首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Degradation and utilization of exogenous allantoin by intact soybean root   总被引:1,自引:0,他引:1  
Allantoin is produced by soybean [ Glycine max (L.) Merr. cv. Harper] nodules during nitrogen fixation. Decomposed nodules, therefore, may release allantoin into the surrounding soil. If the released allantoin were to be taken up by the plant without degradation, it is possible that the exogenous allantoin might repress subsequent nodulation. Using a hydroponic growth system, degradation of exogenous allantoin by soybean root was studied. In the presence of intact soybean root exogenous allantoin was rapidly degraded, yielding ca 2 mmol of urea per mmol of allantoin. Hydrolysis of urea to ammonia proceeded very slowly. Instead, the urea seemed to be taken up by the intact soybean root. The enzyme(s) required for the production of urea from exogenous allantoin could not be detected in the aqueous rooting medium. Therefore, these enzymes seem to be attached to the exterior surface of the intact soybean root. This study shows that exogenous allantoin can be readily degraded and assimilated by the growing soybean plant.  相似文献   

2.
Blue Sepharose affinity chromatography was used to study the distribution of the constitutive NAD(P)H-nitrate reductase (EC 1.6.6.2: Cl-NR) and of the constitutive and inducible NADH-nitrate reductases (EC 1.6.6.1; C2-NR and i-NR, respectively), in the unifoliolate leaf (F0), the first and the second trifoliolate leaves (F1 and F2) and the roots of urea- and nitrate-grown soybean ( Glycine max [L.] Merr.) plants. The C1-NR eluted by NADPH is present in the F0 and F1 leaves and nearly absent in the F2 leaf. The activity pattern of this isoform is not modified by nitrate nutrition. The C2-NR eluted by NADH is high in the F0 leaf, low in the F1 leaf and nearly absent in the F2 leaf of urea-grown plants. The NADH elution from leaves of nitrate-grown plants is a mixture of C2-NR and i-NR, requiring careful interpretation of results. However, i-NR appears the principal isoform in the leaves especially in the F2 leaf. This i-NR is the only NR present in the roots.
The pH effect on the assay of the 3 partially purified isoforms was studied using LNR2 and LNR5 soybean mutants to remove the cross contamination. It appears that C1-NR and C2-NR activities are negligible at pH 8.5, which allows the assay of only the i-NR in a crude extract at this pH, even when C1-NR and C2-NR are present. It appears also that the assay of C1-NR activity at pH 6.5 with NADPH is free of interference by the i-NR. To estimate the C2-NR activity with NADH at pH 6.5 in a crude extract in the presence of C1-NR and i-NR, we propose a simple calculation using the coefficient from the pH responses. These calculations are used to compare the development of C1-NR, C2-NR and i-NR activities in the F0 and F1 leaves of plants previously grown on urea and transferred to nitrate. Only the activity of the inducible isoform is modified by the nitrogen treatment. Activity of the constitutive isofroms appear stable during the 48 h treatment, with only a slight decrease in C1-NR activity being observed with time.  相似文献   

3.
Diurnal patterns of net NO3 uptake by nonnodulated soybean [ Glycine max (L.) Merr. cv. Ransom] plants growing in flowing hydroponic culture at 26 and 16°C root temperatures were measured at hourly intervals during alternate days of a 12-day growth period. Ion chromatography was used to determine removal of NO3 from the culture solution. Day and night periods of 9 and 15 h were used during growth. The night period included two 6-h dark periods and an intervening 3-h period of night interruption by incandescent lamps to effect a long-day photoperiod and repress floral initiation. At both root temperatures, the average specific rates of NO3 uptake were twice as great during the night interruption period as during the day period; they were greater during the day period than during the dark periods; and they were greater during the dark period immediately following the day period than during the later dark period that followed the night interruption. While these average patterns were repetitious among days, measured rates of uptake varied hourly and included intervals of net efflux scattered through the day period and more frequently through the 2 dark periods. Root temperature did not affect the average daily specific rates of uptake or the qualitative relationships among day, dark and night interruption periods of the diurnal cycle.  相似文献   

