首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Global stability in Lotka-Volterra systems with diffusion   总被引:4,自引:0,他引:4  
Summary Sufficient conditions for global stability inn-species Lotka-Volterra systems with diffusion are derived. Both continuous environments with 0-flux boundary conditions and environments consisting of discrete patches are considered.  相似文献   

2.
本文考虑无对角时滞的n种群Lotka-Volterra时滞系统,证明了弱对角占优(WDD)为系统关于所有时滞全局稳定的充要条件。  相似文献   

3.
本文利用文献[1]中连续迭代和比较方法,借用Hofbauer,JandSigmual,K的文献[2],再结合自治系统吸引区域的论证方法,给出n维连续时滞Lotka-Volterra共存系统正平衡点的全局稳定性,将自治系统的结果推到了一般n维的时滞系统。  相似文献   

4.
本文利用微分方程定性理论,对一类具有竞争关系的两种群Lotka-Volterra模型进行了系统全局结构分析,并给出了相应的结论.  相似文献   

5.
Global stability of a predator-prey system   总被引:2,自引:0,他引:2  
In this paper we derive a result to ensure the global stability of a predator-prey system. The method used is quite general and may have applications to other situations.Works were partially supported by the National Science Council of the Republic of China  相似文献   

6.
利用M矩阵理论,推广的微分不等式和Lyapunov函数,研究了一类带时滞和脉冲的BAM神经网络平衡点的存在唯一性和全局指数稳定性条件.文中推广了以往文献脉冲函数的形式,无需时滞的可导性要求,从而减弱了以往结论的条件,并且可以估计网络的指数收敛速率.  相似文献   

7.
Robust stability of genetic regulatory networks with distributed delay   总被引:1,自引:1,他引:1  
This paper investigates robust stability of genetic regulatory networks with distributed delay. Different from other papers, distributed delay is induced. It says that the concentration of macromolecule depends on an integral of the regulatory function of over a specified range of previous time, which is more realistic. Based on Lyapunov stability theory and linear matrix inequality (LMI), sufficient conditions for genetic regulatory networks to be global asymptotic stability and robust stability are derived in terms of LMI. Two numerical examples are given to illustrate the effectiveness of our theoretical results.  相似文献   

8.
针对一类具有偏离自变量的离散Lotka-Volterra竞争模型,考虑到不可避免的外界扰动,通过引入反馈控制,基于一定的分析技巧得到该系统持久性与全局稳定性的充分条件.生态意义上表明:在外界扰动下,具有偏离自变量的离散Lotka-Volterra竞争模型仍能持续生存并保持全局稳定发展.  相似文献   

9.
Cholera is a water and food borne infectious disease caused by the gram-negative bacterium, Vibrio cholerae. Its dynamics are highly complex owing to the coupling among multiple transmission pathways and different factors in pathogen ecology. Although various mathematical models and clinical studies published in recent years have made important contribution to cholera epidemiology, our knowledge of the disease mechanism remains incomplete at present, largely due to the limited understanding of the dynamics of cholera. In this paper, we conduct global stability analysis for several deterministic cholera epidemic models. These models, incorporating both human population and pathogen V. cholerae concentration, constitute four-dimensional non-linear autonomous systems where the classical Poincaré-Bendixson theory is not applicable. We employ three different techniques, including the monotone dynamical systems, the geometric approach, and Lyapunov functions, to investigate the endemic global stability for several biologically important cases. The analysis and results presented in this paper make building blocks towards a comprehensive study and deeper understanding of the fundamental mechanism in cholera dynamics.  相似文献   

10.
针对病毒变异前和变异后传染病患者具有不同的传染率情形,建立了一类分阶段传播的SIS模型,通过构造Liapunov函数和定性分析,得到病毒变异前和变异后传染病患者平衡点的存在条件以及它们的全局渐近稳定性。  相似文献   

11.
In this paper we derive some results to ensure the global stability of a predator-prey system. The results cover most of the models which have been proposed in the ecological literature for predator-prey systems. The first result is very geometric and it is very easy to check from the graph of prey and predator isoclines. The second one is purely algebraic, however, it covers the defects of the first one especially in dealing with Holling's type-3 functional response in some sense. We also discuss the global stability of Kolmogorov's model. Some examples are presented in the discussion section.Works partially supported by the National Science Council of the Republic of China  相似文献   

