首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
L I Loz'mian 《Antibiotiki》1978,23(11):1015-1017
Interaction of sibiromycin with chromatin from NK/Li cells was studied. It was shown that the chromatin proteins had no significant effect on the amount of the antibiotic firmly bound with DNA. The difference observed in the kinetics of the sibiromycin interaction with chromatin and DNA from NK/Li cells was not induced by replacement of a part of the DNA bound proteins. Possibly the chromatin proteins hampered formation of DNA conformation necessary for sibiromycin binding.  相似文献   

2.
Sibiromycin added to linear chromosomal E. coli DNA in vitro leads to the decrease of bouyant density in neutral CsCl density gradient. This decrease is a linear function of sibiromycin/DNA ratio and amounts to about 32 mg/ml at the ratio equal to 0.1. Binding sibiromycin does not change the degree of hydration of DNA as revealed by centrifugation in metrizamide density gradients. When added to the covalently closed or open circular DNA of PM-2 phage, sibiromycin decreased the bouyant density of these DNA species to a similiar extent. The antibiotic does not induce single-strand breaks in DNA in vitro as follows from the results of ethidium bromide-CsCl density gradient centrifugation of covalently closed PM-2 DNA.  相似文献   

3.
Giessen TW  Kraas FI  Marahiel MA 《Biochemistry》2011,50(25):5680-5692
The antitumor antibiotic sibiromycin belongs to the class of pyrrolo[1,4]benzodiazepines (PBDs) that are produced by a variety of actinomycetes. PBDs are sequence-specific DNA-alkylating agents and possess significant antitumor properties. Among them, sibiromycin, one of two identified glycosylated PBDs, displays the highest DNA binding affinity and the most potent antitumor activity. In this study, we report the elucidation of the precise reaction sequence leading to the formation and activation of the 3,5-dihydroxy-4-methylanthranilic acid building block found in sibiromycin, starting from the known metabolite 3-hydroxykynurenine (3HK). The investigated pathway consists of four enzymes, which were biochemically characterized in vitro. Starting from 3HK, the SAM-dependent methyltransferase SibL converts the substrate to its 4-methyl derivative, followed by hydrolysis through the action of the PLP-dependent kynureninase SibQ, leading to 3-hydroxy-4-methylanthranilic acid (3H4MAA) formation. Subsequently the NRPS didomain SibE activates 3H4MAA and tethers it to its thiolation domain, where it is hydroxylated at the C5 position by the FAD/NADH-dependent hydroxylase SibG yielding the fully substituted anthranilate moiety found in sibiromycin. These insights about sibiromycin biosynthesis and the substrate specificities of the biosynthetic enzymes involved may guide future attempts to engineer the PBD biosynthetic machinery and help in the production of PBD derivatives.  相似文献   

4.
Anthramycin, tomaymycin and sibiromycin are pyrrolo(1,4)benzodiazepine antitumor antibiotics. These compounds react with DNA and other guanine-containing polydeoxynucleotides to form covalently bound antibiotic - polydeoxynucleotide complexes. Experiments utilizing radiolabelled antibiotics have led to the following conclusions: 1. Sibiromycin reacts much faster than either anthramycin or tomaymycin with DNA. 2. At saturation binding the final antibiotic to base ratios for sibiromycin, anthramycin and tomaymycin are 1 : 8.8,1: 12.9, and 1 : 18.2, respectively. 3. No reaction with RNA or protein occurs with the pyrrolo(1,4)benzodiazepine antibiotics. 4. Sibiromycin effectively competes for the same DNA binding sites as anthramycin and tomaymycin; however, there is only partial overlap for the same binding sites between anthramycin and tomaymycin. 5. Whereas all three pyrrolo(1,4)benzodiazepine antibiotic-DNA complexes are relatively stable to alkaline conditions, their stability under acidic conditions increases in the order tomaymycin, anthramycin and sibiromycin. 6. No loss of non-exchangeable hydrogens in either the pyrrol ring or the side chains of these antibiotics occurs upon formation of their complexes with DNA. 7. Unchanged antibiotic has been demonstrated to be released upon acid treatment of the anthramycin-DNA and tomaymycin-DNA complexes. 8. A Schiff base linkage between the antibiotics and DNA has been eliminated. The comparative reactivity of the three antibiotics towards DNA and the stability of their DNA complexes is discussed in relation to their structures. A working hypothesis for the formation of the antibiotic-DNA covalent complexes is proposed based upon the available information.  相似文献   