4.
A field experiment was conducted to determine the effects of light intensity and nitrate nutrition on soybean (Glycine max (L) Merr.) root growth and development. Relative growth rates, total, root and nodule dry weights, and the rates of increase in the number of roots indicated that nitrogen fixation limited growth relative to that achieved with nitrate and that the response to nitrate increases with light intensity and varies with plant age. Nitrate increased with rate of taproot extension but light intensity had no effect.  相似文献   

5.
Ten of 11 supernodulating mutants of soybean [ Glycine max (L.) Merr.] cv. Bragg, in which nodulation was far in excess of that in the wild type, showed pronounced tolerance of nodulation to applied nitrate. Mutant nts (nitrate-tolerant symbiosis) 1116 had an intermediate nodulation response and also showed some inhibition by nitrate. Mutant 1029, a revertant of nts382 (an extreme supernodulator), showed a wild-type nodulation pattern and was equally sensitive to nitrate as cv. Bragg. Grafting experiments with cv. Bragg and nts382 indicated that both supernodulation and tolerance of nodulation to nitrate were dependent on shoot factors. Total leaf nitrate reductase (EC 1.6.6.1 and EC 1.6.6.2) activity of the supernodulating mutants was similar to that in cv. Bragg. We conclude from these results that the inhibitory effect of nitrate on nodule initiation and development in soybean depends on an interaction between nitrate and the autoregulation singal. In the supernodulating mutants, the autoregulation signal is either altered or absent and cosequently nodulation in these mutants is not sensitive to nitrate.  相似文献   

6.
BACKGROUND AND AIMS: Flooding results in hypoxia of the root system to which N2 fixation of nodulated roots can be especially sensitive. Morphological adaptions, such as aerenchyma formation, can facilitate the diffusion of oxygen to the hypoxic tissues. Using soybean, the aim of the study was to characterize the morphological response of the nodulated root system to flooding and obtain evidence for the recovery of N metabolism. METHODS: Sections from submerged tissues were observed by light microscopy, while sap bleeding from the xylem was analysed for nitrogenous components. KEY RESULTS: Flooding resulted in the rapid formation of adventitious roots and aerenchyma between the stem (immediately above the water line), roots and nodules. In the submerged stem, taproot, lateral roots and adventitious roots, lysigenous aerenchyma arose initially in the cortex and was gradually substituted by secondary aerenchyma arising from cells derived from the pericycle. Nodules developed aerenchyma from cells originating in the phellogen but nodules situated at depths greater than 7-8 cm showed little or no aerenchyma formation. As a result of aerenchyma formation, porosity of the taproot increased substantially between the 4th and 7th days of flooding, coinciding with the recovery of certain nitrogenous products of N metabolism of roots and nodules transported in the xylem. Thus, on the first day of flooding there was a sharp decline in xylem ureides and glutamine (products of N2 fixation), together with a sharp rise in alanine (product of anaerobic metabolism). Between days 7 and 10, recovery of ureides and glutamine to near initial levels was recorded while recovery of alanine was partial. CONCLUSIONS: N metabolism of the nodulated soybean root system can recover at least partially during a prolonged period of flooding, a process associated with aerenchyma formation.  相似文献   

7.
8.
Abstract. The effects of norflurazon (San 9789) on light-increased extractable NADH nitrate reductase activity (NRA) in soybean seedlings were studied. Continuous white light (W) increased NRA steadily in root and cotyledonary tissues over a 5 d period. Morflurazon, a pyridazinone herbicide which causes chlorophyll bleaching in W, reduced the initial NRA induction rate in roots and cotyledons. However, in cotyledons of norfiurazon-treated plants NRA increased at a more rapid rate than in the control after 24 h of W, with activity levels reaching three times those of control seedlings after 5 d. NRA induced by W in control and norflurazon-treated cotyledons was fluence-rate dependent. Continuous FR induced equal amounts of NRA in control and norflurazontreated tissues, suggesting that the superinduceable NRA of norflurazon-treated plants under W is not phytochrome induced. The FR-induced NRA of control and norflurazon-treated cotyledons had pH optima of 6.6, but during development under W the pH optimum of control cotyledons changed from 6.3 to between 6.6 and 7.1. The pH optimum of the norflurazon-induced NRA of the cotyledon under W was about 7.5. The NADH/NADPH NRA ratio after 4 d of W was 1.3 in control and 2.5 in norflurazontreated cotyledons. These data indicate that photosynthelic pigments are involved only secondarily in light-induction of NRA in this system.  相似文献   