12.
This paper considers an SEIS epidemic model that incorporates constant recruitment, disease-caused death and disease latency. The incidence term is of the bilinear mass-action form. It is shown that the global dynamics is completely determined by the basic reproduction number R(0). If R(0)1, a unique endemic equilibrium is globally stable in the interior of the feasible region and the disease persists at the endemic equilibrium.  相似文献   

13.
通过构造Lyapunov函数研究了一类具有非单调感染率的时滞传染病模型,并证明了该模型的无病平衡点和地方性平衡点的全局稳定性.  相似文献   

14.
提出了一类含分布时滞的流行病模型,利用构造李亚普诺夫泛函的方法,得到了无病平衡点和地方病平衡点全局稳定性的结论,揭示了平均时滞对各类平衡点稳定性的影响。  相似文献   

15.
 We study the global dynamics of n-species competition in a chemostat with distributed delay describing the time-lag involved in the conversion of nutrient to viable biomass. The delay phenomenon is modelled by the gamma distribution. The linear chain trick and a fluctuation lemma are applied to obtain the global limiting behavior of the model. When each population can survive if it is cultured alone, we prove that at most one competitor survives. The winner is the population that has the smallest delayed break-even concentration, provided that the orders of the delay kernels are large and the mean delays modified to include the washout rate (which we call the virtual mean delays) are bounded and close to each other, or the delay kernels modified to include the washout factor (which we call the virtual delay kernels) are close in L 1-norm. Also, when the virtual mean delays are relatively small, it is shown that the predictions of the distributed delay model are identical with the predictions of the corresponding ODEs model without delay. However, since the delayed break-even concentrations are functions of the parameters appearing in the delay kernels, if the delays are sufficiently large, the prediction of which competitor survives, given by the ODEs model, can differ from that given by the delay model. Received: 9 August 1997 / Revised version: 2 July 1998  相似文献   

16.
考虑了一类含有无限时滞和离散时滞的非自治Logistic系统。通过运用时滞泛函微分方程的基本原理及新的计算技巧表明系统是持久的,且系统在持久性条件下也是全局渐近稳定的。结果表明时滞是“有害的”,获得了一些新的结果并改进了一些已有的结果。  相似文献   

17.
Global analysis of an epidemic model with nonmonotone incidence rate   总被引:2,自引:0,他引:2  
In this paper we study an epidemic model with nonmonotonic incidence rate, which describes the psychological effect of certain serious diseases on the community when the number of infectives is getting larger. By carrying out a global analysis of the model and studying the stability of the disease-free equilibrium and the endemic equilibrium, we show that either the number of infective individuals tends to zero as time evolves or the disease persists.  相似文献   

18.
This paper studies a non-autonomous Lotka-Volterra almost periodic predator-prey dispersal system with discrete and continuous time delays which consists of n-patches, the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. By using comparison theorem and delay differential equation basic theory, we prove the system is uniformly persistent under some appropriate conditions. Further, by constructing suitable Lyapunov functional, we show that the system is globally asymptotically stable under some appropriate conditions. By using almost periodic functional hull theory, we show that the almost periodic system has a unique globally asymptotical stable strictly positive almost periodic solution. The conditions for the permanence, global stability of system and the existence, uniqueness of positive almost periodic solution depend on delays, so, time delays are "profitless". Finally, conclusions and two particular cases are given. These results are basically an extension of the known results for non-autonomous Lotka-Volterra systems.  相似文献   

19.
Global asymptotic stability of a periodic solution to an epidemic model   总被引:1,自引:0,他引:1  
In this paper a periodic delay differential equation with spatial spread is investigated. This equation can be used to model the growth of malaria which is transmitted by a mosquito. Using monotone techniques, it is shown that the following bifurcation holds: either the disease dies out or the density of infectious people tends to a spatially homogeneous, time periodic and positive solution.Research partially supported by NSF Grant MCS 810-4837  相似文献   

20.
Global dynamics of a SEIR model with varying total population size   总被引:8,自引:0,他引:8  
A SEIR model for the transmission of an infectious disease that spreads in a population through direct contact of the hosts is studied. The force of infection is of proportionate mixing type. A threshold sigma is identified which determines the outcome of the disease; if sigma < or = 1, the infected fraction of the population disappears so the disease dies out, while of sigma > 1, the infected fraction persists and a unique endemic equilibrium state is shown, under a mild restriction on the parameters, to be globally asymptotically stable in the interior of the feasible region. Two other threshold parameters sigma' and sigma are also identified; they determine the dynamics of the population sizes in the cases when the disease dies out and when it is endemic, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号