首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Central venous pressure in humans during short periods of weightlessness   总被引:1,自引:0,他引:1  
Central venous pressure (CVP) was measured in 14 males during 23.3 +/- 0.6 s (mean +/- SE) of weightlessness (0.00 +/- 0.05 G) achieved in a Gulfstream-3 jet aircraft performing parabolic flight maneuvers and during either 60 or 120 s of +2 Gz (2.0 +/- 0.1 Gz). CVP was obtained using central venous catheters and strain-gauge pressure transducers. Heart rate (HR) was measured simultaneously in seven of the subjects. Measurements were compared with values obtained inflight at 1 G with the subjects in the supine (+1 Gx) and upright sitting (+1 Gz) positions, respectively. CVP was 2.6 +/- 1.5 mmHg during upright sitting and 5.0 +/- 0.7 mmHg in the supine position. During weightlessness, CVP increased significantly to 6.8 +/- 0.8 mmHg (P less than 0.005 compared with both upright sitting and supine inflight). During +2 Gz, CVP was 2.8 +/- 1.4 mmHg and only significantly lower than CVP during weightlessness (P less than 0.05). HR increased from 65 +/- 7 beats/min at supine and 70 +/- 5 beats/min during upright sitting to 79 +/- 7 beats/min (P less than 0.01 compared with supine) during weightlessness and to 80 +/- 6 beats/min (P less than 0.01 compared with upright sitting and P less than 0.001 compared with supine) during +2 Gz. We conclude that the immediate onset of weightlessness induces a significant increase in CVP, not only compared with the upright sitting position but also compared with the supine position at 1 G.  相似文献   

2.
We hypothesized that the more-pronounced hypotensive and bradycardic effects of an antiorthostatic posture change from seated to supine than water immersion are caused by hydrostatic carotid baroreceptor stimulation. Ten seated healthy males underwent five interventions of 15-min each of 1) posture change to supine, 2) seated water immersion to the Xiphoid process (WI), 3) seated neck suction (NS), 4) WI with simultaneous neck suction (-22 mmHg) adjusted to simulate the carotid hydrostatic pressure increase during supine (WI + NS), and 5) seated control. Left atrial diameter increased similarly during supine, WI + NS, and WI and was unchanged during control and NS. Mean arterial pressure (MAP) decreased the most during supine (7 +/- 1 mmHg, P < 0.05) and less during WI + NS (4 +/- 1 mmHg) and NS (3 +/- 1 mmHg). The decrease in heart rate (HR) by 13 +/- 1 beats/min (P < 0.05) and the increase in arterial pulse pressure (PP) by 17 +/- 4 mmHg (P < 0.05) during supine was more pronounced (P < 0.05) than during WI + NS (10 +/- 2 beats/min and 7 +/- 2 mmHg, respectively) and WI (8 +/- 2 beats/min and 6 +/- 1 mmHg, respectively, P < 0.05). Plasma vasopressin decreased only during supine and WI, and plasma norepinephrine, in addition, decreased during WI + NS (P < 0.05). In conclusion, WI + NS is not sufficient to decrease MAP and HR to a similar extent as a 15-min seated to supine posture change. We suggest that not only static carotid baroreceptor stimulation but also the increase in PP combined with low-pressure receptor stimulation is a possible mechanism for the more-pronounced decrease in MAP and HR during the posture change.  相似文献   

3.
Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter) and HR (ECG) were measured. Baroreflex sensitivity of HR was assessed by bolus intravenous infusion of phenylephrine at each workload. In both positions, HR was higher in the patients than the controls during exercise. Supine baroreflex sensitivity (HR/systolic pressure) in POTS patients was -1.3 +/- 0.1 beats.min(-1).mmHg(-1) at rest and decreased to -0.6 +/- 0.1 beats.min(-1).mmHg(-1) during 75-W exercise, neither significantly different from the controls (P > 0.6). In the upright position, baroreflex sensitivity in POTS patients at rest (-1.4 +/- 0.1 beats.min(-1).mmHg(-1)) was higher than the controls (-1.0 +/- 0.1 beats.min(-1).mmHg(-1)) (P < 0.05), and it decreased to -0.1 +/- 0.04 beats.min(-1).mmHg(-1) during 75-W exercise, lower than the controls (-0.3 +/- 0.09 beats.min(-1).mmHg(-1)) (P < 0.05). The reduced arterial baroreflex sensitivity of HR during upright exercise was accompanied by greater fluctuations in systolic and pulse pressure in the patients than in the controls with 56 and 90% higher coefficient of variations, respectively (P < 0.01). However, when baroreflex control of HR was corrected for differences in HR, it was similar between the patients and controls during upright exercise. These results suggest that the tachycardia during exercise in POTS was not due to abnormal baroreflex control of HR.  相似文献   