9.
The effect of nitrate availability on characteristics of the nitrate assimilatory system was investigated in N-limited barley (Hordeum valgare L. cv. Golf), grown with the seminal root system split into initially equal-sized halves. The cultures were continuously supplied with nitrate-N at a relative addition rate (RA) of 0.09 day?1, which resulted in relative growth rates (RG) that were ca 85% of those observed under surplus nitrate nutrition. The total N addition was divided between the subroots in ratios of 100:0, 80:20, 70:30, 60:40, and 50:50. For comparison, standard cultures were grown at RAs ranging from 0.03 to 0.18 day?1. Initially, biomass and N partitioning to the subroots responded strongly and proportionally to the nitrate distribution ratio. After 12-14 days no further effect was observed. The Vmax for net nitrate uptake and in vitro nitrate reductase (NR) activity were measured in acclimated plants, i.e., after > 14 days under a certain nitrate regime. In subroots fed from 20 to 100% of the total N addition, Vmax for net nitrate uptake increased slightly, whereas NR activity was unaffected. Uptake and NR activities were insignificant in the 0%-subroot. Uneven nitrate supply to individual subroots had negligible effect on the whole-plant ability for nitrate uptake, and the relative Vmax (unit N taken up per unit N in whole plant tissue and time) remained about 7-fold in excess of the demand set by growth. Balancing nitrate concentrations (the resulting external nitrate concentrations at a certain RA) generally ranged between 2 and 10 μM at growth-limiting RA, both when predicted from uptake kinetics and when actually measured. When comparing split root and standard cultures when acclimated, it appears that uptake and NR activities in roots respond more strongly to over-all nitrate availability than to nitrate availability to individual subroots.  相似文献   

10.
Responses to sucrose and glutamine by soybean embryos grown in vitro   总被引:2,自引:0,他引:2  
Immature soybean (Glycine max [L.] Merr. cv. Ransom) embryos were grown in vitro in the presence of different concentrations of sucrose and glutamine to examine how availability of carbohydrate and nitrogen affects dry matter accumulation and embryo composition. Embryos were transferred to fresh medium every 4 days to maintain sucrose and glutamine concentrations of the culture medium. In all experiments, accumulation of dry matter and protein content increased when the sucrose concentration of the culture medium was increased from 1.5 to 150 mM: however, a relatively greater enhancement of dry matter than of protein accumulation resulted in a lower protein concentration at 150 than at 1.5 mM sucrose. Both content and concentration of protein were increased by the increases in glutamine supply to concentrations exceeding 68% protein at 120 mM glutamine. In combination with 150 mM sucrose, however, oil increased as glutamine supply was increased from 0.6 to 6 mM and then decreased as glutamine supply was increased from 6 lo 120 mM. Varying the concentration of sucrose available during seed development also affected embryo composition. Decreased availability of sucrose during either the early or late portion of the culture period resulted in lower accumulation of dry mailer as well as oil. Protein concentration was actually higher for embryos transferred from 150 to 1.5 nM sucrose than for those remaining in 150 mM throughout the culture period: however, the greater percentage of protein was due lo a decrease in accumulation of dry weight. In addition, embryo composition was affected by altering the availability of glutamine during culture, indicating that variation in the level of nitrogen assimilate delivered during seed development can change embryo composition. Decreasing the glutamine concentration of the medium lowered both protein and oil content. In contrast, increasing the glutamine concentration of the medium from 0.6 to 6 mM 8 days after initiation of culture increased the protein content and concentration of the embryo while oil content was not affected.  相似文献   

