共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Gibberellins (GAs) are a group of plant growth hormones that were first isolated from the fungus Gibberella fujikuroi. The biosynthesis of GA in liquid cultures of the fungus has been examined using high-performance liquid chromatography and combined gas chromatography-mass spectrometry. GA3 was the predominant GA in well-aerated cultures. GA4 and GA7, intermediates in GA3 biosynthesis, accumulated in cultures with low levels of dissolved oxygen, but were not detectable in more highly aerated cultures. Light stimulated the production of GA3 in G. fujikuroi cultures grown from young stock cultures. Cell-free enzyme studies revealed a significant stimulation in the levels of kaurenoic acid oxidation in cultures grown in the light in comparison with those grown in the dark. However, measurements of the relative rates of [14C]mevalonic acid incorporation into kaurene showed no effect of light on this early part of the pathway. Preliminary experiments indicated that blue light is most effective in enhancing kaurenoic acid oxidation. 相似文献
4.
Biochemical genetic studies on the production of gibberellins by the fungus Gibberella fujikuroi have identified two genes which control different steps in the biosynthetic pathway. One gene (g1) controls the production of all of the gibberellins: the second gene (g2) controls the production of GA1 and GA3 only. Ascospores are not ordered in the ascus of this fungus. This apparent spore slippage precludes mapping of these genes to their respective centromeres. 相似文献
5.
Gibberellin production by Gibberella fujikuroi started only after the nitrogen source was depleted and ceased upon its renewal. Nitrogen repression of gibberellin biosynthesis is not an indirect effect of the growth arrest that follows the depletion of an essential nutrient because gibberellins were not produced upon depletion of phosphate. Mycelia produced gibberellins when suspended in a glucose solution. Production ceased some time after depletion of glucose and resumed upon its readdition. Under certain conditions, the gibberellin production rate was inversely proportional to the glucose concentrations. The specific regulation of gibberellin biosynthesis by the nitrogen source imposes a revision of the concept that gibberellins are secondary metabolites whose production is triggered by imbalance or cessation of growth. 相似文献
6.
Nitrogen availability and production of bikaverin and gibberellins in Gibberella fujikuroi 总被引:2,自引:0,他引:2
Walter Giordano Javier Avalos Enrique Cerdá-Olmedo Carlos E Domenech 《FEMS microbiology letters》1999,173(2):389-393
Production of bikaverin and gibberellins by Gibberella fujikuroi started after depletion of the nitrogen source, but not after depletion of phosphate. Despite this similarity, the regulation of both pathways by nitrogen involved two different mechanisms. This conclusion was supported by the fact that the production of bikaverin, in contrast to the gibberellins, was not inhibited by nitrate in a mutant that could not utilize it. The different regulation of both pathways was clearly demonstrated by a mutant that overproduced bikaverin but lacked gibberellins. An optimal bikaverin production required a low pH, with a sharp drop at about pH 5. The syntheses of fungal secondary metabolites, such as bikaverin and gibberellins, are not subject to common regulation, but respond to various combinations of signals, such as nitrogen availability, nitrate and the pH of the medium. 相似文献
7.
赤霉素是最重要的植物生长调节剂之一,在农业生产中得到越来越广泛的应用,具有广阔的市场前景,但其工业化的高生产成本严重制约着它的广泛应用。近年来,利用生物技术提升赤霉素产量日益成为研究热点。赤霉素生物合成是多种酶协同作用的过程,阐明赤霉素的生物合成机制,利用代谢工程策略调控代谢流量,对提高赤霉素产量至关重要。文中综述了当前藤仓赤霉菌赤霉素生物合成途径、关键酶、环境因素、代谢流调控等方面的研究进展,在代谢调控方面进行了展望,以期为实现赤霉素稳产高产提供思路。 相似文献
8.
Production of gibberellins and bikaverin by cells of Gibberella fujikuroi immobilized in carrageenan
《Journal of Fermentation Technology》1987,65(6):717-722
The production of gibberellins and bikaverin by immobilized and free cells of Gibberella fujikuroi strains was followed. Both types of cells, free and immobilized, produced similar titers of the secondary metabolites during the normal growth cycle. The kinetics of nutrient use and product formation by the immobilized cells lagged behind that of the free cells and this was assumed to be the result of diffusional limitations imposed on the immobilized cells. A noticeable difference was that in the immobilized cells, all of the bikaverin was excreted into the medium for both strains of G. fujikuroi tested but in the free cell fermentation 44% was excreted for strain ACC 917 and only 10% for strain GF1a. Gibberellin and bikaverin could be produced in a semi-continuous fashion with both free and immobilized cells for a period of 16 d in a resuspension medium containing 0.12 mM or 0.60 mM ammonium chloride. No definite advantage, on a productivity basis, for using immobilized cells over free cells could be seen. 相似文献
9.
