首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We recentlydemonstrated expression of a novel, glioma-specificCl current in glial-derivedtumor cells (gliomas), including stable cell lines such as STTG1,derived from a human anaplastic astrocytoma. We used STTG1 cells tostudy whether glioma Clchannel (GCC) activity is regulated during cell cycle progression. Cells were arrested in defined stages of cell cycle(G0,G1,G1/S, S, and M phases) using serumstarvation, mevastatin, hydroxyurea, demecolcine, and cytosine-D-arabinofuranoside. Cellcycle arrest was confirmed by measuring[3H]thymidineincorporation and by DNA flow cytometry. Using whole cell patch-clamprecordings, we demonstrate differential changes in GCC activity aftercell proliferation and cell cycle progression was selectively altered;specifically, channel expression was low in serum-starved,G0-arrested cells, increasedsignificantly in early G1,decreased during S phase, and increased after arrest in M phase.Although the link between the cell cycle and GCC activity is not yetclear, we speculate that GCCs are linked to the cytoskeleton and thatcytoskeletal rearrangements associated with cell division lead to theobserved changes in channel activity. Consistent with this hypothesis,we demonstrate the activation of GCC by disruption of F-actin usingcytochalasin D or osmotic cell swelling.

  相似文献   

2.
Cell cycle-dependent calcium oscillations in mouse embryonic stem cells   总被引:2,自引:0,他引:2  
During cell cycle progression, somatic cells exhibit different patterns of intracellular Ca2+ signals during the G0 phase, the transition from G1 to S, and from G2 to M. Because pluripotent embryonic stem (ES) cells progress through cell cycle without the gap phases G1 and G2, we aimed to determine whether mouse ES (mES) cells still exhibit characteristic changes of intracellular Ca2+ concentration during cell cycle progression. With confocal imaging of the Ca2+-sensitive dye fluo-4 AM, we identified that undifferentiated mES cells exhibit spontaneous Ca2+ oscillations. In control cultures where 50.4% of the cells reside in the S phase of the cell cycle, oscillations appeared in 36% of the cells within a colony. Oscillations were not initiated by Ca2+ influx but depended on inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release and the refilling of intracellular stores by a store-operated Ca2+ influx (SOC) mechanism. Using cell cycle synchronization, we determined that Ca2+ oscillations were confined to the G1/S phase (70% oscillating cells vs. G2/M with 15% oscillating cells) of the cell cycle. ATP induced Ca2+ oscillations, and activation of SOC could be induced in G1/S and G2/M synchronized cells. Intracellular Ca2+ stores were not depleted, and all three IP3 receptor isoforms were present throughout the cell cycle. Cell cycle analysis after EGTA, BAPTA-AM, 2-aminoethoxydiphenyl borate, thapsigargin, or U-73122 treatment emphasized that IP3-mediated Ca2+ release is necessary for cell cycle progression through G1/S. Because the IP3 receptor sensitizer thimerosal induced Ca2+ oscillations only in G1/S, we propose that changes in IP3 receptor sensitivity or basal levels of IP3 could be the basis for the G1/S-confined Ca2+ oscillations. pluripotent; IP3; store operated Ca entry; IP3 receptor  相似文献   

3.
Earlier studies have revealed that human cytomegalovirus rapidly inhibits the growth of fibroblasts, blocking cell cycle progression at multiple points, including the G1-to-S-phase transition. The present study demonstrates that the UL69 protein, a virus-encoded constituent of the virion, is able to arrest cell cycle progression when introduced into uninfected cells. Expression of the UL69 protein causes U2 OS cells and primary human fibroblasts to accumulate within the G1 compartment of the cell cycle, and serum fails to induce the progression of quiescent human fibroblasts into the S phase when the protein is present. Therefore, the UL69 protein is at least partially responsible for the cell cycle block that is instituted after infection of permissive cells with human cytomegalovirus.  相似文献   

