首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 637 毫秒
1.
The action of Pseudomonas aeruginosa cytotoxin on isolated pancreatic acini was investigated. The release of amylase and serine protease zymogens from the isolated rat pancreatic acini was induced with increasing amounts of cytotoxin in vitro. The stimulated release of amylase reached 30% of total cellular content with 100 micrograms/mL of the purified cytotoxin. The induced release of amylase, trypsinogen, proelastase, and chymotrypsinogen reached the maximum after 75 minutes of incubation while lactate dehydrogenase began to appear after 15 minutes of incubation with a secondary biphasic increase at 75 min of incubation. The concentrations of acinar mRNAs of amylase, trypsinogen, proelastase, and chymotrypsinogen, as measured by dot-blot hybridization with the cloned cDNAs of amylase, trypsinogen I, proelastase II, and chymotrypsinogen B of the rat, decreased with time and were significantly lower than in the untreated acini. It is concluded that cytotoxin stimulates the release of amylase and protease zymogens with a concomitant increase in membrane permeability and a decrease of cellular mRNA levels. The inhibition of gene expression is attributable merely to a generalized toxic effect upon cellular metabolism.  相似文献   

2.
The effect of human pancreatic polypeptide (HPP) on rat pancreatic acini has been studied. It was found that HPP stimulated amylase and lipase release from the acini. The secretory response of acini to HPP was dose-dependent in a sigmoidal fashion. Between 10(-9) M and 10(-8) M concentration of HPP there was a slow increase of enzyme release to about 40-60% over basal release. At concentrations of HPP above 10(-8) M there was a rapid increase of enzyme release, amounting to 4-6 times over basal release at 10(-6) M concentration of HPP. The potency of HPP compared to other secretagogues at 10(-7) M concentration was 45% of CCK, 60% of carbachol and 75% of secretin. HPP did not inhibit the effect of CCK, secretin and carbachol on amylase release. The amylase release stimulated by HPP was accompanied by an increase in 45Ca2+ efflux. Atropine or dibutyryl cyclic GMP did not influence the effect of HPP. It is concluded that HPP stimulates the release of enzymes from rat pancreatic acini and that Ca2+ may be a mediator for this secretion.  相似文献   

3.
The role of extracellular Ca2+ in pancreatic acinar membrane damage (cellular injury) by nicotine, membrane-active agents (mellitin, snake venom and Ca2+ ionophore A23187) and secretagogues (CCK-8 and secretin) was investigated. Freshly isolated dispersed pancreatic acini from 18 h fasted adult rats were incubated with one of the aforementioned agents, in the absence and presence of Ca2+. Cellular injury was assessed by measuring the release of pulse-labeled 51Cr and LDH. In addition, release of amylase, trypsinogen and chymotrypsinogen was also determined. In the absence of Ca2+ nicotine (6 mM) caused a profound release of 51Cr and LDH as well as amylase, trypsinogen and chymotrypsinogen from the isolated pancreatic acini. Release of these enzymes and 51Cr decreased sharply with addition of increasing concentrations (0.25-5 mM) of Ca2+. Release of 51Cr and amylase by snake venom (50 micrograms/ml) was found to be 100 and 25% higher, respectively, in the absence of Ca2+ than in its presence. On the other hand, the Ca2+ ionophore A23187 (7 micrograms/ml) was found to be effective in releasing 51Cr and amylase only in the presence of Ca2+. CCK-8, (0.25nM), secretin (1 microM) and mellitin (0.5 microgram/ml) although significantly stimulated amylase secretion (225-350%) in the presence of Ca2+, none of the agents induced 51Cr release from acini, either in the absence or in the presence of extracellular Ca2+. It is concluded that the extracellular Ca2+ plays no specific role in cytotoxic injury in isolated pancreatic acini.  相似文献   