Comparative Effects of Substituted Pyrimidines on Growth and Gibberellin Biosynthesis in Gibberella fujikuroi 总被引:1,自引:1,他引:1 下载免费PDF全文
The fungicide α-(2,4-dichlorophenyl)-α-phenyl-5-pyrimidine methyl alcohol (triarimol) and four other structural analogs of this substance, in which one or more of the substituents were varied, were tested for their comparative effects on growth and gibberellin biosynthesis in the fungus Gibberella fujikuroi. Each of the five analogs tested was capable of inhibiting growth as measured by dry weight in 5-day-old cultures. Three of them [α-(2-chlorophenyl)-α-(4-chlorophenyl)-5-pyrimidine methyl alcohol, fenarimol; α-(2-chlorophenyl)-α-(4-fluorophenyl)-5-pyrimidine methyl alcohol, nuarimol; and triarimol] were effective at appreciably lower concentrations than the other two [α-(4-chlorophenyl)-α-(1-methylethyl)-5-pyrimidine methyl alcohol, experimental compound EL 509; and α-cyclopropyl-α-(4-methoxyphenyl)-5-pyrimidine methyl alcohol, ancymidol]. 相似文献
10.
Abstract Carotenoid biosynthesis is photoinducible in Gibberella fujikuroi , an organism used in the fermentive production of the gibberellins. The light exposed needed for an appreciable response is higher than those required for other fungi, such as Fusarium aquaeductuum and Neurospora crassa , under identical conditions. Time course of the accumulation of carotenoids is very similar to that for Fusarium aquaeductuum . Growth in one of the culture media used increases the carotenoid content in the dark but does not affect photoinduction. Three mutants with enhanced carotenoid synthesis in the dark show the same response to light as the wild-type. Our results suggest that photoinduction of carotenogenesis in Gibberella fujikori is independent of the carotenoid content already present in dark-grown cultures. 相似文献
11.
Summary In Gibberella fujikuroi, ammonium (NH4
+) interfered with the production of gibberellic acid (GA3). Optimal production occurred at 19 mm (NH4)2SO4 and the synthesis of GA3 was reduced threefold in a medium with 38 mm (NH4)2SO4. Using a resting cell system with mycelia previously grown on two concentrations (19 mm and 38 mm) of (NH4)2SO4, it was found that NH4
+ depressed synthesis of the gibberellin-synthesizing enzymes. Furthermore, addition of NH4
+ to a producing system shut off gibberellin formation, indicating that the negative effect of NH4
+ ions is also due to inhibition of one or more enzymes in the gibberellin biosynthesis pathway. The onset of gibberellin biosynthesis in media with high (38 mm) and low (19 mm) concentrations of (NH4)2SO4 was studied by addition of cycloheximide to batch cultures of various ages.
Offprint requests to: B. Brückner 相似文献
12.
The distribution of galactose oxidase was investigated among microorganisms. Gibberella fujikuroi excreted a large amount of the enzyme into the culture medium. A study of the cultural conditions of this organism for enzyme formation showed that galactose oxidase production required copper. Copper was found to play a role, not only in the conversion of apoenzyme to holoenzyme, but also in regulation of the biosynthesis of galactose oxidase protein. 相似文献
13.
Noboru Murofushi Masahiro Sugimoto Kunio Itoh Nobutaka Takahashi 《Bioscience, biotechnology, and biochemistry》2013,77(10):2179-2185
Three novel gibberellins, GA54 (ent-1α, 3α, 10-trihydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone), GA55 (ent-1α, 3α, 10, 13-tetrahydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone) and GA56 (ent-2β, 3α, 10, 13-tetrahydroxy-20-norgibberell-16-ene-7, 19-dioic acid 19, 10-lactone) were shown to occur in the culture broth of Gibberella fujikuroi. Their structures were determined mainly by mass spectrometrical comparison of the derivatives with those of authentic compounds prepared from known gibberellins. 相似文献
14.
Noboru Murofushi 《Bioscience, biotechnology, and biochemistry》2013,77(4):1087-1088
A novel arseno-sugar was isolated from the brown alga Sargassum thunbergii. Instead of the dimethylarsinoyl group reported for algal arseno-sugars, this has a tri-methylarsonium group, which is borne by arsenobetaine, a ubiquitous organoarsenic compound in marine animals. This may be an intermediate between arseno-sugars and arsenobetaine. 相似文献
15.