4.
Pulmonary fibroblasts are recruited to sites of lung injury, where they are activated to produce extracellular matrix proteins and to facilitate repair. However, these cells become dysregulated in pulmonary fibrosis, producing excess collagen at sites of injury and forming fibrotic loci that impair lung function. In this study, we used WI-38 human lung fibroblasts and evaluated the ability of G protein-coupled receptor agonists to increase cAMP production and regulate cell proliferation and collagen synthesis. WI-38 cells increase cAMP in response to the -adrenergic agonist isoproterenol (Iso), prostaglandin E2 (PGE2), certain prostanoid receptor-selective agonists (beraprost, butaprost), an adenosine receptor agonist, and the direct adenylyl cyclase (AC) activator forskolin (Fsk). Responses to Iso, PGE2, and Fsk were studied in more detail. Each induced a dose-dependent inhibition of serum-stimulated cell proliferation (as measured by [3H]thymidine incorporation) and collagen synthesis (as measured by [3H]proline incorporation, collagenase-sensitive [3H]proline incorporation, or levels of procollagen type 1 C-peptide). Quantitative RT-PCR analyses indicated that elevation in cellular cAMP levels decreases expression of collagen types 1(II) and 5(I) and increases expression and activity of matrix metalloproteinase 2 (MMP-2). Overexpression of AC type 6 or inhibition of cyclic nucleotide phosphodiesterases also increased cellular cAMP levels and decreased cell proliferation and collagen synthesis. Thus multiple approaches that increase cAMP signaling reduce proliferation and differentiated function in human pulmonary fibroblasts. These results suggest that therapies that raise cAMP levels may prove useful in the treatment of pulmonary fibrosis. -adrenergic receptors; prostaglandin; prostanoid receptors; pulmonary fibrosis; extracellular matrix  相似文献   

5.
Increased glomerularprostaglandin E2 (PGE2) production isassociated with the progression of diseases such as membranous nephropathy, nephrotic syndrome, and anti-Thy1 nephritis. Weinvestigated the signaling pathways that regulate the synthesis andactions of PGE2 in glomerular podocytes. To study itsactions, we assessed the ability of PGE2 to regulate theproduction of its own precursor, arachidonic acid (AA), in a mousepodocyte cell line. PGE2 dose-dependently reduced phorbolester (PMA)-mediated AA release. Inhibition of PMA-stimulated AArelease by PGE2 was found to be cAMP/PKA-dependent, becausePGE2 significantly increased levels of this secondmessenger, whereas the inhibitory actions of PGE2 werereversed by PKA inhibition and reproduced by the cAMP-elevating agentsforskolin and IBMX. PGE2 synthesis in this podocyte cellline increased fourfold at 60 min in response to PMA, coinciding withupregulation of cyclooxygenase (COX)-2 but not COX-1 levels. However,PGE2 synthesis was significantly reduced by COX-1-selectiveinhibition, yet to a lesser extent by COX-2-selective inhibition. Ourfindings suggest that PMA-stimulated PGE2 synthesis inmouse podocytes requires both basal COX-1 activity and induced COX-2expression, and that PGE2 reduces PMA-stimulated AA releasein a cAMP/PKA-dependent manner. Such an autocrine regulatory loop mighthave important consequences for podocyte and glomerular function in thecontext of renal diseases involving PGE2 synthesis.

  相似文献   

6.
7.
Flow microfluorometry has been used to characterize the effects of serum concentration and cell density on the initiation of cell cycle transit of stationary phase (G0) human diploid fibroblasts (strain WI-38). The concentration of serum used to stimulate these cultures had no effect on the time cells began appearing in S (the DNA synthetic period), nor on the synchrony with which they moved around the cell cycle. However, as the serum concentration increased, the fraction of the stationary phase population released from G0 increased. Cell density modulated the ability of serum to stimulate cell cycle traverse. For example, at a cell density of 1.81 × 104 cells/cm2, 78% of the population was sensitive to serum stimulation; whereas, when the density was increased to 7.25 × 104 cells/cm2, only 27% of the population could be stimulated. This effect of cell density on the serum response is not simply the result of changing the ratio of serum concentration to cell density, but appears to reflect a true modulation of the population's sensitivity to serum stimulation. These results are consistent with the interpretation that the primary action of serum is to determine the transition of cells from a non-cycling G0 state to a cycling state and that cell density determines the proportion of the population capable of undergoing this transition.  相似文献   