11.
Growth chamber studies were conducted to assess the relationship between nitrate reductase (NR) activity and development of chlorate (KClO3) toxicity symptoms in leaflets of soybeans [Glycine max (L.) Merr.]. Fourteen day-old soybean seedlings, grown in NO3 - or urea-nutrient solutions, were exposed to various KClO3 concentrations (0 to 2.0 mM) and light levels (100, 67, 33 and 0% of full light which was 750 μE m?2s?1) for 24 h. Visual KClO3 toxicity symptoms were noted and NR activity was measured. Toxicity symptoms (interveinal chlorosis) were evident within 24 h following addition of 0.5 mM KClO3 to the nutrient solution, regardless of N nutrition, and symptom severity increased with increased KClO3 concentration (up to 2.0 mM). Leaflet NR activity was lower following 24 h KClO3 treatments at concentrations of 0.5 mM and higher, indicating that ClO3 - or some reduction product of ClO3 - likely ClO2 - was detrimental to enzyme functionality. The light study supported involvement of NR activity in KClO3 toxicity in that comparison of control and KClO3 treated plants exposed to decreased light levels revealed a decrease in NR activity of control plants parallel to a decrease in severity of KClO3 toxicity symptoms of treated plants. Urea-grown plants, which have an apparent constitutive NR enzyme, were used to verify that the KClO3 toxicity symptoms were not simply N starvation symptoms due to competition of ClO3 - and NO3 - for uptake and reduction. In vivo NR assays also ruled out that ClO3 - was decreasing NR activity through competition with NO3 - for reduction sites. The close relationship between KClO3 toxicity symptoms and NR activity, in response to light treatments, suggested that KClO3 toxicity symptoms were associated with reduction of ClO3 - to ClO2 - by the NR enzyme. However, the possibility that a more direct photochemical reaction occurred in the presence of KClO3 to produce the toxicity symptoms could not be ruled out.  相似文献   

12.
Barley (Hordeum vulgare L. cv. Golf) was cultured using the relative addition rate technique, where nitrogen is added in a fixed relation to the nitrogen already bound in biomass. The relative rate of total nitrogen addition was 0.09 day?1 (growth limiting by 35%), while the nitrate addition was varied by means of different nitrate: ammonium ratios. In 3- to 4-week-old plants, these ratios of nitrate to ammonium supported nitrate fluxes ranging from 0 to 22 μmol g?1 root dry weight h?1, whereas the total N flux was 21.8 ± 0.25 μmol g?1 root dry weight h?1 for all treatments. The external nitrate concentrations varied between 0.18 and 1.5 μM. The relative growth rate, root to total biomass dry weight ratios, as well as Kjeldahl nitrogen in roots and shoots were unaffected by the nitrate:ammonium ratio. Tissue nitrate concentration in roots were comparable in all treatments. Shoot nitrate concentration increased with increasing nitrate supply, indicating increased translocation of nitrate to the shoot. The apparent Vmax for net nitrate uptake increased with increased nitrate fluxes. Uptake activity was recorded also after growth at zero nitrate addition. This activity may have been induced by the small, but detectable, nitrate concentration in the medium under these conditions. In contrast, nitrate reductase (NR) activity in roots was unaffected by different nitrate fluxes, whereas NR activity in the shoot increased with increased nitrate supply. NR-mRNA was detected in roots from all cultures and showed no significant response to the nitrate flux, corroborating the data for NR activity. The data show that an extremely low amount of nitrate is required to elicit expression of NR and uptake activity. However, the uptake system and root NR respond differentially to increased nitrate flux at constant total N nutrition. It appears that root NR expression under these conditions is additionally controlled by factors related to the total N flux or the internal N status of the root and/or plant. The method used in this study may facilitate separation of nitrate-specific responses from the nutritional effect of nitrate.  相似文献   