4.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

5.
In intact rat pancreatic acini, the phospholipase A2 inhibitor mepacrine did not affect basal amylase release but dose-dependently inhibited the carbachol (IC50 65 microM) and CCK-8 (IC50 210 microM)-stimulated amylase release. In permeabilized acini, mepacrine shifted the dose-response curve for calcium to the right by a factor 2 and inhibited the release of amylase stimulated by GTPrS. From these results we conclude that carbachol, CCK-8 and GTPrS probably activate a phospholipase A2 closely coupled to exocytosis.  相似文献   

6.
This study examines the influence of ovariectomy and administration of a pharmacologic dose of estradiol on amylase release from isolated-dispersed rat pancreatic acini and cholecystokinin receptors on rat acinar cell membranes. Rats were sham ovariectomized (intact) or ovariectomized (Ovx) and 21 day timed release pellets containing either estradiol (2.5 mg) or vehicle, were implanted subcutaneously. Eighteen days later, pancreatic acini were isolated from rats by collagenase digestion and differential centrifugation. Total cellular amylase, basal and cholecystokinin octapeptide (CCK8) stimulated amylase release and CCK membrane receptors were measured. Acini isolated from estradiol treated Ovx rats had significantly greater total cellular amylase, compared to acini isolated from either intact or Ovx rats. The amplitude of both total stimulated amylase release and percent total stimulated amylase release were significantly greater for acini isolated from vehicle treated Ovx rats, than acini isolated from either intact or estradiol treated Ovx rats. The magnitude of percent total amylase release of acini isolated from estradiol treated Ovx rats was significantly lower than that of acini isolated from intact rats. Cholecystokinin receptor concentration was significantly greater on membranes prepared from vehicle treated Ovx rats, compared to membranes prepared from either intact or estradiol treated Ovx rats. These data indicate that ovariectomy is associated with increased responsiveness of pancreatic acini to CCK stimulation, while chronic estradiol treatment of ovariectomized rats is associated with increased total cellular amylase and decreased acinar cell responsiveness to CCK8. Estrogen mediated alterations in acinar cell amylase content and amylase release may play a role in estrogen related pancreatitis.  相似文献   

7.
Exposure of isolated rat dispersed pancreatic acini to increasing concentrations (10 to 1000 ng/ml) of purified exotoxin-A from Pseudomonas aeruginosa resulted in a progressive inhibition of 3H-leucine incorporation into "cellular" (those remaining in the cells) and "secretory" (those released into the medium) proteins. With each concentration of exotoxin-A, magnitude of reduction was found to be greater for the "secretory" proteins than that observed for the "cellular" proteins. Thus, in the presence of 250 ng/ml of exotoxin-A, a dose that produced maximal inhibition in protein synthesis, 3H-leucine incorporation into "cellular" and "secretory" proteins was found to be decreased by about 19 and 50%, respectively, when compared with the corresponding basal controls. Release of trypsinogen, chymotrypsinogen and amylase from the isolated pancreatic acini was also inhibited by high doses of exotoxin-A. However, whereas the exotoxin concentration of 1000 ng/ml, caused a near complete inhibition of chymotrypsinogen release, trypsinogen and amylase secretion were decreased by 40 and 50%, respectively. It is concluded that in isolated pancreatic acini, exotoxin-A inhibits the synthesis and secretion of proteins.  相似文献   

8.
Summary Incubation of rat pancreatic lobules for 90 min with optimal concentrations of caerulein, carbachol or secretin caused the release of about 30% of the amylase content. Combination of secretin with carbachol or caerulein increased the amylase output to about 40%. With secretin, as with carbachol or caerulein, heterogeneity of cellular responsiveness was observed, some acini being partially or completely depleted of their zymogen granules, whereas others appeared to be resting. When secretin was combined with carbachol or caerulein, granule depletion, originally confined to small groups of neighbouring acini, spread to form large areas of degranulated cells, sometimes comprising a whole section of a lobule.In dispersed acini, under the same conditions, carbachol caused the release of about 60% of the amylase content, and secretin 40%. When both secretagogues were combined, a significant increase to 78% was observed. Under these conditions, there was some important cellular damage, as indicated by the release of 20% of the amylase content and between 6 and 12% of lactate dehydrogenase into the media, in the absence of stimulus. These results were corroborated by cytological observations. On the basis of their secretory response two groups of acini can be distinguished, those that respond to carbachol, caerulein or secretin and those that respond to the combination of secretin with carbachol or caerulein. Electrophoretic patterns of secretory proteins released by lobules stimulated by these different types of secretagogues were essentially similar. The pattern was quite different, however, in the absence of a stimulus. The most striking feature was the presence of a band at 63 Kd whereas a 73.5 Kd band was found only under conditions of stimulation. The latter results support the view that under resting and stimulated conditions secretory proteins are released from distinct compartments in the acinar cell.Abbreviations used PMSF phenylmethylsulfonyl fluoride - Carbachol carbamylcholine chloride - SBTI soybean trypsin inhibitor  相似文献   