8.
The effect of prostaglandin E2 (PGE2) on fibroblast proliferation was examined. The presence of PGE2 for 24 h inhibited the growth of quiescent cells stimulated with serum, platelet-derived growth factor and macrophage-derived factors. Maximal inhibition of nuclear labeling with [3H]thymidine occurred at concentrations greater than 10−7 M. The inhibitory effect of PGE2 was less potent in exponentially growing cells and was not the result of conversion of PGE2 to PGA2 during incubation in growth medium. The G1 phase was determined to be 12–14 h in untreated cultures. The extent of growth inhibition by PGE2 was similar with addition of PGE2 at 0, 3, 6, or 9 h following restimulation of quiescent cell cultures. Approximately 25% of the cells that enter S phase are refractory to PGE2-induced growth inhibition. Short-term exposure to PGE2 (5 min and 30 min) caused substantial growth inhibition. The serum-induced proliferation was also inhibited by the cAMP analogue, dibutyrl cAMP. Our results suggest that PGE2 affects a distinct subpopulation of cells. Restimulation of quiescent cells treated with PGE2 for 24 h, indicated that release from PGE2 exposure is associated with prolongation of the G1 phase of the cell cycle.  相似文献   

9.
Bcl-2 inhibits cell proliferation by delaying G0/G1 to S phase entry. We tested the hypothesis that Bcl-2 regulates S phase entry through mitochondrial pathways. Existing evidence indicates mitochondrial adenosine tri-phosphate (ATP) and reactive oxygen species (ROS) are important signals in cell survival and cell death, however, the molecular details of how these 2 processes are linked remain unknown. In this study, 2 cell lines stably expressing Bcl-2, 3T3Bcl-2 and C3HBcl-2, and vector-alone PB controls were arrested in G0/G1 phase by serum starvation and contact inhibition, and ATP and ROS were measured during re-stimulation of cell cycle entry. Both ATP and ROS levels were decreased in G0/G1 arrested cells compared with normal growing cells. In addition, ROS levels were significant lower in synchronized Bcl-2 cells than those in PB controls. After re-stimulation, ATP levels increased with time, reaching peak value 1–3 hours ahead of S phase entry for both Bcl-2 cells and PB controls. Consistent with 2 hours of S phase delay, Bcl-2 cells reached ATP peaks 2 hours later than PB control, which suggests a rise in ATP levels is required for S phase entry. To examine the role of ATP and ROS in cell cycle regulation, ATP and ROS level were changed. We observed that elevation of ATP accelerated cell cycle progression in both PB and Bcl-2 cells, and decrease of ATP and ROS to the level equivalent to Bcl-2 cells delayed S phase entry in PB cells. Our results support the hypothesis that Bcl-2 protein regulates mitochondrial metabolism to produce less ATP and ROS, which contributes to S phase entry delay in Bcl-2 cells. These findings reveal a novel mechanistic basis for understanding the link between mitochondrial metabolism and tumor-suppressive function of Bcl-2.  相似文献   

10.
11.
Cytokine-mediated PGE2 expression in human colonic fibroblasts   总被引:1,自引:0,他引:1  
We investigatedprostanoid biogenesis in human colonic fibroblasts (CCD-18Co and 5 primary fibroblast cultures) and epithelial cell lines (NCM460, T84,HT-29, and LS 174T) and the effect of PGE2 on fibroblast morphology.Cytokine-stimulated PGE2production was measured. PGH synthase-1 and -2 (PGHS-1 and -2) proteinand mRNA expression were evaluated. BasalPGE2 levels were low in all celltypes (0.15-6.47 ng/mg protein). Treatment for 24 h with interleukin-1 (IL-1; 10 ng/ml) or tumor necrosis factor- (50 ng/ml), respectively, elicited maximal 25- and 6-fold inductions ofPGE2 synthesis in CCD-18Cocultures and similar results in primary fibroblast cultures; maximalinductions with IL-1 in colonic epithelial cell lines were from zeroto fivefold. Treatment of CCD-18Co fibroblasts with IL-1 causedmaximal 21- and 53-fold increases, respectively, in PGHS-2 protein andmRNA levels without altering PGHS-1 expression.PGE2 (0.1 µmol/l) elicited adramatic shape change in selected fibroblasts. Colonic fibroblasts are potentially important as cytokine targets and a source of and targetfor colonic prostanoids in vivo.

