首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Small heat-shock proteins (sHSP) are the most abundant heat stress-induced proteins in plants. In rice, there are at least seven members of class-I sHSP. A 1.6-kb DNA fragment was isolated from the EcoRI-digested rice genomic library probed with the cDNA pTS1 encoding a 16.9-kDa class-I sHSP. This fragment was composed of 365-bp tandem direct repeats (DRs) and 441-bp near perfect long terminal inverted repeats (LTIRs). The DRs contain 123-bp regions with 99% nucleotide identity to the 5' coding region of the Oshsp16.9B gene. Two putative pseudogenes were deduced from the DRs. Using the LTIR as a specific probe, Southern-blotting analysis showed that there was a single copy of this 1.6-kb DNA fragment in the rice genome. By genomic walking, we located this fragment in proximity 5'-upstream of the Oshsp16.9B gene that was mapped on chromosome 1 with other two class-I sHSP genes, Oshsp16.9A and Oshsp16.9C. By comparative analysis of the nucleotide sequences of class-I sHSP genes clustered on chromosome 1 between Tainung No. 67 and Nipponbare cultivars, we confirmed our mapping results of these genes and only the promoter region of Oshsp16.9B was different. However, we found that the expression profile of Oshsp16.9B upon different heat stresses in Nipponbare was not significantly different relative to that in Tainung No. 67.  相似文献   

2.
Lee BH  Won SH  Lee HS  Miyao M  Chung WI  Kim IJ  Jo J 《Gene》2000,245(2):283-290
  相似文献   

3.
While growing in the field, plants may encounter several different forms of abiotic stress simultaneously, rather than a single stress. In this study, we investigated the effects of calcium (Ca) deficiency on cadmium (Cd) toxicity in rice seedlings. Calcium deficiency alone decreased the length, fresh and dry weight, and the Ca concentration in shoots and roots. Also, the content of glutathione (GSH), the ratio of GSH/oxidized glutathione, and the activity of catalase were lower in Ca-deficient leaves compared to control leaves. Exogenous Cd caused a decrease in the contents of chlorophyll and protein, and induced oxidative stress. Based on these stress indicators, we found that Ca deficiency enhanced Cd toxicity in rice seedlings. Under exogenous Cd application, internal Cd concentrations were higher in Ca-deficient shoots and roots than in the respective controls. Moreover, we observed that Ca deficiency decreased heat-shock (HS) induced expression of HS protein genes Oshsp17.3, Oshsp17.7, and Oshsp18.0 in leaves thereby weakening the protection system and increasing Cd stress. In conclusion, Ca deficiency enhances Cd toxicity, and Ca may be required for HS response in rice seedlings.  相似文献   

4.
Yeh CH  Chen YM  Lin CY 《Plant physiology》2002,128(2):661-668
Rice (Oryza sativa) class I low-molecular mass (LMM) heat shock protein (HSP), Oshsp16.9, has been shown to be able to confer thermotolerance in Escherichia coli. To define the regions for this intriguing property, deletion mutants of this hsp have been constructed and overexpressed in E. coli XL1-blue cells after isopropyl beta-D-thioglactopyranoside induction. The deletion of amino acid residues 30 through 36 (PATSDND) in the N-terminal domain or 73 through 78 (EEGNVL) in the consensus II domain of Oshsp16.9 led to the loss of chaperone activities and also rendered the E. coli incapable of surviving at 47.5 degrees C. To further investigate the function of these two domains, we determined the light scattering changes of Oshsp16.9 mutant proteins at 320 nm under heat treatment either by themselves or in the presence of a thermosensitive enzyme, citrate synthase. It was observed that regions of amino acid residues 30 through 36 and 73 through 78 were responsible for stability of Oshsp16.9 and its interactions with other unfolded protein substrates, such as citrate synthase. Studies of two-point mutants of Oshsp16.9, GST-N74E73K and GST-N74E74K, indicate that amino acid residues 73 and 74 are an important part of the substrate-binding site of Oshsp16.9. Non-denaturing gel analysis of purified Oshsp16.9 revealed that oligomerization of Oshsp16.9 was necessary but not sufficient for its chaperone activity.  相似文献   