9.
为探讨胰多肽抑制胰酶分泌的机制,我们利用大鼠离体胰腺泡制备观察了牛胰多肽(BPP)在细胞受体水平对氨甲酰胆碱等促分泌物作用的影响。实验结果显示,BPP 对氨甲酰胆碱诱导的胰腺泡淀粉酶分泌具有抑制作用,并存在剂量反应关系。BPP0.1μmol/L 和0.2μmol/L,可分别使氨甲酰胆碱诱导淀粉酶分泌的效价降低3倍和10倍;BPP 还可抑制氨甲酰胆碱刺激胰腺泡释放~(45)Ca。以上结果提示,BPP 对胰腺泡的胆碱能 M 受体具有拮抗作用。此外,BPP 对促胰液素及其同类激动剂和氨甲酰胆碱协同作用诱导的胰腺泡淀粉酶分泌具有抑制作用,提示胰多肽在整体对促胰液素诱导的胰酶分泌的抑制,可能是通过拮抗胰腺泡细胞上的 M 受体而抑制了促胰液素和胆碱能刺激协同作用引起的胰酶分泌。  相似文献   

10.
Growth hormone releasing factor (GRF), a 44-residue peptide originally isolated from human pancreatic tumors, shows structural similarities to the members of the secretin-vasoactive intestinal peptide (VIP) peptides. This study was designed to determine the effects of human GRF (hGRF-(1-44] on pancreatic secretion in vivo in conscious dogs and in vitro in dispersed rat pancreatic acini. GRF given i.v. in graded doses in dogs caused a small but significant stimulation of pancreatic HCO3- and protein outputs and potentiated secretin- and cholecystokinin (CCK)-induced pancreatic HCO3- but not protein secretion. When given together with somatostatin, GRF failed to reverse the inhibitory action of this peptide on HCO3- and protein responses to secretin plus CCK in dogs. Studies in vitro dispersed rat pancreatic acini showed that GRF added to the incubation medium of these acini caused an increase in basal amylase release and shifted to the left the amylase dose-response curve to caerulein and urecholine but failed to affect the amylase response to VIP. This study indicates that GRF in vivo stimulates basal and augments secretin- or CCK-induced pancreatic HCO3- secretion and that this is probably due to direct stimulatory action of the peptide on pancreatic secretory cells.  相似文献   

11.
1. Pancreatic secretion of digestive enzymes, amylase, trypsinogen and chymotrypsinogen, was studied in response to the wing vein injection of digestive end products, various single amino acids and glucose, with or without cholecystokinin (CCK) in chicks. 2. Among amino acids administered, only phenylalanine significantly (P less than 0.05) increased trypsinogen and chymotrypsinogen secretions, while other amino acids did not. 3. Simultaneous injection of single amino acids with CCK increased digestive enzyme secretion to various extents depending on the kind of amino acids whereas the injection of glucose with CCK did not affect when compared with that of CCK alone. 4. By varying doses, a synergetic action of CCK plus amino acid on the secretion of pancreatic digestive enzymes was observed at 0.5 mM for valine and 5 mM for arginine.  相似文献   