  相似文献   

12.
Voltage-gated K+ channel activities are involved in regulating growth factor-stimulated cell proliferation in a variety of cell types. Here we report that suppression of a voltage-gated K+ channel with 4-aminopyridine (4-AP), barium, and tetraethylammonium inhibited both EGF- and insulin-stimulated myeloblastic leukemia ML-1 cell proliferation in a concentration-dependent manner. Both MAPK/ERK and Akt pathways are known to mediate cell proliferative signals of a variety of growth factors including insulin. In serum-starved ML-1 cells, insulin rapidly stimulated phosphorylation of ERK1/2 and Akt, and the phosphorylation levels peaked 30 min after treatment. Pretreatment of ML-1 cells with 4-AP potently and dose-dependently prevented phosphorylation of ERK1/2 and Akt. However, insulin-induced activation of the Akt pathway also played a role in promoting ML-1 cell proliferation. Flow cytometry analysis revealed that although ML-1 cells were primarily arrested at G1 phase by serum starvation for 36 h, they reentered the cell cycle after treatment with serum or insulin for 24 h. However, concomitant 4-AP treatment was able to attenuate cell cycle progression in synchronized ML-1 cells stimulated with growth factors. Our results strongly suggest that a 4-AP-sensitive K+ channel activity plays an important role in controlling proliferation of ML-1 cells by affecting the activation of multiple signal transduction processes induced by insulin. growth factors; myeloblastic cells; signaling; ion channel blocker  相似文献   

13.
Phosphatidylinositol (PI) synthesis and its role in controlling the cell cycle has been investigated using fibroblasts and liver cells in culture. PI synthesis as measured by incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material during 0–60 min after serum or growth factor stimulation of serum-starved cells is increased in primary fetal rat liver cells, rat embryo fibroblasts, and 3T3 mouse cells. In contrast, growth stimulation of 3T3 cells and hepatocytes rendered quiescent in G1 by amino acid starvation is not accompanied by increased incorporation of [3H]-myo-inositol into trichloroacetic acid precipitable material. This suggests that those cells might be arrested at a different point in G1 than cells arrested by serum depletion. Inhibition of PI synthesis by δ-hexachlorocyclohexane (HCH), a steric analog of myo-inositol, during early times (e.g., 0–4 hr) after growth stimulation, reversibly blocks initiation of DNA synthesis in 3T3 cells. The results support the idea that increased PI synthesis in response to growth stimulation in the cell types studied here is a prerequisite for progression through G1 and subsequent entry into S phase.  相似文献   

14.
Summary In the neonatal rat lung, alveolar development occurs from postnatal Days 4–13, during which time there is a fourfold increase in interstitial fibroblasts. Factors influencing emergence of new septa and cell proliferation associated with septal elongation have yet to be identified, in part because of difficulties inherent in studying this process in vivo. Using flow cytometric analysis of the DNA content of freshly isolated lung fibroblasts, we found that proliferation, as indicated by the percentage of cells in S plus G2/M phases, peaked on postnatal Day 4 (P<0.04). By Days 9–10 the proliferation rate was lower than on Days 3, 4, 5, or 6 (P<0.005). We then evaluated rates of in vitro proliferation as a function of postnatal age in first passage fibroblasts and found that the proliferative phenotype expressed in vivo persists in vitro. Fibroblasts from 4–5-d-old pups increased in number and incorporated 3H-thymidine at a faster rate than did fibroblasts obtained from pups at other postnatal ages (P<0.0001). Age-dependent differences in cell cycle transit time were compared in fibroblasts synchronized by serum starvation and analyzed by flow cytometry at 2-h intervals from 13–21 h after release from serum starvation. A greater percentage of cells from 5-d-old pups entered S phase during this period than was seen for cells obtained from 2-, 9-, 13-, or 23-d-old rat pups (P=0.0001). Cells from 5-, 9-, and 13-d-old pups reentered G0/G1 by 21 h after release from serum starvation, in contrast to fibroblasts from 2- and 23-d-old rats which did not. Throughout the 15-h period after release from serum starvation, levels of cyclin E, which peaks at the G1/S border, were highest in the 5-d-old cells (P<0.025). Synchronization with 2.5 mM hydroxyurea which inhibits DNA synthesis completely abolished age-related differences in cell cycle transit time, implying that age-dependent differences in lung fibroblast proliferation rates are the result of events occurring before S-phase entry.  相似文献   