5.
Pursuit of the actinomycete pyrrolobenzodiazepine natural product sibiromycin as a chemotherapeutic agent has been limited by its cardiotoxicity. Among pyrrolobenzodiazepines, cardiotoxicity is associated with hydroxylation at position 9. Deletion of the methyltransferase gene sibL abolishes the production of sibiromycin. Supplementation of growth media with 4-methylanthranilic acid can substitute for its native 3-hydroxy congener. Cultures grown in this fashion yielded 9-deoxysibiromycin. In this study, we characterize the structure and biological activity of sibiromycin and 9-deoxysibiromycin methyl carbinolamines. Preliminary in vitro evidence suggests that 9-deoxysibiromycin exhibits reduced cardiotoxicity while gaining antitumor activity. These results strongly support further exploration of the production and evaluation of monomeric and dimeric glycosylated pyrrolobenzodiazepine analogues of sibiromycin.  相似文献   

6.
Beromycin, an antitumor anthracycline antibiotic formed in vitro complexes with native and denaturated DNA and ribosomal RNA. Beromycin had a comparatively low constant of DNA binding and to a less extent increased the melting temperature and viscosity of DNA than the other anthracycline antibiotics. A peculiar property of beromycin was very slow binding with DNA, the complex formation was completed in 60 minutes. Beromycin had a selective inhibitory effect on synthesis of nucleic acids in bacterial and tumor cells. Beromycin inhibited synthesis of RNA in the DNA-dependent RNA-polymerase reaction when both the native and denaturated DNA were used as the template. A lower biological activity of beromycin as compared to the other anthracycline antibiotics, such as rubomycin or carminomycin may be explained by lower affinity of this antibiotic to DNA.  相似文献   

7.
The biosynthesis of the antitumor antibiotic sibiromycin by Streptosporangium sibiricum requires the construction of four units: the amino sugar from glucose; the anthranilate ring from DL-tryptophan probably via kynurenine; the aromatic methyl group from methionine; the propylidene proline from L-tyrosine with the loss of two aromatic carbons and addition of a C-1 from methionine. Retention of tritium from DL-[5-3H]tryptophan in sibiromycin suggest an NIH shift during hydroxylation of an intermediate.  相似文献   

8.
The Nereis virens embryos at the stages of 2, 8, 16 and 32 blastomeres end of cleavage and beginning of rotation were placed in the actinomycin D or sibiromycin solutions and the effect of antibiotics on 3H-thymidine incorporation during cleavage, at the beginning of rotation and in trochophore was determined by means of autoradiography after careful washing the embryos off. Under the effect of actinomycin D the intensity of 3H-thymidine incorporation during cleavage decreased insignificantly, at the gastrula stage somewhat exceeded that in the control, and at the stages of trochophore formation decreased twice. At the later stages it approached the normal level. In the experiments with sibiromycin which proved to have more distinct inhibitory effect, the stage of trochophore formation was also found to be the most sensitive to the antibiotic.  相似文献   

9.
Anthramycin, tomaymycin, and sibiromycin are members of the pyrrolo[1,4]benzodiazepine [P(1,4)B] antitumor antibiotic group. These drugs bind covalently through N2 of guanine and lie within the minor groove of DNA [Petrusek, R. L., Anderson, G. L., Garner, T. F., Fannin, Q. L., Kaplan, D. J., Zimmer, S. G., & Hurley, L. H. (1981) Biochemistry 20, 1111-1119]. The DNA sequence specificity of the P(1,4)B antibiotics has been determined by a footprinting method using methidiumpropyl-EDTA-iron(II) [MPE.Fe(II)], and the results show that each of the drugs has a two to three base pair sequence specificity that includes the covalently modified guanine residue. While 5'PuGPu is the most preferred binding sequence for the P(1,4)Bs, 5'PyGPy is the least preferred sequence. Footprinting analysis by MPE.Fe(II) reveals a minimum of a three to four base pair footprint size for each of the drugs on DNA with a larger than expected offset (two to three base pairs) on opposite strands to that observed in previous analyses of noncovalently bound small molecules. There is an extremely large enhancement of MPE.Fe(II) cleavage between drug binding sites in AT rich regions, probably indicating a drug-induced change in the conformational features of DNA which encourages interaction with MPE.Fe(II). In the presence of sibiromycin or tomaymycin the normally guanine-specific methylene blue reaction used in Maxam and Gilbert sequencing cleaves at other bases in defined positions relative to the drug binding sites. Finally, modeling studies are used to rationalize the differences and similarities in sequence specificities between the various drugs in the P(1,4)B group and their reactions with DNA.  相似文献   