4.
The hypothesis was tested that cardiac output (CO) and stroke volume (SV) are increased by a moderate physiological elevation in sodium intake with a more pronounced effect in the ambulatory upright seated than supine position. Fourteen healthy males were investigated during ambulatory and controlled laboratory conditions at the end of two consecutive 5-day periods with sodium intakes of 70 (low) and 250 (high) mmol/24 h or vice versa, respectively. Comparing high and low sodium intake, plasma volume and plasma protein concentrations were 9 and 8% higher in the seated and the supine position, respectively. When seated during laboratory conditions, CO was 5.3 +/- 0.2 l/min on the high sodium intake vs. 4.8 +/- 0.2 l/min on the low (P < 0.05), and SV was 81 +/- 3 vs. 68 +/- 3 ml (P < 0.05). In the supine position, SV was 107 +/- 3 ml on the high vs. 99 +/- 3 ml (P < 0.05) on the low sodium intake, while CO remained unchanged. The difference in CO and SV induced by the change in sodium intake was significantly higher in the seated than in the supine position (P < 0.05). During upright ambulatory conditions, CO was 5.9 +/- 0.2 l/min during the high and 5.2 +/- 0.2 l/min during the low sodium intake (P < 0.05), and SV was 84 +/- 3 and 69 +/- 3 ml (P < 0.05), respectively. Mean arterial pressure was unchanged by the variations in sodium intake. In conclusion, increments in sodium intake within the normal physiological range increase CO and SV and more so in the seated vs. the supine position. These changes are readily detectable during upright, ambulatory conditions. The results indicate that the higher SV and CO could constitute an arterial baroreflex stimulus for the augmented renal sodium excretion.  相似文献   

5.
This study used alterations in body position to identify differences in hemodynamic responses to passive exercise. Central and peripheral hemodynamics were noninvasively measured during 2 min of passive knee extension in 14 subjects, whereas perfusion pressure (PP) was directly measured in a subset of 6 subjects. Movement-induced increases in leg blood flow (LBF) and leg vascular conductance (LVC) were more than twofold greater in the upright compared with supine positions (LBF, supine: 462 ± 6, and upright: 1,084 ± 159 ml/min, P < 0.001; and LVC, supine: 5.3 ± 1.2, and upright: 11.8 ± 2.8 ml·min?1 ·mmHg?1, P < 0.002). The change in heart rate (HR) from baseline to peak was not different between positions (supine: 8 ± 1, and upright: 10 ± 1 beats/min, P = 0.22); however, the elevated HR was maintained for a longer duration when upright. Stroke volume contributed to the increase in cardiac output (CO) during the upright movement only. CO increased in both positions; however, the magnitude and duration of the CO response were greater in the upright position. Mean arterial pressure and PP were higher at baseline and throughout passive movement when upright. Thus exaggerated central hemodynamic responses characterized by an increase in stroke volume and a sustained HR response combined to yield a greater increase in CO during upright movement. This greater central response coupled with the increased PP and LVC explains the twofold greater and more sustained increase in movement-induced hyperemia in the upright compared with supine position and has clinical implications for rehabilitative medicine.  相似文献   

6.
Shear rate is significantly lower in the superficial femoral compared with the brachial artery in the supine posture. The relative shear rates in these arteries of subjects in the upright posture (seated and/or standing) are unknown. The purpose of this investigation was to test the hypothesis that upright posture (seated and/or standing) would produce greater shear rates in the superficial femoral compared with the brachial artery. To test this hypothesis, Doppler ultrasound was used to measure mean blood velocity (MBV) and diameter in the brachial and superficial femoral arteries of 21 healthy subjects after being in the supine, seated, and standing postures for 10 min. MBV was significantly higher in the brachial compared with the superficial femoral artery during upright postures. Superficial femoral artery diameter was significantly larger than brachial artery diameter. However, posture had no significant effect on either brachial or superficial femoral artery diameter. The calculated shear rate was significantly greater in the brachial (73 +/- 5, 91 +/- 11, and 97 +/- 13 s(-1)) compared with the superficial femoral (53 +/- 4, 39 +/- 77, and 44 +/- 5 s(-1)) artery in the supine, seated, and standing postures, respectively. Contrary to our hypothesis, our current findings indicate that mean shear rate is lower in the superficial femoral compared with the brachial artery in the supine, seated, and standing postures. These findings of lower shear rates in the superficial femoral artery may be one mechanism for the higher propensity for atherosclerosis in the arteries of the leg than of the arm.  相似文献   