15.
The regulation of vascular smooth muscle cell (VSMC) proliferation, migration, and apoptosis plays a clear role in the atherosclerotic process. Recently, we reported on the inhibition of the exaggerated growth phenotype of VSMCs isolated from hypertensive rats by lipocalin-type prostaglandin D2 synthase (L-PGDS). In the present study, we report the differential effects of L-PGDS on VSMC cell cycle progression, migration, and apoptosis in wild-type VSMCs vs. those from a type 2 diabetic model. In wild-type VSMCs, exogenously added L-PGDS delayed serum-induced cell cycle progression from the G1 to S phase, as determined by gene array analysis and the decreased protein expressions of cyclin-dependent kinase-2, p21Cip1, and cyclin D1. Cyclin D3 protein expression was unaffected by L-PGDS, although its gene expression was stimulated by L-PGDS in wild-type cells. In addition, platelet-derived growth factor-induced VSMC migration was inhibited by L-PGDS in wild-type cells. Type 2 diabetic VSMCs, however, were resistant to the L-PGDS effects on cell cycle progression and migration. L-PGDS did suppress the hyperproliferation of diabetic cells, albeit through a different mechanism, presumably involving the 2.5-fold increase in apoptosis and the concomitant 10-fold increase of L-PGDS uptake we observed in these cells. We propose that in wild-type VSMCs, L-PGDS retards cell cycle progression and migration, precluding hyperplasia of the tunica media, and that diabetic cells appear resistant to the inhibitory effects of L-PGDS, which consequently may help explain the increased atherosclerosis observed in diabetes. apoptosis; atherosclerosis; insulin resistance  相似文献   

16.
The basal activity of Src family kinases is readily detectable throughout the cell cycle and increases by two- to fivefold upon acute stimulation of cells with growth factors such as platelet-derived growth factor. Previous reports have demonstrated a requirement for Src activity for the G1/S and G2/M transitions. With a chimeric α-β PDGF receptor (PDGFR) expressed in fibroblasts, we have investigated the importance of the PDGF-mediated increase in Src activity at the G0/G1 transition for subsequent cell cycle events. A mutant PDGFR chimera that was not able to detectably associate with or activate Src was compromised in its ability to mediate tyrosine phosphorylation of receptor-associated signaling molecules and initiated a submaximal activation of Erk. In contrast to these early cell cycle events, later responses such as entry of cells into S phase and cell proliferation proceeded normally when Src activity did not increase following acute stimulation with PDGF. We conclude that the initial burst of Src activity is required for efficient tyrosine phosphorylation of receptor-associated proteins such as PLCγ, RasGAP, Shc, and SHP-2 and for maximal activation of Erk. Surprisingly, these events are not required for PDGF-dependent cell proliferation. Finally, later cell cycle events do not require that Src be activated at the G0/G1 transition and leave open the possibility that events such as the G1/S transition require the basal Src activity and/or activation of Src at later times in G1.  相似文献   

17.
We have previously reported that the hEAG K+ channels are responsible for the potential membrane hyperpolarization that induces human breast cancer cell progression into the G1 phase of the cell cycle. In the present study, we evaluate the role and functional expression of the intermediate-conductance Ca2+-activated K+ channel, hIK1-like, in controlling cell cycle progression. Our results demonstrate that hIK1 current density increased in cells synchronized at the end of the G1 or S phase compared with those in the early G1 phase. This increased current density paralleled the enhancement in hIK1 mRNA levels and the highly negative membrane potential. Furthermore, in cells synchronized at the end of G1 or S phases, basal cytosolic Ca2+ concentration ([Ca2+]i) was also higher than in cells arrested in early G1. Blocking hIK1 channels with a specific blocker, clotrimazole, induced both membrane potential depolarization and a decrease in the [Ca2+]i in cells arrested at the end of G1 and S phases but not in cells arrested early in the G1 phase. Blocking hIK1 with clotrimazole also induced cell proliferation inhibition but to a lesser degree than blocking hEAG with astemizole. The two drugs were essentially additive, inhibiting MCF-7 cell proliferation by 82% and arresting >90% of cells in the G1 phase. Thus, although the progression of MCF-7 cells through the early G1 phase is dependent on the activation of hEAG K+ channels, when it comes to G1 and checkpoint G1/S transition, the membrane potential appears to be primarily dependent on the hIK1-activity level. breast cancer; calcium-activated potassium channels; proliferation  相似文献   