10.
The naturally occurring pyrrolo[2,1- c][1,4]benzodiazepine (PBD) monomers such as sibiromycin, anthramycin, and tomaymycin form stable covalent adducts with duplex DNA at purine-guanine-purine sites. A correlative relationship between DNA-binding affinity, as measured by enhanced thermal denaturation temperature of calf thymus DNA ( T m), and cytotoxicity is well documented for these naturally occurring compounds and a range of synthetic analogues with sibiromycin having the highest Delta T m value (16.3 degrees C), reflecting favorable hydrogen-bonding interactions between the molecule and DNA bases. We report here that, surprisingly, the structurally simple synthetic C2-(2-naphthyl)-substituted pyrrolo[2,1- c][1,4]benzodiazepine monomer ( 5) has a Delta T m value (15.8 degrees C) similar to that of sibiromycin and significantly higher than the values for either anthramycin (13.0 degrees C) or tomaymycin (2.6 degrees C). 5 also has similar cytotoxic potency to sibiromycin which is widely regarded as the most potent naturally occurring PBD monomer. To investigate this, we have used NMR in conjunction with molecular dynamics to study the 2:1 adduct formed between 5 and the DNA duplex d(AATCTTTAAAGATT) 2. In contrast to the hydrogen-bonding interactions which predominate in the case of sibiromycin and anthramycin adducts, we have shown that the high binding affinity of 5 is due predominantly to hydrophobic (van der Waals) interactions. The high-resolution 2D NOESY, TOCSY, and COSY data obtained have also allowed unequivocal determination of the orientation of the PBD molecule (A-ring toward 3'-end of covalently bound strand), the stereochemistry at the C11 position of the PBD (C11 S), and the conformation of the C2-naphthyl ring which extends along the floor of the minor groove thus optimizing hydrophobic interactions with DNA. These results provide opportunities for future drug design in terms of extending planar hydrophobic groups at the C2 position of PBDs to maximize binding affinity.  相似文献   

11.
In the present work, we employ a combination of CD spectroscopy and gel retardation technique to characterize thermodynamically the binding of lambda phage cro repressor to a 17 base pair operator OR3. We have found that three minor groove-binding antibiotics, distamycin A, netropsin and sibiromycin, compete effectively with the cro for binding to the operator OR3. Among these antibiotics, sibiromycin binds covalently to DNA in the minor groove at the NH2 of guanine, whereas distamycin A and netropsin interact preferentially with runs of AT base pairs and avoid DNA regions containing guanine bases in the two polynucleotide strands. Only subtle DNA conformation changes are known to take place upon binding of these antibiotics. Both the CD spectral profiles and the results of the gel retardation experiments indicate that distamycin A and netropsin can displace cro repressor from the operator OR3. The binding of cro repressor to the OR3 is accompanied by considerable changes in CD in the far-UV region which appear to be attributed to a DNA-dependent structural transition in the protein. Spectral changes are also induced in the wavelength region of 270-290 nm. The CD spectral profile of the cro-OR3 mixture in the presence of distamycin A can be represented as a sum of the CD spectrum of the repressor-operator complex and spectrum of distamycin-DNA complex at the appropriate molar ratio of the bound antibiotic to the operator DNA (r). When r tends to the saturation level of binding the CD spectrum in the region of 270-360 nm approaches a CD pattern typical of complexes of the antibiotic with the free DNA oligomer. This suggests that simultaneous binding of cro repressor and distamycin A to the same DNA oligomer is not possible and that distamycin A and netropsin can be used to determine the equilibrium affinity constant of cro repressor to the synthetic operator from competition-type experiments. The binding constant of cro repressor to the OR3 is found to be (6 +/- 1).10(6)M-1 at 20 degrees C in 10 mM sodium cacodylate buffer (pH 7.0) in the presence of 0.1 M NH4F.  相似文献   

