首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The association of membrane and soluble forms of dopamine-beta-monooxygenase to liposomes and micelles made from phosphatidylcholine and lysophosphatidylcholine respectively has been studied using the fluorescence spectroscopy technique. As it was shown in our previous study these bipolar phospholipids activate the reaction catalyzed by the enzyme. Effects of pH and ionic strength on the association process were also studied, and efficiency of the association for apo- and holoenzyme was compared. The data obtained demonstrate that electrostatic attraction is involved in the association process. It was also shown that the membrane dopamine-beta-monooxygenase associated with phospholipid liposomes and micelles with higher efficiency than the soluble one did, which might be due to the involvement of the hydrophobic interactions in the association process. The results of the experiments also suggest that this process is specific and depends on the enzyme conformation, particularly on its quaternary structure. The participation of the hydrophobic peptide of the membrane dopamine-beta-monooxygenase in the formation and stabilization of the enzyme-phospholipid complex in vivo is proposed.  相似文献   

2.
The interaction of acidic copper-containing protein from the membranes of chromaffin granules has been investigated with cytochrome b-561 and dopamine-beta-monooxygenase from the same source. By the use of spectral and polarographic measurements it was demonstrated that the acidic copper-containing protein acts as an electron acceptor for cytochrome b-561 and as electron donor in the reactions, catalyzed by dopamine-beta-monooxygenase. According to the data obtained the possible function of the acidic copper-containing protein in vivo on the area of electron transfer chain between cytochrome b-561 and dopamine-beta-monooxygenase are discussed. The activation or inhibition of the electron transfer reactions by a variety of phospholipids, analogs of membrane lipids of chromaffin granules has been established. The experiments were performed in a model systems by the use of highly purified preparations of proteins and bilamellar liposomes and micelles, prepared from the corresponding phospholipids.  相似文献   

3.
Interaction of bovine heart lactate dehydrogenase with erythrocyte lipids   总被引:1,自引:0,他引:1  
The interaction between bovine heart lactate dehydrogenase and erythrocyte lipid suspension as a function of pH, NAD, NADH, lipid and salt concentration was studied by ultracentrifugation. In the presence of erythrocyte lipid liposomes the enzyme forms two kinds of complex: lactate dehydrogenase adsorbed to liposomes and soluble lactate dehydrogenase-phospholipid complexes. The two complexes reveal different dependence of their stability on pH values. Lactate dehydrogenase decreases its specific activity when it binds to the phospholipid molecules. Efficient adsorption of lactate dehydrogenase to liposomes occurs in their pH range 6.0-8.0 and at low ionic strength. The adsorption is diminished in the presence of NAD+ but it is not influenced by NADH. Possible mechanisms of the interaction and implications for the function in vivo are discussed.  相似文献   

4.
Three kinds of liposomes prepared from phosphatidylcholine (PC), azolectin, and azolectin-containing membrane proteins of the canine erythrocytes were used as models for olfactory cells. To explore properties of the adsorption sites of odorants, membrane fluidity changes in response to various odorants were measured with various fluorescence dyes which monitor the fluidity at different depths and different regions of the membranes. (a) Application of various odorants changed the membrane fluidity of azolectin liposomes. The patterns of membrane fluidity changes in response to odorants having a similar odor were similar to each other and those in response to odorants having different odors were different from each other. These results suggested that odorants having a similar odor are adsorbed on a similar site and odorants having different odors are adsorbed on different sites. (b) Such variation of the pattern was not seen in liposomes of a simple composition (PC liposome). (c) In the proteoliposomes whose composition was more complex than that of azolectin liposomes, the patterns of membrane fluidity changes varied among odorants having a similar odor. It was concluded that liposomes of complex membrane composition have the variety of adsorption sites for odorants.  相似文献   