13.
Previous reports have indicated positive effects of enriched rhizosphere dissolved inorganic carbon on the growth of salinity-stressed tomato (Lycopersicon esculentum L. Mill. cv. F144) plants. In the present work we tested whether a supply of CO2 enriched air to the roots of hydroponically grown tomato plants had an effect on nitrogen uptake in these plants. Uptake was followed over periods of 6 to 12 hours and measured as the depletion of nitrogen from the nutrient solution aerated with either ambient or CO2 enriched air. Enriched rhizosphere CO2 treatments (5000 μmol mol-1) increased NO3 - uptake up to 30% at pH 5.8 in hydroponically grown tomato plants compared to control treatments aerated with ambient CO2 (360 μmol mol-1). Enriched rhizosphere CO2 treatments had no effect on NH3 + uptake. Acetazolamide, an inhibitor of apoplastic carbonic anhydrase, increased NO3 - uptake in ambient rhizosphere CO2 treatments, but had no effect on NO3 - uptake in enriched rhizosphere CO2 treatments. Ethoxyzolamide, an inhibitor of both cytoplasmic and extracellular carbonic anhydrase, decreased NO3 - uptake in ambient rhizosphere CO2 treatments. In contrast, a CO2 enriched rhizosphere increased NO3 - uptake with ethoxyzolamide, although not to the same extent as in plants without ethoxyzolamide. It is suggested that a supply of enriched CO2 to the rhizosphere influenced NO3 - uptake through the formation of increased amounts of HCO3 - in the cytosol. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
Root growth as a function of ammonium and nitrate in the root zone   总被引:6,自引:1,他引:6  
We examined the effect of soil NH4+ and NO3? content upon the root systems of field-grown tomatoes, and the influence of constant, low concentrations of NH4+ or NO3? upon root growth in solution culture. In two field experiments, few roots were present in soil zones with low extractable NH4+ or NO3?; they increased to a maximum in zones having 2μg-N NO3? g?1 soil and 6 μg-N NO3= g?1 soil, but decreased in zones having higher NH4+ or NO3? levels. Root branching was relatively insensitive to available mineral nitrogen. Plants maintained in solution culture at constant levels of NH4+ or NO3?, had similar shoot biomass, but all root parameters – biomass, length, branching and area – were greater under NH4 nutrition than under NO3?. These results suggest that the size of root system depends on a functional equilibrium between roots and shoots (Brouwer 1967) and on the balance between soil NH4+ and NO3?.  相似文献   

15.
Seedlings of carob ( Ceratonia siliqua L. cv. Mulata) were grown in nutrient solution culture for 5 weeks, with or without nitrogen at different root temperatures (10, 16, 22, 30, 35 or 40deg;C) and with the air temperature kept between 20 and 24°C. The nitrogen was given as either ammonium or nitrate. At all root temperatures studied, nitrogen-depleted plants developed higher net uptake rates for nitrogen than plants grown in the presence of nitrogen. Temperature affected the kinetic parameters of nitrate uptake more than those of ammonium uptake. With increasing root temperature, the Km of ammonium uptake decreased, but to a lesser extent than the Km for nitrate. The increase in Vmax of ammonium uptake with temperature was also less noticeable than that for nitrate uptake. Ammonium and nitrate uptakes were inhibited in a similar way by respiratory or protein synthesis inhibitors. It may be noted that ammonium uptake in the presence of inhibitors at 40°C was higher than uptake at 10°C without inhibitors. Some similarities between the transport mechanisms for nitrate and ammonium are underlined in the present work. Components of both transport systems displayed saturation kinetics and depended on protein synthesis and energy. The following components of nitrate uptake were distinguished: (a) a passive net influx into the apparent free space; (b) a constitutive active uptake and (c) active uptake dependent on protein synthesis. We may similarly define three ammonium uptake systems: (a) a passive influx into the apparent free space; (b) passive diffusion uptake at high temperature and (c) active uptake dependent on protein synthesis. The possible role of the ratio between mechanism (c) and mechanism (b) as determinant of ammonium sensitivity is discussed.  相似文献   

16.
BACKGROUND AND AIMS: Most Vaccinium species have strict soil requirements for optimal growth, requiring low pH, high iron availability and nitrogen primarily in the ammonium form. These soils are limited and are often located near wetlands. Vaccinium arboreum is a wild species adapted to a wide range of soils, including high pH, low iron, and nitrate-containing soils. This broader soil adaptation in V. arboreum may be related to increased efficiency of iron or nitrate uptake compared with the cultivated Vaccinium species. METHODS: Nitrate, ammonium and iron uptake, and nitrate reductase (NR) and ferric chelate reductase (FCR) activities were compared in two Vaccinium species grown hydroponically in either nitrate or ammonia, with or without iron. The species studied were the wild V. arboreum and the cultivated V. corymbosum interspecific hybrid, which exhibits the strict soil requirements of most Vaccinium species. RESULTS: Ammonium uptake was significantly greater than nitrate uptake in both species, while nitrate uptake was greater in the wild species, V. arboreum, compared with the cultivated species, V. corymbosum. The increased nitrate uptake in V. arboreum was correlated with increased root NR activity compared with V. corymbosum. The lower nitrate uptake in V. corymbosum was reflected in decreased plant dry weight in this species compared with V. arboreum. Root FCR activity increased significantly in V. corymbosum grown under iron-deficient conditions, compared with the same species grown under iron-sufficient conditions or with V. arboreum grown under either iron condition. CONCLUSIONS: V. arboreum appears to be more efficient in acquiring nitrate compared with V. corymbosum, possibly due to increased NR activity and this may partially explain the wider soil adaptation of V. arboreum.  相似文献   