12.
Pyrrolobenzodiazepines, a class of natural products produced by actinomycetes, are sequence selective DNA alkylating compounds with significant antitumor properties. Among the pyrrolo[1,4]benzodiazepines (PBDs) sibiromycin, one of two identified glycosylated PBDs, displays the highest affinity for DNA and the most potent antitumor properties. Despite the promising antitumor properties clinical trials of sibiromycin were precluded by the cardiotoxicity effect in animals attributed to the presence of the C-9 hydroxyl group. As a first step toward the development of sibiromycin analogs, we have cloned and localized the sibiromycin gene cluster to a 32.7-kb contiguous DNA region. Cluster boundaries tentatively assigned by comparative genomics were verified by gene replacement experiments. The sibiromycin gene cluster consisting of 26 open reading frames reveals a “modular” strategy in which the synthesis of the anthranilic and dihydropyrrole moieties is completed before assembly by the nonribosomal peptide synthetase enzymes. In addition, the gene cluster identified includes open reading frames encoding enzymes involved in sibirosamine biosynthesis, as well as regulatory and resistance proteins. Gene replacement and chemical complementation studies are reported to support the proposed biosynthetic pathway.Pyrrolo[1,4]benzodiazepines (PBDs) are a class of natural products found in actinomycetes (Fig. (Fig.1)1) and defined by a common pyrrolo[1,4]benzodiazepine ring system (41). They are sequence-selective DNA alkylating agents with significant antitumor properties (21). Once in the minor groove of DNA an aminal bond is formed between the electrophilic C-11 of a PBD and the exocyclic N-2 of a guanine base in a double-stranded DNA (20). Formation of the PBD-DNA complex causes very little distortion of the double-helical structure of DNA (20), and as such this complex is less readily repaired by DNA repair proteins compared to DNA adducts with other alkylating agents (4), significantly contributing to the potency of PBDs. Successful syntheses of PBD analogs have been reported, but synthetic procedures for the more chemically diverse PBDs are laborious and have modest yields (1, 44). In addition, a chemical synthesis for glycosylated PBDs has not yet been accomplished. Structure-activity relationship studies on the synthetically and naturally produced PBDs showed that the C-9 hydroxylation present in anthramycin is the source of the cardiotoxic properties of this compound (Fig. (Fig.1)1) (3, 17, 26, 38). These studies also showed that O glycosylation at C7 significantly enhanced DNA-binding affinity (Fig. (Fig.1)1) (17). The only known glycosylated PBDs are sibiromycin and sibanomicin produced by Streptosporangium sibiricum and Micromonospora sp., respectively, both containing a sibirosamine moiety (16, 35). Only the producer of sibiromycin is commercially available. A loose correlation between DNA binding affinity and cytotoxicity has been shown with naturally and synthetically produced PBDs (42). Sibiromycin has the highest DNA binding affinity and cytotoxicity with 50% inhibitory concentrations varying from 4 to 1.7 pM in leukemia, plasmacytoma, and ovarian cancer cell lines (42). Despite its potency, further testing of sibiromycin is precluded due to the presence of C-9 hydroxyl group responsible for the cardiotoxic properties. In order to generate analogs of glycosylated PBDs by combinatorial biosynthesis and to exploit their potency, we chose to characterize the sibiromycin gene cluster.Open in a separate windowFIG. 1.(A) Pyrrolobenzodiazepine common ring system. (B) Metabolic precursors and chemical structures of sibiromycin, anthramycin, tomaymycin, and lincomycin A.The metabolic precursors of the pyrrolobenzodiazepine ring of three PBDs (anthramycin, sibiromycin, and tomaymycin) were identified by feeding experiments to be l-tryptophan via the kynurenine pathway for the anthranilate moiety and l-tyrosine for the hydropyrrole moiety (11), suggesting a common biosynthetic pathway for these moieties in PBDs. The tyrosine-to-hydropyrrole transformation has been also identified by feeding studies in the biosynthesis of lincomycin, a lincosamide antibiotic (2) (Fig. (Fig.1B).1B). Despite the sequencing of the biosynthetic gene clusters of anthramycin (10) and lincomycin (37), limited functional assignment of open reading frames (ORFs) and elucidation of the biosynthetic pathways were reported partly due to the presence of several gene products with no significant similarities to functionally characterized enzymes. We reasoned that we could take advantage of the identification of the sibiromycin gene cluster not only to try to lay the groundwork for the production of analogs of sibiromycin by combinatorial biosynthesis but also to establish the biosynthetic pathways of the anthranilate and the hydropyrrole moieties by a comparative analysis of the PBDs and lincomycin gene clusters. To help in this analysis, we have also utilized the gene cluster of another PBD, tomaymycin, whose characterization is reported in the accompanying study (24a). The comparative analysis takes advantage of the presence of similarity and differences at the anthranilate and hydropyrrole moieties among these natural products (Fig. (Fig.1).1). For example, both anthramycin and sibiromycin contain C-8 methyl and C-9 hydroxyl substituents not present in tomaymycin. However, tomaymycin shares with sibiromycin a C-7 hydroxyl substituent. Therefore, homologous proteins involved in C-9 hydroxylation are expected to be present in the anthramycin and sibiromycin gene cluster but absent in the tomaymycin gene cluster. We applied a similar approach for the biosynthesis of the hydropyrrole moiety using also the lincomycin gene cluster.In the present study, we describe the cloning and sequencing of the sibiromycin gene cluster, the first biosynthetic gene cluster for a glycosylated PBD. Gene replacement experiments were used to confirm that the identified gene cluster was involved in sibiromycin biosynthesis, to define the boundaries of the sibiromycin gene cluster, and to elucidate the biosynthesis of the anthranilate moiety. Using the comparative approach, we were able not only to elucidate the sibiromycin biosynthetic pathway with a certain degree of confidence but also to assign ORFs in the anthramycin gene cluster contributing to the determination of the anthramycin biosynthetic pathway. The proposed biosynthetic pathway for the anthranilic moiety was supported by gene replacement and chemical complementation studies. The data reported here provide the basis for future studies on the enzymes involved in the biochemistry present in these pathways and for combinatorial biosynthetic experiments for the production of glycosylated PBDs.  相似文献   