12.
In isolated dispersed pancreatic acini, we have characterized the interactions between cholecystokinin (CCK) and CCK receptors by simultaneously measuring CCK-33 immunoreactivity and CCK bioactivity. Incubation of acinar cells with CCK-33 at cell density of 0.2-0.3 mg acinar protein per ml resulted in stimulation of amylase release concomitant with significant and time-dependent decrease of the immunoreactive CCK. With L-364,718 (0.1 microM), a specific CCK receptor antagonist, immunoreactive CCK levels in the media were not significantly altered during incubation; however, CCK-stimulated amylase release was almost completely abolished (94% inhibition). Vasoactive intestinal peptide (1 nM) significantly potentiated CCK stimulated amylase release without affecting immunoreactive CCK in the media. Insulin (167 nM) did not affect the CCK stimulated amylase release or immunoreactive CCK in the media. Incubation of acinar cells with CCK-33 at 4 degrees C did not affect the levels of immunoreactive CCK; however, a significant change in levels of immunoreactive CCK were found at 37 degrees C at 90 min. Incubation of cell free medium with CCK-33 in the presence or absence of secreted enzymes revealed no changes in CCK immunoreactivity in the medium at 90 min. Addition of bacitracin in the incubation media did not affect the CCK immunoreactivity or bioactivity. These findings indicate that in isolated rat pancreatic acini, CCK-33 stimulates amylase release through a receptor that is specifically blocked by L-364,718. Specificity of the interactions of CCK-33 with acinar cells in the media appears to be receptor-mediated and time- and temperature-dependent.  相似文献   

13.
Inhibition of CCK or carbachol-stimulated amylase release by nicotine   总被引:1,自引:0,他引:1  
This study was undertaken to investigate the mechanisms of action of nicotine on receptor mediated enzyme secretion in isolated rat pancreatic acini. Acinar cells were isolated from untreated and nicotine treated rats by collagenase digestion and differential centrifugation. Cells from the untreated animals were incubated with either varying concentrations of nicotine (range 10 microM to 30 mM) or with a fixed dose of 10 mM nicotine with varying concentrations of carbachol(10nM to 100 microM). Cells from the nicotine treated animals(16 weeks in drinking water) were incubated with either a fixed dose of CCK-8(10(-10) M) or carbachol(10(-5) M). All incubations were conducted at 37 C for 30 min. Amylase released in the media was measured by spectrophotometry. In pancreatic acinar cells isolated from control rats, amylase release stimulated by carbachol was inhibited by nicotine. Acinar cells isolated from rats treated with nicotine at nicotine concentrations of 1.23 mM also showed significant inhibition of amylase release in response to CCK-8 and carbachol compared to their identical controls. Nicotine induced inhibition curves of amylase release stimulated by carbachol were non-parallel suggesting that the effect of nicotine on acinar cells is regulated by mechanisms other than carbachol receptors. Nicotine may have a direct inhibitory effect on the intracellular mechanisms of pancreatic enzyme secretion. We conclude that the mechanism by which nicotine inhibits pancreatic enzyme secretion is complex.  相似文献   

14.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

16.
The effects of various amino acids and phosphorylated forms of glucose on the release of digestive enzymes from particulate cellular pools, particularly zymogen granules, were evaluated in rat pancreas. Whole tissue homogenates, as well as zymogen granules isolated either by differential centrifugation in 0.3 M sucrose or by preparation in buffered sucrose and subsequent centrifugation in a Percoll gradient, were studied. The basic amino acids L-arginine and L-lysine, sites of tryptic cleavage, caused the release of trypsinogen, but not chymotrypsinogen, whereas the aromatic amino acids L-phenylalanine and L-tryptophan, sites of chymotryptic cleavage, caused release of both trypsinogen and chymotrypsinogen. Neither led to the release of the starch-splitting enzyme amylase. All effects occurred within the range of normal plasma concentrations for these amino acids in the rat. Two amino acids, L-threonine and hydroxy-L-proline, that are not sites of cleavage by trypsin or chymotrypsin, and a nonmammalian amino acid, aminoadipic acid, did not lead to release of trypsinogen, chymotrypsinogen, or amylase. Two phosphorylated forms of glucose, glucose 1-phosphate and glucose 1,6-diphosphate, caused the release of amylase, but of neither trypsinogen nor chymotrypsinogen. Contrary to previous results, D-glucose was without effect, as was glucose 6-phosphate. We propose that certain digestive end products, by direct action on zymogen granules, cause the selective release of the enzymes involved in their evolution from polymeric substrates during digestion.  相似文献   