18.
We examined expression of sphingosine 1-phosphate (S1P) receptors and sphingosine kinase (SPK) in gastric smooth muscle cells and characterized signaling pathways mediating S1P-induced 20-kDa myosin light chain (MLC20) phosphorylation and contraction. RT-PCR demonstrated expression of SPK1 and SPK2 and S1P1 and S1P2 receptors. S1P activated Gq, G13, and all Gi isoforms and stimulated PLC-1, PLC-3, and Rho kinase activities. PLC- activity was partially inhibited by pertussis toxin (PTX), G or Gq antibody, PLC-1 or PLC-3 antibody, and by expression of Gq or Gi minigene, and was abolished by a combination of antibodies or minigenes. S1P-stimulated Rho kinase activity was partially inhibited by expression of G13 or Gq minigene and abolished by expression of both. S1P stimulated Ca2+ release that was inhibited by U-73122 and heparin and induced concentration-dependent contraction of smooth muscle cells (EC50 1 nM). Initial contraction and MLC20 phosphorylation were abolished by U-73122 and MLC kinase (MLCK) inhibitor ML-9. Initial contraction was also partially inhibited by PTX and Gq or G antibody and abolished by a combination of both antibodies. In contrast, sustained contraction and MLC20 phosphorylation were partially inhibited by a PKC or Rho kinase inhibitor (bisindolylmaleimide and Y-27632) and abolished by a combination of both inhibitors but not affected by U-73122 or ML-9. These results indicate that S1P induces 1) initial contraction mediated by S1P2 and S1P1 involving concurrent activation of PLC-1 and PLC-3 via Gq and Gi, respectively, resulting in inositol 1,4,5-trisphosphate-dependent Ca2+ release and MLCK-mediated MLC20 phosphorylation, and 2) sustained contraction exclusively mediated by S1P2 involving activation of RhoA via Gq and G13, resulting in Rho kinase- and PKC-dependent MLC20 phosphorylation. muscle contraction; signal transduction  相似文献   

19.
Wound healing involves multiple cell signaling pathways, including those regulating cell-extracellular matrix adhesion. Previous work demonstrated that arachidonate oxidation to leukotriene B4 (LTB4) by 5-lipoxygenase (5-LOX) signals fibroblast spreading on fibronectin, whereas cyclooxygenase-2 (COX-2)-catalyzed prostaglandin E2 (PGE2) formation facilitates subsequent cell migration. We investigated arachidonate metabolite signaling in wound closure of perturbed NIH/3T3 fibroblast monolayers. We found that during initial stages of wound closure (0–120 min), all wound margin cells spread into the wound gap perpendicularly to the wound long axis. At regular intervals, between 120 and 300 min, some cells elongated to project across the wound and meet cells from the opposite margin, forming distinct cell bridges spanning the wound that act as foci for later wound-directed cell migration and resulting closure. 5-LOX inhibition by AA861 demonstrated a required LTB4 signal for initial marginal cell spreading and bridge formation, both of which must precede wound-directed cell migration. 5-LOX inhibition effects were reversible by exogenous LTB4. Conversely, COX inhibition by indomethacin reduced directed migration into the wound but enhanced early cell spreading and bridge formation. Exogenous PGE2 reversed this effect and increased cell migration into the wound. The differential effects of arachidonic acid metabolites produced by LOX and COX were further confirmed with NIH/3T3 fibroblast cell lines constitutively over- and underexpressing the 5-LOX and COX-2 enzymes. These data suggest that two competing oxidative enzymes in arachidonate metabolism, LOX and COX, differentially regulate sequential aspects of fibroblast wound closure in vitro. leukotriene B4; prostaglandin E2; spreading; migration; bridges  相似文献   

20.
Migration and proliferation of smooth musclecells (SMC) contribute to neointimal formation after arterial injury.However, the relation between migration and proliferation in thesecells is obscure. To discriminate between migration and proliferation, we employed a migration assay of SMC at different phases of the cellcycle. Serum-deprived SMC were synchronized in different phases of thecell cycle by addition of serum for various periods of time. Migrationinduced by platelet-derived growth factor B-chain homodimer was maximalin SMC that were predominantly in the late G1(G1b) phase. In addition, in nonsynchronized SMC,65-75% of SMC that had migrated were in the G1bphase. Phosphorylated myosin light chain was enriched around the cellperiphery in SMC in the G1b phase compared with SMC in theother cell cycle phases. Interestingly, the Triton X-100-insolublefraction of myosin was remarkably decreased in G1b-enrichedSMC. These findings suggest that migratory activity of SMC may becoupled with the G1b phase. The phosphorylation andretention of myosin might explain some of the properties responsible for increased migration.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号