5.
The inherent immobility of rice (Oryza sativa L.) limited their abilities to avoid heat stress and required them to contend with heat stress through innate defense abilities in which heat shock proteins played important roles. In this study, Hsp26.7, Hsp23.2, Hsp17.9A, Hsp17.4 and Hsp16.9A were up-regulated in Nipponbare during seedling and anthesis stages in response to heat stress. Subsequently, the expressing levels of these five sHsps in the heat-tolerant rice cultivar, Co39, were all significantly higher than that in the heat-susceptible rice cultivar, Azucena. This indicated that the expressive level of these five sHsps was positively related to the ability of rice plants to avoid heat stress. Thus, the expression level of these five sHsps can be regarded as bio-markers for screening rice cultivars with different abilities to avoid heat stress. Hsp18.1, Hsp17.9A, Hsp17.7 and Hsp16.9A, in the three rice cultivars under heat stress were found to be involved in one protein complex by Native-PAGE, and the interactions of Hsp18.1 and Hsp 17.7, Hsp18.1 and Hsp 17.9A, and Hsp17.7 and Hsp16.9A were further validated by yeast 2-hybridization. Pull down assay also confirmed the interaction between Hsp17.7 and Hsp16.9A in rice under heat stress. In conclusion, the up-regulation of the 5 sHsps is a key step for rice to tolerate heat stress, after that some sHsps assembled into a large hetero-oligomeric complex. In addition, through protein–protein interaction, Hsp101 regulated thiamine biosynthesis, and Hsp82 homology affected nitrogen metabolism, while Hsp81-1 were involved in the maintenance of sugar or starch synthesis in rice plants under heat stress. These results provide new insight into the regulatory mechanism of sHsps in rice.  相似文献   

6.
Phosphorylation by protein kinase is a ubiquitous key mechanism in translating external stimuli such as drought stress. NPK1 is a mitogen-activated protein kinase kinase kinase identified in Nicotiana tabacum and plays important roles in cytokinesis and auxin signaling transduction and responses to multiple stresses. Here we report the evolution, structure, and comprehensive expression profile of 21 NPK1-like genes in rice (Oryza sativa L.). Phylogenetic analysis of NPK1-like sequences in rice (OsNPKL), Arabidopsis, and other plants reveals that NPK1-like genes could be classified into three subgroups. Three OsNPKL gene clusters, located on chromosome 1 (OsNPKL1, 2, 3, and 4), 5 (OsNPKL14 and 15), and 10 (OsNPKL19 and 20), respectively, were identified in the rice genome. These clustered genes, which most likely evolved by tandem gene duplication, belong to the same phylogenetic subgroup, with similar genomic structures and conserved motifs in the kinase domain, which is unique to this subgroup. Expression analysis of OsNPKL genes under abiotic stresses suggests that the stress-responsive genes are mainly from the same subgroup. Especially interesting is that all the clustered genes are induced by drought, salt, or cold stress, and a few members are very strongly induced by drought. Some of the clustered genes are also induced by abscisic acid. The gene cluster on chromosome 1 is co-located with a quantitative trait locus (QTL) related to drought resistance. Although the drought-induced expression levels of the four genes in the cluster show no difference between the two parents used for QTL mapping, sequence variation in coding regions of the genes between the parents has provided some clues for further functional characterization of this gene cluster in abiotic stress tolerance in rice.  相似文献   

7.
Small heat shock proteins are involved in stress tolerance. We previously isolated and characterized a rice cDNA clone, Oshsp26, encoding a chloroplast-localized small heat shock protein that is expressed following oxidative or heat stress. In this study, we transferred this gene to tall fescue plants by an Agrobacterium-mediated transformation system. The integration and expression of the transgene was confirmed by PCR, Southern, northern, and immunoblot analyzes. Compared to the control plants, the transgenic plants had significantly lower electrolyte leakage and accumulation of thiobarbituric acid-reactive substances when exposed to heat or methyl viologen. The photochemical efficiency of photosystem II (PSII) (Fv/Fm) in the transgenic tall fescue plants was higher than that in the control plants during heat stress (42°C). These results suggest that the OsHSP26 protein plays an important role in the protection of PSII during heat and oxidative stress in vivo.  相似文献   

8.
9.
Accumulation of class I small heat shock proteins (sHSPs) is induced by the proline analog, azetidine-2-carboxylic acid (Aze) in soybean seedlings to a level similar to that induced by exposure to 40 degrees C. However, only the treatment with 10 mM Aze for 6 h and subsequently with 10 mM proline for 24 h protected the seedlings from damage during subsequent exposure to 45 degrees C as assessed by 2,3,5-triphenyltetrazolium chloride (TTC) staining. A chaperone activity assay showed that the purified class I sHSPs induced by Aze were functional in vitro and protected proteins from thermal denaturation. Amino acid composition analysis indicated that Aze was not incorporated into de novo synthesized class I sHSPs. Accumulation of class I sHSPs in the soluble post-ribosomal supernatant fraction was found to be important for acquisition of thermotolerance. We suggest that both the accumulation of class I sHSPs and their presence in the soluble fraction are important for establishment of thermotolerance.  相似文献   