17.
The effects of ammonia on pancreatic enzyme secretion in vivo and in vitro.   总被引:2,自引:0,他引:2  
BACKGROUND: Recent studies clearly demonstrate that Helicobacter pylori (H. pylori) infection of the stomach causes persistent elevation of ammonia (NH3) in gastric juice leading to hypergastrinemia and enhanced pancreatic enzyme secretion. METHODS: The aim of this study is to evaluate the influence of NH4OH on plasma gastrin level and exocrine pancreatic secretion in vivo in conscious dogs equipped with chronic pancreatic fistulas and on secretory activity of in vitro isolated acini obtained from the rat pancreas by collagenase digestion. The effects of NH4OH on amylase release from pancreatic acini were compared with those produced by simple alkalization of these acini with NaOH. RESULTS: NH4OH given intraduodenally (i.d.) in increasing concentrations (0.5, 1.0, 2.0, 4.0, or 8.0 mM/L) resulted in an increase of pancreatic protein output, reaching respectively 9%, 10%, 19%, 16% and 17% of caerulein maximum in these animals and in a marked increase in plasma gastrin level. NH4OH (8 x 0 mM/L, i.d.) given during intravenous (i.v.) infusion of secretin (50 pmol/kg-h) and cholecystokinin (50 pmol/kg-h) reduced the HCO3 and protein outputs by 35% and 37% respectively, as compared to control obtained with infusion of secretin plus cholecystokinin alone. When pancreatic secretion was stimulated by ordinary feeding the same amount of NH4OH administered i.d. decreased the HCO3- and protein responses by 78% and 47% respectively, and had no significant effect on postprandial plasma gastrin. In isolated pancreatic acini, increasing concentrations of NH4OH (10(-7)-10(-4) M) produced a concentration-dependent stimulation of amylase release, reaching about 43% of caerulein-induced maximum. When various concentrations of NH4OH were added to submaximal concentration of caerulein (10(-12) M) or urecholine (10(-5) M), the enzyme secretion was reduced at a dose 10(-5) M of NH4OH by 38% or 40%, respectively. Simple alkalization with NaOH of the incubation medium up to pH 8.5 markedly stimulated basal amylase secretion from isolated pancreatic acini, whereas the secretory response of these acini to pancreatic secretagogues was significantly diminished by about 30%. LDH release into the incubation medium was not significantly changed in all tests indicating that NH4OH did not produce any apparent damage of pancreatic acini and this was confirmed by histological examination of these acini. CONCLUSIONS: 1. NH4OH affects basal and stimulated pancreatic secretion. 2. The excessive release of gastrin may be responsible for the stimulation of basal pancreatic enzyme secretion in conscious animals, and 3. The inhibitory effects of NH4OH on stimulated secretion might be mediated, at least in part, by its direct action on the isolated pancreatic acini possibly due to the alkalization of these acini.  相似文献   