13.
Studies with the use of intact inbred albino mice showed that in intravenous administration the acute toxicity of antibiotic No. 6270 and echinomycin in complexes with DNA increased 3--4 times as compared to the toxicity of the same antibiotics used without the complex. Under the experimental conditions with 3-fold intravenous administration at 72-hour intervals in doses equivalent by their acute toxicity, the antitumor activity of the echinomycin complex with DNA against the solid form of lymphosarcoma L10-1 was approximately 4 times lower than the activity of the antibiotic used alone. Like echinomycin, antibiotic No. 6270 in complex with DNA used according to the same administration scheme in doses equivalent by their acute toxicity had a lower inhibitory effect on growth of lymphosarcoma L10-1 and sarcoma 180 as compared to its use alone.  相似文献   

14.
Bleomycin (BLM), an antitumor antibiotic, is currently used during anticancer therapy. The therapeutic efficiency of BLM for the treatment of malignant tumors is related to its ability to cleave DNA. However, little is known about the biological activity of the glycannic moiety in BLM-induced cytotoxicity. In this study, cell death induced by BLM-A2 and deglycosylated BLM-A2 was studied in a laryngeal carcinoma cell line (HEp-2 cells). Our results indicate that HEp-2 cells showed morphological and biochemical changes associated with apoptosis in the presence of low concentrations of BLM-A2. In contrast, the same changes, except activation of caspase-3 and internucleosomal digestion of genomic DNA, were observed when cells were exposed to high concentrations of deglycosylated BLM-A2. These observations indicate that the glycannic moiety from the bleomycin molecule has important biological effects on the cytotoxicity of the drug.  相似文献   

15.
Subtilin is a ribosomally synthesized peptide antibiotic produced by Bacillus subtilis ATCC 6633. B. subtilis 168 was converted to a subtilin producer by competence transformation with chromosomal DNA from B. subtilis ATCC 6633. A chloramphenicol acetyltransferase gene was inserted next to the subtilin structural gene as a selectable marker. The genes that conferred subtilin production were derived from a 40-kb region of the B. subtilis ATCC 6633 chromosome that had flanking homologies to the B. subtilis 168 chromosome. The subtilin produced by the mutant was identical to natural subtilin in its biological activity, chromatographic behavior, amino acid composition, and N-terminal amino acid sequence.  相似文献   

16.
Three actinomycetous strains designated as LIA-0773, LIA-0783 and LIA-0780 were isolated from various soil samples. The cultures actively inhibited the growth of Trichophyton gipseum and produced a non-polyenic antibiotic of the chondamycin type. The strains were identified with Act. griseochromogenes Fukunaga et. al., 1955. The cultures differed within the species by some morphological, cultural, physiological and antibiotic properties, as well as by the component composition of the antibiotic produced. Thus, strain LIA-0773 had larger spiral sporophores, satisfactorily hydrolized starch and inverted sucrose. The strain inhibited the growth of not only the fungi but also grampositive bacteria and mycobacteria and produced an antibiotic composed of 6 components. Strain LIA-0780 had small sporophores with close spirals and low amilolytic activity. It inhibited only the growth of the fungi and produced a monocomponent antibiotic. Strain LIA-0783 was intermediate. By its biological properties it was closer to strain LIA-0780. The antibiotic produced by it consisted of 6 components, while by its physico-chemical properties the antibiotic was close to that produced by strain LIA-0780. All the 3 actinomycetous cultures were considered as different variants of Act. griseochromogenes Fukunaga et al., 1955.  相似文献   