The P450-4 Gene of Gibberella fujikuroi Encodes ent-Kaurene Oxidase in the Gibberellin Biosynthesis Pathway 总被引:1,自引:0,他引:1 下载免费PDF全文
Bettina Tudzynski Peter Hedden Esther Carrera Paul Gaskin 《Applied microbiology》2001,67(8):3514-3522
At least five genes of the gibberellin (GA) biosynthesis pathway are clustered on chromosome 4 of Gibberella fujikuroi; these genes encode the bifunctional ent-copalyl diphosphate synthase/ent-kaurene synthase, a GA-specific geranylgeranyl diphosphate synthase, and three cytochrome P450 monooxygenases. We now describe a fourth cytochrome P450 monooxygenase gene (P450-4). Gas chromatography-mass spectrometry analysis of extracts of mycelia and culture fluid of a P450-4 knockout mutant identified ent-kaurene as the only intermediate of the GA pathway. Incubations with radiolabeled precursors showed that the metabolism of ent-kaurene, ent-kaurenol, and ent-kaurenal was blocked in the transformants, whereas ent-kaurenoic acid was metabolized efficiently to GA4. The GA-deficient mutant strain SG139, which lacks the 30-kb GA biosynthesis gene cluster, converted ent-kaurene to ent-kaurenoic acid after transformation with P450-4. The B1-41a mutant, described as blocked between ent-kaurenal and ent-kaurenoic acid, was fully complemented by P450-4. There is a single nucleotide difference between the sequence of the B1-41a and wild-type P450-4 alleles at the 3′ consensus sequence of intron 2 in the mutant, resulting in reduced levels of active protein due to a splicing defect in the mutant. These data suggest that P450-4 encodes a multifunctional ent-kaurene oxidase catalyzing all three oxidation steps between ent-kaurene and ent-kaurenoic acid. 相似文献
16.
赤霉菌分子生物学研究进展 总被引:7,自引:0,他引:7
过去 1 0年中 ,由于基因克隆、遗传转化等分子生物学方法与技术的应用 ,对赤霉菌中赤霉素生物合成基因的克隆、鉴定、异源表达及其表达调控等分子生物学研究取得了很大进展。现从赤霉菌的转化系统、赤霉素生物合成基因克隆、合成机理及其基因表达调控等方面的研究进展进行综述 相似文献
17.
Hisakazu Yamane Noboru Murofushi Nobutaka Takahashi 《Bioscience, biotechnology, and biochemistry》2013,77(1):207-210
A novel metabolite from Gibberella fujikuroi was isolated and its structure was elucidated as 4β,7β-dihydroxy-18-norkaurenolide (I). 相似文献
18.
《Phytochemistry》1987,26(7):1931-1934
The microbiological transformation of ent-kaur-15-ene and of some derivatives by Gibberella fujikuroi into the gibberell-15-ene analogues of GA3, GA7, GA13 and GA16 and into 7,18-dihydroxykaur-15-enolide and the Δ15-isomer of fujenal is described. 相似文献
19.
Jos Edmundo Nava Saucedo Jean-Noël Barbotin Daniel Thomas 《Applied microbiology》1989,55(9):2377-2384
Constraints created by immobilization conditions modified the physiological behavior and morphological characteristics of Gibberella fujikuroi mycelia in comparison with their development in free-cell conditions. G. fujikuroi mycelia were immobilized in different support matrices (polyurethane, carrageenan, and alginate) and showed a variety of reactions in response to the different microenvironmental factors encountered during and after immobilization. The best support with respect to gibberellic acid yield and biocatalyst stability was found to be an alginate with a high degree of polymerization. The most visible effects of immobilization included changes in growth development, morphological appearance, metabolite production, mycelial pigmentation, mycelial viability under starvation conditions, and induction of resting forms when previously immobilized mycelia were subcultured. 相似文献
20.
Deletions in the Gibberellin Biosynthesis Gene Cluster of Gibberella fujikuroi by Restriction Enzyme-Mediated Integration and Conventional Transformation-Mediated Mutagenesis 总被引:4,自引:0,他引:4 下载免费PDF全文
Pia Linnemannstns Thorsten Voß Peter Hedden Paul Gaskin Bettina Tudzynski 《Applied microbiology》1999,65(6):2558-2564
We induced mutants of Gibberella fujikuroi deficient in gibberellin (GA) biosynthesis by transformation-mediated mutagenesis with the vector pAN7-1. We recovered 24 GA-defective mutants in one of nine transformation experiments performed without the addition of a restriction enzyme. Each mutant had a similar Southern blot pattern, suggesting the integration of the vector into the same site. The addition of a restriction enzyme by restriction enzyme-mediated integration (REMI) significantly increased the transformation rate and the rate of single-copy integration events. Of 1,600 REMI transformants, two produced no GAs. Both mutants had multiple copies of the vector pAN7-1 and one had a Southern blot pattern similar to those of the 24 conventionally transformed GA-deficient mutants. Biochemical analysis of the two REMI mutants confirmed that they cannot produce ent-kaurene, the first specific intermediate of the GA pathway. Feeding the radioactively labelled precursors ent-kaurene and GA12-aldehyde followed by high-performance liquid chromatography and gas chromatography-mass spectrometry analysis showed that neither of these intermediates was converted to GAs in the mutants. Southern blot analysis and pulsed-field gel electrophoresis of the transformants using the bifunctional ent-copalyl diphosphate/ent-kaurene synthase gene (cps/ks) and the flanking regions as probes revealed a large deletion in the GA-deficient REMI transformants and in the GA-deficient transformants obtained by conventional insertional transformation. We conclude that transformation procedures with and without the addition of restriction enzymes can lead to insertion-mediated mutations and to deletions and chromosome translocations. 相似文献