18.
In pancreatic acini, cGMP can be increased by secretagogues such as cholecystokinin (CCK), cholinergic agents, and bombesin, whose actions on enzyme secretion are believed to be mediated by protein kinase C. However, the role of cGMP in acinar cell function has been unclear. A recent paper by Rogers et al. (Rogers, J., Hughes, R.G., and Matthews, E. K. (1988) J. Biol. Chem. 263, 3713-3719) reported that two analogues of cGMP, N2,O2-dibutyl guanosine 3':5'-monophosphate (Bt2cGMP) and 8-bromoguanosine 3':5'-monophosphate (8Br-cGMP), at concentrations in the nanomolar range, inhibited the stimulation of amylase secretion caused by CCK-8, bethanechol, bombesin, and 12-O-tetradecanoylphorbol-13-acetate (TPA). Rogers et al. also reported that sodium nitroprusside inhibited the stimulation of enzyme secretion caused by CCK-8 or TPA. These authors concluded that cGMP inhibits protein kinase C-mediated secretion in pancreatic acini. In the present study we attempted to confirm the findings of Rogers et al., We found, however, that Bt2cGMP inhibited CCK-8-stimulated amylase release only at concentrations of the nucleotide above 10 microM. Moreover, there was a close correlation between the ability of Bt2cGMP to inhibit CCK-8-stimulated amylase release and its ability to inhibit binding of 125I-CCK-8. Bt2cGMP, at concentrations as high as 3 mM, did not alter the stimulation of amylase release caused by carbachol, bombesin, TPA, or A23187. 8Br-cGMP, at concentrations up to 1 mM, did not inhibit the stimulation of amylase release caused by CCK-8 or TPA. At concentrations above 0.1 mM, 8Br-cGMP augmented the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Sodium nitroprusside, at a concentration that causes a 60-fold increase in cGMP, did not inhibit the stimulation of amylase release caused by CCK-8, carbachol, bombesin, or TPA. Our results do not confirm the findings of Rogers et al. and indicate that cGMP does not inhibit protein kinase C-mediated secretion in pancreatic acini.  相似文献   

19.
1,2-Diacylglycerol, protein kinase C, and pancreatic enzyme secretion   总被引:5,自引:0,他引:5  
To determine the role of 1,2-diacylglycerol (1,2-DAG) and protein kinase C in pancreatic enzyme secretion, we measured the effect of various pancreatic secretagogues on the cellular mass of 1,2-DAG and amylase release in dispersed pancreatic acini from the guinea pig. In addition, we measured the effect of a recently described protein kinase C inhibitor 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H-7) (Hidaka, H., Inagaki, M., Kawamoto, S., and Sasaki, Y. (1984) Biochemistry 23, 5036-5041), on secretagogue-stimulated amylase release from the acini. Cholecystokinin-octapeptide (CCK-OP), cholecystokinintetrapeptide, and carbachol each increased 1,2-DAG 2-3-fold but the increases occurred only with concentrations of these secretagogues that were supramaximal for amylase release and that had an inhibitory effect on stimulated amylase release. Supramaximal concentrations of bombesin stimulated only a small increase in 1,2-DAG and did not cause inhibition of stimulated amylase release. When the action of carbachol was terminated with atropine or CCK-OP with dibutyryl cyclic GMP, stimulated amylase release ceased immediately but cellular 1,2-DAG required at least 15 min to return to the basal level. Increasing cytosolic free Ca2+ with the Ca2+ ionophore, A23187, in Ca2+-containing incubation media augmented amylase release stimulated by 4 beta-phorbol 12-myristate 13-acetate but inhibited amylase release stimulated by CCK-OP, carbachol, and bombesin without decreasing the cellular content of 1,2-DAG. H-7 inhibited protein kinase C activity in a pancreatic homogenate but augmented amylase release from acini stimulated by either CCK-OP, carbachol, or 4 beta-phorbol 12-myristate 13-acetate. These findings indicate that 1,2-DAG and protein kinase C do not have a stimulatory role in pancreatic stimulus-secretion coupling but may have an inhibitory one.  相似文献   

20.
The effect of synthetic rat amylin (10,100,1000 pmol/l) on glucose (10 mmol/) and arginine (10 mmol/l) -stimulated islet hormone release from the isolated perfused rat pancreas and on amylase release from isolated pancreatic acini was investigated. Amylin stimulated the insulin release during the first (+76%) and the second secretion period (+42%) at 1 nmol/l. The first phase of the glucagon release was inhibited concentration dependently by amylin and completely suppressed during the second phase. Amylin diminished the somatostatin release in a concentration dependent manner. This effect was more pronounced at the first than the second secretion period (1 nmol amylin: 1 phase: -60%, 2.phase: -22%). Amylin was without any effect on basal and CCK stimulated amylase release from isolated rat pancreatic acini. Our data suggest amylin, a secretory product of pancreatic B-cells, as a peptide with approximately strong paracrine effects within the Langerhans islet. Therefore, amylin might be involved in the regulation of glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号