (PR) is a 99-amino-acid enzyme that is translated as part of the GagPol precursor. Previously, we have demonstrated that the initial events in precursor processing are accomplished by the PR domain within GagPol in cis, before it is released from the polyprotein. Despite the critical role that ordered processing of the precursor plays in viral replication, the forces that define the order of cleavage remain poorly understood. Using an in vitro assay in which the full-length HIV-1 GagPol is processed by the embedded PR, we examined the effect of PR context (embedded within GagPol versus the mature 99-amino-acid enzyme) on precursor processing. Our data demonstrate that the PR domain within GagPol is constrained in its ability to cleave some of the processing sites in the precursor. Further, we find that this constraint is dependent upon the presence of a proline as the initial amino acid in the embedded PR; substitution of an alanine at this position produces enhanced cleavage at additional sites when the precursor is processed by the embedded, but not the mature, PR. Overall, our data support a model in which the selection of processing sites and the order of precursor processing are defined, at least in part, by the structure of GagPol itself.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号