5.
Trypsin purification by affinity binding to small unilamellar liposomes   总被引:3,自引:0,他引:3  
A novel protein purification process using affinity-ligand-modified liposomes and membrane ultrafiltration is described. The feasibility of the process was tested using trypsin as the model protein and p-aminobenzamidine (PAB) as the affinity ligand for trypsin. The affinity liposomes were prepared by covalently attaching PAB to the surface of small unilamellar liposomes via the hydrophilic spacer arm diglycolic acid. The liposomes were comprised of dimyristoyl phosphatidyl choline, cholesterol, and dimyristoyl phosphatidyl ethanolamine to which the diglycolic acid was attached. The equilibrium binding constant between trypsin and immobilized PAB was shown to be dependent on the PAB density of the liposome surface. Bound trypsin was eluted from the liposomes by the trypsin inhibitor benzamidine. Trypsin was purified from a trypsin/chymotrypsin mixture and from one of its naturally occurring sources, porcine pancreatic extract. A recovery yield from the crude mixture of 68% was obtained with a trypsin purity of 98%. The affinity-modified liposomes were stable in the complex mixture and retained their trypsin binding capacity after multiple adsorption/elution cycles over a 30-day period.  相似文献   

6.
The aim of this study was to investigate the fusogenic properties of poly(ethylene glycol) (PEG)ylated dioleoylphosphatidylethanolamine/cholesteryl hemisuccinate (DOPE/CHEMS) liposomes. These pH-sensitive liposomes were prepared by incorporating two different PEG lipids: distearoylphosphatidylethanolamine (DSPE)-PEG???? was mixed with the liposomal lipids using the conventional method, whereas sterol-PEG???? was inserted into the outer monolayer of preformed vesicles. Both types of PEGylated liposomes were characterized and compared for their entrapment efficiency, zeta potential and size, and were tested in vitro for pH sensitivity by means of proton-induced leakage and membrane fusion activity. To mimic the routes of intracellular delivery, fusion between pH-sensitive liposomes and liposomes designed to simulate the endosomal membrane was studied. Our investigations confirmed that DOPE/CHEMS liposomes were capable of rapidly releasing calcein and of fusing upon acidification. However, after incorporation of DSPE-PEG???? or sterol-PEG???? into the membrane, pH sensitivity was significantly reduced; as the mol ratio of PEG-lipid was increased, the ability to fuse was decreased. Comparison between two different PEGylated pH-sensitive liposomes showed that only vesicles containing 0.6 mol% sterol-PEG???? in the outer monolayer were still capable of fusing with the endosome-like liposomes and showing leakage of calcein at pH 5.5.  相似文献   

7.
Phosphatidylinositol exchange protein, purified from bovine cerebral cortex, catalyzes the transfer of phosphatidylinositol and, to a lesser extent, phosphatidylcholine between rat liver microsomes and egg phosphatidylcholine liposomes. Transfer activity is sensitive to pH, temperature, and the method of liposome preparation. Variation of the phospholipid composition of the liposomes produces vesicles for which the apparent Michaelis constant decreases with increasing molar proportions of phosphatidylinositol. Interaction of exchange protein with liposomes containing radioactively labeled phosphatidylcholine allows the isolation of a phospholipid-protein complex; dissociation of this complex occurs upon subsequent interaction with unlabeled liposomes. Changes in the concentration of the two membrane species, microsomes and liposomes, yield results which are interpreted in terms of a ping-pong kinetic mechanism for the protein-catalyzed, intermembrane transfer of phospholipids.  相似文献   