17.
The lethal and mutagenic effect of N-nitrozo-N-methylbiuret (NMB) on the organisms producing levorin, amphotericin B and mycoheptin was studied. The mutagen effect depended on the dose, culture and physiological state of the spores. NMB had a low mutagenic effect on the levorin-producing organism characterized by high activity and genetic homogenicity with respect to the colony morphology and antibiotic production. As for the organisms producing amphotericin B and mycoheptin characterized by high genetic heterogenicity, significant variation of all the features studied was observed on their exposure to the mutagen. Inspite of diverse reaction of the organisms producing levorin, amphotericin B and mycoheptin to the effect of NMB mutants with increased antibiotic production were obtained from the three cultures. The lethal and mutagenic effect of NMB on the mycoheptin-producing organism depended on the process of the spore DNA replication. The spores during the DNA replication period were least sensitive to the lethal effect of the mutagen and most mutable with the respect to the colony morphology. For selection of highly active and stable strains exposure to NMB of the spores of the mycoheptin-producing organism during replication of DNA proved to be more effective than that of the spores during the lag-phase.  相似文献   

18.
Antimicrobial activity of partial degradation products of eremomycin, a new glycopeptide antibiotic, was studied. The products formed by eremomycin deglycosylation (deseremosaminyl eremomycin, eremosaminyl aglycone and aglycone) and elimination of the chlorine atom from the molecule aglycone moiety (dechloroeremomycin). The spectral data in favour of the compounds structure are presented. It was found that partial degradation led to a decrease in the antimicrobial activity of the antibiotic. Dechloreremomycin had the highest activity among the products. Its MIC for the methicillin-resistant strains of Staphylococcus aureus was only twice as low as that of the initial antibiotic.  相似文献   

19.
人可溶性低密度脂蛋白受体在甲醇酵母中的表达   总被引:3,自引:0,他引:3  
胡箭  李元   《生物工程学报》2002,18(1):40-44
为获得低密度脂蛋白受体配基结合结构域在甲醇酵母中的分泌表达 ,首先用RT PCR方法以人肝癌Bel 740 2总RNA为模板扩增了编码低密度脂蛋白受体配基结合结构域的基因片段。核酸测序分析表明克隆到的DNA片段的序列与报道的人LDLR的cDNA序列相同。然后构建了甲醇酵母表达质粒pPIC9K sLDLr ,并将其线性化后用电穿孔法导入PichiapastorisGS115。分别用SDS PAGE、Westernblot和Ligandbindingblot对GS115 pPIC9K sLDLr上清中的重组sLDLR进行鉴定。SDS PAGE和Westernblot分析表明表达的sLDLR的表观分子量为 36kD。Ligandbindingblot分析表明表达的sLDLR具有配基结合的生物学活性  相似文献   

20.
A 21-kb region required for the biosynthesis of the polyketide antibiotic pyoluteorin by the biological control agent Pseudomonas fluorescens Pf-5 was identified and cloned. Seven previously isolated mutants deficient in pyoluteorin production (Plt(sup-)) had Tn5 insertions spanning the 21-kb region. Sequences flanking Tn5 inserts were cloned from genomic DNA of three Plt(sup-) mutants and used as probes to identify wild-type alleles of the plt loci from a genomic library of Pf-5. Five cosmids containing overlapping regions of genomic DNA hybridized to one or more of the probes. One cosmid, pJEL1938, contained the entire 21-kb region and, when introduced into a Plt(sup-) mutant, partially restored pyoluteorin production. To study the expression of the genes required for pyoluteorin biosynthesis, the transposon Tn3-nice, which contains a promoterless ice nucleation gene (inaZ) and a type I neomycin phosphotransferase gene, was introduced into the genomic plt region of Pf-5. Carbon sources that influenced pyoluteorin production by Pf-5 had parallel effects on ice nucleation activity of Pf-5 containing a genomic plt::Tn3-nice fusion, indicating that inaZ was transcribed from a promoter of the plt region. Cells of Pf-5 containing a genomic plt::Tn3-nice fusion expressed ice nucleation activity on cotton and cucumber seeds planted in field soil. The expression of plt genes by Pf-5 in the cucumber spermosphere was delayed in comparison with expression in the cotton spermosphere. This study demonstrates that genes required for pyoluteorin production were expressed in situ by the biological control bacterium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号