10.
11.
12.
Summary An elite aspen hybrid (Populus × canescens × P. grandidentata) was transformed with Agrobacterium tumefaciens strain EHA105 that harbored a binary vector (pBI121) carrying the nptII gene under the nos promoter and tandem rolB-uidA (GUS) genes with the CaMV 35S or heat shock promoter. Among 32 independent kanamycin-resistant plants, 25 plants were confirmed by polymerase chain reaction and Southern blot analyses to contain all three genes, whereas five plants contained only nptII or/and uidA genes and two plants had both the rolB and nptII or uidA genes. Integration of the rolB gene significantly increased rooting ability of hardwood cuttings. Heat shock-rolB-transformed plants rooted at significantly higher percentage than the CaMV 35S-rolB-transformed plants. Heat shock treatment further enhanced rooting of heat shock-rolB-transformed plants. Exposure to exogenous auxin did not significantly increase the rooting percentage of transgenic hardwood cuttings, but increased the number of roots induced. This research shows great potential to improve rooting of hardwood cuttings of difficult-to-root woody plants which are commercially important to the horticultural and forestry industry. The transgenic plants with gain-of-function in hardwood-cutting rooting can facilitate research in the understanding of adventitious rooting from hardwood cuttings of recalcitrant woody plants.  相似文献   

13.
14.
15.
16.
Wang Y  Li H  Si Y  Zhang H  Guo H  Miao X 《Planta》2012,235(4):829-840
Rathu Heenati (RHT) is a Sri Lankan rice cultivar that carries a brown planthopper (BPH) resistance gene, Bph3, and shows broad-spectrum resistance to all four biotypes of BPH. The BPH-resistance loci in RHT has been studied extensively and assigned to four different rice chromosomes (3, 4, 6, and 10) by different research groups, but the gene has not been cloned previously. An Affymetrix rice genome array containing 48,564 japonica and 1,260 indica sequences was used to analyze the potential resistance-related genes on the four chromosomes by comparative analysis of the differentially expressed genes between resistant and susceptible rice cultivars exposed to BPH attack. The microarray results showed that at least 17 genes related to induced resistance and at least 193 genes related to constitutive resistance in RHT. On chromosome 3, the AOC4 was hypothesized to be the most important candidate gene. On chromosome 6, no valuable candidate resistance gene was identified in the Bph3 localization region. In the three Quantitative trait locus regions of chromosomes 3, 4, and 10, the numbers of constitutive and induced resistance-related genes found were 17, 26, and 12, respectively. The major probe on chromosome 10 represents a constitutive expression gene with a very high absolute fold-change of 2,588.82. The microarray analysis indicated that BPH resistance in RHT is probably controlled by a series of resistance-related genes. This study provides valuable information for cloning, functional analysis and marker-assisted breeding of these BPH resistance genes.  相似文献   

17.
The small heat shock proteins (smHSPs) belong to a family of proteins that function as molecular chaperones by preventing protein aggregation and are also known to contain a conserved region termed alpha-crystallin domain. Here, we report the expression, purification, and partial characterization of a novel smHSP (HSP17.9) from the phytopathogen Xylella fastidiosa, causal agent of the citrus variegated chlorosis (CVC). The gene was cloned into a pET32-Xa/LIC vector to over-express the protein coupled with fusion tags in Escherichia coli BL21(DE3). The expressed HSP17.9 was purified by immobilized metal affinity chromatography (IMAC) and had its identity determined by mass spectrometry (MALDI-TOF). The correct folding of the purified recombinant protein was verified by circular dichroism spectroscopy. Finally, the HSP17.9 protein also proved to efficiently prevent induced aggregation of insulin, strongly indicating a chaperone-like activity.  相似文献   

18.
Four genes coding for small heat shock proteins (sHsps) were identified in the genome sequence of Agrobacterium tumefaciens, one on the circular chromosome (hspC), one on the linear chromosome (hspL), and two on the pAT plasmid (hspAT1 and hspAT2). Induction of sHsps at elevated temperatures was revealed by immunoblot analyses. Primer extension experiments and translational lacZ fusions demonstrated that expression of the pAT-derived genes and hspL is controlled by temperature in a regulon-specific manner. While the sHsp gene on the linear chromosome turned out to be regulated by RpoH (sigma32), both copies on pAT were under the control of highly conserved ROSE (named for repression of heat shock gene expression) sequences in their 5' untranslated region. Secondary structure predictions of the corresponding mRNA strongly suggest that it represses translation at low temperatures by masking the Shine-Dalgarno sequence. The hspC gene was barely expressed (if at all) and not temperature responsive.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号