8.
In this paper we extend our previous experimental work on interaction between polyelectrolytes and liposomes. First, the adsorption of chitosan and alkylated chitosan (cationic polyelectrolytes) with different alkyl chain lengths on lipid membranes of liposomes is examined. The amount of both chitosans adsorbed remains the same even if more alkylated polysaccharide has to be added to get saturation if compared with unmodified chitosan. It is demonstrated that alkyl chains do not specifically interact with the lipid bilayer and that electrostatic interaction mechanism governs the chitosan adsorption. The difference observed between unmodified and alkylated chitosans behavior to reach the plateau can be interpreted in terms of a competition between electrostatic polyelectrolyte adsorption on lipid bilayer and hydrophobic autoassociation in solution (which depends on the alkyl chain length). Second, interaction of liposomes with hyaluronan (HA) and alkylated hyaluronan (anionic polyelectrolytes) is analyzed. The same types of results as discussed for chitosan are obtained, but in this case, autoassociation of alkylated HA only occurs in the presence of salt excess. Finally, a first positive layer of chitosan is adsorbed on the lipid membrane, followed by a second negative layer of HA at three different pHs. This kind of multilayer decoration allows the control of the net charge of the composite vesicles. A general conclusion is that whatever the pH and, consequently, the initial charge of the liposomes, chitosan adsorption gives positively charged composite systems, which upon addition of hyaluronan, give rise to negatively charged composite vesicles.  相似文献   

9.
The photosynthetic chromatophore membranes of Rhodopseudomonas capsulata were fused with liposomes to investigate the effects of lipid dilution on energy transfer between the bacteriochlorophyll-protein complexes of this membrane. Phosphatidylcholine-containing liposomes were mixed with chromatophores at pH 6.0 to 6.2, and the mixture was fractionated on discontinuous sucrose gradients into four membrane fractions with lipid-to-protein ratios that varied 11-fold. Freeze-fracture electron microscopy revealed that the fractions contained closed vesicles formed by the fusion of liposomes to chromatophores. Particles with 9-nm diameters on the P fracture faces did not appear to change in size with increasing lipid content, but the number of particles per membrane area decreased proportionally with increases in the lipid-to-protein ratio. The bacteriochlorophyll-to-protein ratios, electrophoretic polypeptide profiles on sodium dodecyl sulfate-polyacrylamide gels, and light-induced absorbance changes at 595 nm caused by photosynthetic reaction centers were not altered by fusion. The relative fluorescence emission intensities due to the B875 light-harvesting complex increased significantly with increasing lipid content, but no increases in fluorescence due to the B800-B850 light-harvesting complex were observed. Electron transport rates, measured as succinate-cytochrome c reductase activities, decreased with increased lipid content. The results indicate an uncoupling of energy transfer between the B875 light-harvesting and reaction center complexes with lipid dilution of the chromatophore membrane.  相似文献   

10.
The amyloid protein precursor (APP) was incorporated into liposomes or phospholipid monolayers. APP insertion into liposomes required neutral lipids, such as L-alpha-phosphatidylcholine, in the target membrane. It was prevented in vesicles containing L-alpha-phosphatidylserine. The insertion was enhanced in acidic solutions, suggesting that it is modulated by specific charge/charge interactions. Surface-active properties and behaviour of APP were characterized during insertion of the protein in monomolecular films of L-alpha-phosphatidylcholine, L-alpha-phosphatidylethanolamine or L-alpha-phosphatidylserine. The presence of the lipid film enhanced the rate of adsorption of the protein at the interface, and the increase in surface pressure was consistent with APP penetrating the lipid film. The adsorption of APP on the lipid monolayers displayed a significant head group dependency, suggesting that the changes in surface pressure produced by the protein were probably affected by electrostatic interactions with the lipid layers. Our results indicate that the penetration of the protein into the lipid monolayer is also influenced by the hydrophobic interactions between APP and the lipid. CD spectra showed that a large proportion of the alpha-helical secondary structure of APP remained preserved over the pH or ionic strength ranges used. Our findings suggest that APP/membrane interactions are mediated by the lipid composition and depend on both electrostatic and hydrophobic effects, and that the variations observed are not due to major secondary structural changes in APP. These observations may be related to the partitioning of APP into membrane microdomains.  相似文献   