17.
The vascular anatomy of soybean nodules [Glycine max (L.) Merr.] suggests that export of solutes in the xylem should be dependent on influx of water in the phloem. However, after severing of stem xylem and phloem by shoot decapitation, export of ureides from nodules continued at an approximately linear rate for 5h. This result was obtained with decapitated roots remaining in the sand medium, but when roots were disturbed by removal from the rooting medium prior to shoot decapitation, export of ureides from nodules was greatly reduced. Stem exudate could not be collected from disturbed roots, indicating that flow in the root xylem had ceased. Thus, ureide export from nodules appeared to be dependent on a continuation of flow in the root xylem. When seedlings were fed a mixture of 3H2O and 14C-inulin for periods of 14–21 min, nodules had higher 3H/14C ratios than roots from which they were detached. The combined results are not consistent with the proposal that export of nitrogenous compounds from nodules is dependent on import of water via the phloem. The results do support the view that a portion of the water required for xylem export from soybean nodules is supplied via a symplastic route from root cortex to nodule cortex to the nodule vascular apoplast.  相似文献   

18.
19.
The effects of nitrate on nitrogenase (EC 1.18.2.1) activity of soybean ( Glycine max [L.] Merr) cv. Bragg and its supernodulating mutant derivative, nts382, were compared. A short-term nitrate treatment was used to allow effects on nitrogenase activity to be studied in the absence of effects on nodule growth and a low inoculum dose, which prevented supernodulation of nts382, was employed to test for any interaction between supernodulation and the magnitude of the effect of nitrate on nitrogenase activity. At the usual inoculum dose, nitrogenase activity, per g nocule, of nts382 was lower than that of Bragg and was proportionally less affected by nitrate. Decreasing the inoculum dose increased nitrogenase activity of nts382 and also the proportional decline in response to nitrate. The decline in the ureide conentration in xylem exudate in response to nitrate was proportionally similar to the decline in nitrogenase activity per plant. However, although nitrogenase activity per plant of nts382 was several-fold less than that of Bragg, the ureide flux rate (ureide concentration x xylem sap exudation rate), was not different. At the usual inodulum dose, the ureide content of the nocules, stems plus petioles and leaves of nts382 was greater than that of Bragg. Decreasing the inoculum dose reduced the ureide content of the nodules of nts382 but not of Bragg. Ureide degradative capacity of the leaves was the same for Bragg and nts382. Low activities of 5-phosphoribosyl pyrophosphate amidotransferase (EC 2.4.2.14) and glutamine synthetase (EC 6.3.1.2) in the nodules reflected the low nitrogenase activity of nts382.  相似文献   

20.
The first trifoliate of soybean was shaded when fully expanded, while the plant remained in high light; a situation representative for plants growing in a closed crop. Leaf mass and respiration rate per unit area declined sharply in the first few days upon shading and remained rather constant during the further 12 days of the shading treatment. Leaf nitrogen per unit area decreased gradually until the leaves were shed. Leaf senescence was enhanced by the shading treatment in contrast to control plants growing in low light. Shaded leaves on plants grown at low nutrient availability senesced earlier than shaded leaves on plants grown at high nutrient availability. The light saturated rate of photosynthesis decreased also gradually during the shading treatment, but somewhat faster than leaf N, whereas chlorophyll contents declined somewhat slower than leaf N.
Partitioning of N in the leaf over main photosynthetic functions was estimated from parameters derived from the response of photosynthesis to CO2. It appeared that the N exported from the leaf was more at the expense of compounds that make up photosynthetic capacity than of those involved in photon absorption, resulting in a change in partitioning of N within the photosynthetic apparatus. Photosynthetic nitrogen use efficiency increased during the shading treatment, which was for the largest part due to the decrease in leaf N content, to some extent to the decrease in respiration rate and only for a small part to change in partitioning of N within the photosynthetic apparatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号