11.
Dendrimers are individual macromolecular compounds having a great potential for biomedical application. The key step of the cell penetration by dendrimers is the interaction with lipid bilayer. Here, the interaction between cationic pyridylphenylene dendrimer of third generation (D350+) and multicomponent liquid (CL/POPC), solid (CL/DPPC) and cholesterol-containing (CL/POPC/30% Chol) anionic liposomes was investigated by dynamic light scattering, fluorescence spectroscopy, conductometry, calorimetric studies and molecular dynamic (MD) simulations. Microelectrophoresis and MD simulations revealed the interaction is electrostatic and reversible with only part of pyridinium groups of dendrimers involved in binding with liposomes. The ability of dendrimer molecules to migrate between liposomes was discovered by the labeling liposomes with Rhodamine B. The phase state of the lipid membrane and the incorporation of cholesterol into the lipid bilayer were found to not affect the mechanism of the dendrimer - liposome complex formation. Rigid dendrimer adsorption on liposomal surface does not induce the formation of significant defects in the lipid membrane pave the way for possible biological application of pyridylphenylene dendrimers.  相似文献   

12.
Understanding the interactions between membrane proteins and the lipid bilayer is key to increasing our ability to predict and tailor the folding mechanism, structure and stability of membrane proteins. Here, we have investigated the effects of changing the membrane composition and the relative concentrations of protein and lipid on the folding mechanism of the bacterial outer membrane protein PagP. The folding pathway, monitored by tryptophan fluorescence, was found to be characterized by a burst phase, representing PagP adsorption to the liposome surface, followed by a time course that reflects the folding and insertion of the protein into the membrane. In 1,2-dilauroyl-sn-glycero-3-phosphocholine (diC(12:0)PC) liposomes, the post-adsorption time course fits well to a single exponential at high lipid-to-protein ratios (LPRs), but at low LPRs, a second exponential phase with a slower folding rate constant is observed. Interrupted refolding assays demonstrated that the two exponential phases reflect the presence of parallel folding pathways. Partitioning between these pathways was found to be modulated by the elastic properties of the membrane. Folding into mixed 1,2-dilauroyl-sn-glycero-3-phosphoethanolamine:diC(12:0)PC liposomes resulted in a decrease in PagP adsorption to the liposomes and a switch to the slower folding pathway. By contrast, inclusion of 1,2-dilauroyl-sn-glycero-3-phosphoserine into diC(12:0)PC liposomes resulted in a decrease in the folding rate of the fast pathway. The results highlight the effect of lipid composition in tailoring the folding mechanism of a membrane protein, revealing that membrane proteins have access to multiple, competing folding routes to a unique native structure.  相似文献   

13.
Supramolecular aggregates containing cationic lipids have been widely used as transfection mediators due to their ability to interact with negatively charged DNA molecules and biological membranes. First steps of the process leading to transfection are partly electrostatic, partly hydrophobic interactions of liposomes/lipoplexes with cell and/or endosomal membrane. Negatively charged compounds of biological membranes, namely glycolipids, glycoproteins and phosphatidylserine (PS), are responsible for such events as adsorption, hemifusion, fusion, poration and destabilization of natural membranes upon contact with cationic liposomes/lipoplexes. The present communication describes the dependence of interaction of cationic liposomes with natural and artificial membranes on the negative charge of the target membrane, charges which in most cases were generated by charging the PS content or its exposure. The model for the target membranes were liposomes of variable content of PS or PG (phosphatidylglycerol) and erythrocyte membranes in which the PS and other anionic compound content/exposure was modified in several ways. Membranes of increased anionic phospholipid content displayed increased fusion with DOTAP (1,2-dioleoyl-3-trimethylammoniumpropane) liposomes, while erythrocyte membranes partly depleted of glycocalix, its sialic acid, in particular, showed a decreased fusion ability. The role of the anionic component is also supported by the fact that erythrocyte membrane inside-out vesicles fused easily with cationic liposomes. The data obtained on erythrocyte ghosts of normal and disrupted asymmetry, in particular, those obtained in the presence of Ca2+, indicate the role of lipid flip-flop movement catalyzed by scramblase. The ATP-depletion of erythrocytes also induced an increased sensitivity to hemoglobin leakage upon interactions with DOTAP liposomes. Calcein leakage from anionic liposomes incubated with DOTAP liposomes was also dependent on surface charge of the target membranes. In all experiments with the asymmetric membranes the fusion level markedly increased with an increase of temperature, which supports the role of membrane lipid mobility. The decrease in positive charge by binding of plasmid DNA and the increase in ionic strength decreased the ability of DOTAP liposomes/lipoplexes to fuse with erythrocyte ghosts. Lower pH promotes fusion between erythrocyte ghosts and DOTAP liposomes and lipoplexes. The obtained results indicate that electrostatic interactions together with increased mobility of membrane lipids and susceptibility to form structures of negative curvature play a major role in the fusion of DOTAP liposomes with natural and artificial membranes.  相似文献   

14.
N Oku  S Shibamoto  F Ito  H Gondo  M Nango 《Biochemistry》1987,26(25):8145-8150
For the purpose of cytoplasmic delivery of aqueous content in liposomes through endosomes, we synthesized a pH-sensitive polymer, cetylacetyl(imidazol-4-ylmethyl)polyethylenimine (CAIPEI), which generates polycations at acidic pH. CAIPEI in its aqueous phase caused aggregation of sonicated vesicles composed of phosphatidylserine (PS) and phosphatidylcholine (PC) (molar ratio 1:4) when the pH of the solution was lowered. The polymer also induced membrane intermixing as measured by resonance energy transfer between vesicles containing N-(7-nitro-2,1,3-benz[d]oxadiazol-4-yl)phosphatidylethanolamine and those containing N-Rhodamine phosphatidylethanolamine at pH 4-5, while the addition of CAIPEI caused neither aggregation of PC vesicles nor the intermixing of liposomal membranes between PC and PC/PS vesicles at any pH. The CAIPEI-induced membrane intermixing was dependent on the polymer/vesicle ratio rather than on the polymer concentration. Then the polymer was incorporated into the bilayers of PC vesicles. These CAIPEI vesicles also caused membrane intermixing with liposomes containing PS under acidic conditions. The reconstituted CAIPEI did not reduce the trapping efficiency of vesicles or increase their permeability to glucose even at low pH. The vesicles caused the low pH induced aggregation and membrane intermixing with other negatively charged liposomes containing phosphatidic acid or phosphatidylglycerol. These results suggest that the protonation of the polymer at acidic pH endows the CAIPEI vesicles with the activity to fuse with negatively charged liposomes.  相似文献   

15.
F H Gao  T Abee    W N Konings 《Applied microbiology》1991,57(8):2164-2170
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

16.
The interaction of the peptide antibiotic nisin with liposomes has been studied. The effect of this interaction was analyzed on the membrane potential (inside negative) and the pH gradient (inside alkaline) in liposomes made from Escherichia coli phosphatidylethanolamine and egg phosphatidylcholine (9:1, wt/wt). The membrane potential and pH gradient were generated by artificial ion gradients or by the oxidation of ascorbate, N,N,N',N'-tetramethyl-p-phenylenediamine, and cytochrome c by the beef heart cytochrome c oxidase incorporated in the liposomal membranes. Nisin dissipated the membrane potential and the pH gradient in both types of liposomes and inhibited oxygen consumption by cytochrome c oxidase in proteoliposomes. The dissipation of the proton motive force in proteoliposomes was only to a minor extent due to a decrease of the oxidase activity by nisin. The results in these model systems show that a membrane potential and/or a pH gradient across the membrane enhances the activity of nisin. Nisin incorporates into the membrane and makes the membrane permeable for ions. As a result, both the membrane potential and pH gradient are dissipated. The activity of nisin was found to be influenced by the phospholipid composition of the liposomal membrane.  相似文献   

17.
H Schreier 《Life sciences》1989,44(3):193-200
The quantitative and qualitative interaction of liposomes with synaptosomes isolated from rat brain was examined using radiolabeled phospholipids and electron microscopy. Liposomes were prepared by sonication and detergent dialysis. Binding (adsorption) of radiolabeled phospholipid to synaptosomes was saturable when liposomes were in the liquid-crystalline state, were electrically neutral (egg-phosphatidylcholine), or carried increasing fractions (10:2 and 10:4 molar ratio) of negatively charged phosphatidic acid. Analysis using the Langmuir isotherm equation indicated a biphasic adsorption behavior. Adsorption increased with increasing temperature (4 degrees C and 37 degrees C). Binding was nonsaturable when liposomes were positively charged with stearylamine or composed of dimyristoylphosphatidylcholine and phosphatidylinositol (10:2 molar ratio). Due to the latter composition's solid state at 4 degrees C, temperature dependency was inverse. Electron micrographs revealed disc-shaped areas of adsorption that were free of integral membrane particles which appeared to form a condensed layer surrounding the areas of liposome adsorption. Following interaction with stearylamine-containing liposomes the vesicular structure of synaptosomes appeared largely destroyed. It is concluded that both liposome surface charge and membrane fluidity determine the extent of interaction with biological membranes.  相似文献   

18.
The interaction of Cr3+ ions and its cysteine complex with bilayer phospholipid membranes was investigated. It was found that chromium ions and the complex compound are adsorbed on the bilayer lipid membrane surface, changing the intramembrane potential difference. As pH increases, the adsorption of Cr3+ decreases and that of the complex rises. The adsorption of the complex leads to an increase in the rigidity of bilayer lipid membrane, which is not observed with chromium ions.  相似文献   

19.
The competitive behavior of solid vs. fluid liposomes in liposome-cell adsorption and cell-to-liposome lipid transfer processes was investigated with L cells and FBT epithelial sheets. Binding and transfer experiments have demonstrated that: solid liposomes adhere to the cell surface as integral vesicles retaining the entrapped substance; fluid liposomes are partly disintegrated at the cell surface with concomitant entry of entrapped substances into the cytoplasm, while their lipids remain on the cell surface; fluid liposomes that escape lysis dissociate from the cell taking away cell lipid molecules. No lipid transfer occurs between the plasma membrane and solid liposomes. Cell-bound solid liposomes interfere with the transfer of cell lipids to fluid liposomes, while these in turn inhibit the binding of solid liposomes to the cell surface.  相似文献   

20.
In order to obtain more information on membrane phenomena occurring at the cell surface of rabbit thymocytes we have performed experiments aimed at altering the lipid composition of the plasma membrane. Thymocytes were incubated at 37°C with phospholipid vesicles of different compositions. Vesicle-cell interaction was followed by measuring the degree of fluorescence polarization and the uptake of vesicle-entrapped carboxyfluorescein. Neutral and negatively charged liposomes prepared from egg phosphatidylcholine are currently used in investigations of vesicle-cell interaction. In this report we show that these liposomes do not interact with rabbit thymocytes as is evident from unaltered lipid fluidity measured in whole cells and in isolated plasma membranes. This was confirmed by experiments with vesicle-entrapped carboxyfluorescein showing hardly any uptake of the fluorophor from neutral and negatively charged egg phosphatidylcholine liposomes. Using both techniques substantial interaction was found with positively charged egg phosphatidylcholine liposomes and with liposomes prepared from soybean lecithin which is composed of a variety of phospholipids. The results of these experiments were supported by lipid analysis of cells treated with soybean lecithin liposomes. Increase in phosphatidylcholine contents of mixed phospholipid vesicles was further shown to result in decreased vesicle-cell interaction. From measurements of the quantity of carboxyfluorescein inside cells and the total amount of cell-associated carboxyfluorescein it is concluded that adsorption plays a prominent role in interaction between liposomes and rabbit lymphocytes. The grade of maturation of lymphocytes was also found to affect vesicle-cell interaction. The more mature thymocytes took up more vesicle-entrapped carboxyfluorescein from soybean liposomes than immature thymocytes. Mesenteric lymph node cells exhibited a still stronger interaction. The role of vesicle and cell surface charge and membrane fluidity of both vesicles and cells in interaction between liposomes and rabbit thymocytes is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号