7.
Effect of position and lung volume on upper airway geometry   总被引:7,自引:0,他引:7  
The occurrence of upper airway obstruction during sleep and with anesthesia suggests the possibility that upper airway size might be compromised by the gravitational effects of the supine position. We used an acoustic reflection technique to image airway geometry and made 180 estimates of effective cross-sectional area as a function of distance along the airway in 10 healthy volunteers while they were supine and also while they were seated upright. We calculated z-scores along the airway and found that pharyngeal cross-sectional area was smaller in the supine than in the upright position in 9 of the 10 subjects. For all subjects, pharyngeal cross-sectional area was 23 +/- 8% smaller in the supine than in the upright position (P less than or equal to 0.05), whereas glottic and tracheal areas were not significantly altered. Because changing from the upright to the supine position causes a decrease in functional residual capacity (FRC), six of these subjects were placed in an Emerson cuirass, which was evacuated producing a positive transrespiratory pressure so as to restore end-expiratory lung volume to that seen before the position change. In the supine posture an increase in end-expiratory lung volume did not change the cross-sectional area at any point along the airway. We conclude that pharyngeal cross-sectional area decreases as a result of a change from the upright to the supine position and that the mechanism of this change is independent of the change in FRC.  相似文献   

8.
Sympathetic adaptations to one-legged training.   总被引:3,自引:0,他引:3  
The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.  相似文献   

9.
Reduced stroke volume during exercise in postural tachycardia syndrome.   总被引:1,自引:0,他引:1  
Postural tachycardia syndrome (POTS) is characterized by excessive tachycardia without hypotension during orthostasis. Most POTS patients also report exercise intolerance. To assess cardiovascular regulation during exercise in POTS, patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter), heart rate (HR; measured by ECG), and cardiac output (open-circuit acetylene breathing) were measured. In both positions, mean arterial pressure, cardiac output, and total peripheral resistance at rest and during exercise were similar in patients and controls (P > 0.05). However, supine stroke volume (SV) tended to be lower in the patients than controls at rest (99 +/- 5 vs. 110 +/- 9 ml) and during 75-W exercise (97 +/- 5 vs. 111 +/- 7 ml) (P = 0.07), and HR was higher in the patients than controls at rest (76 +/- 3 vs. 62 +/- 4 beats/min) and during 75-W exercise (127 +/- 3 vs. 114 +/- 5 beats/min) (both P < 0.01). Upright SV was significantly lower in the patients than controls at rest (57 +/- 3 vs. 81 +/- 6 ml) and during 75-W exercise (70 +/- 4 vs. 94 +/- 6 ml) (both P < 0.01), and HR was much higher in the patients than controls at rest (103 +/- 3 vs. 81 +/- 4 beats/min) and during 75-W exercise (164 +/- 3 vs. 131 +/- 7 beats/min) (both P < 0.001). The change (upright - supine) in SV was inversely correlated with the change in HR for all participants at rest (R(2) = 0.32), at 25 W (R(2) = 0.49), 50 W (R(2) = 0.60), and 75 W (R(2) = 0.32) (P < 0.01). These results suggest that greater elevation in HR in POTS patients during exercise, especially while upright, was secondary to reduced SV and associated with exercise intolerance.  相似文献   

10.
During prolonged, static carotid baroreceptor stimulation by neck suction (NS) in seated humans, heart rate (HR) decreases acutely and thereafter gradually increases. This increase has been explained by carotid baroreceptor adaptation and/or buffering by aortic reflexes. During a posture change from seated to supine (Sup) with similar carotid stimulation, however, the decrease in HR is sustained. To investigate whether this discrepancy is caused by changes in central blood volume, we compared (n = 10 subjects) the effects of 10 min of seated NS (adjusted to simulate carotid stimulation of a posture change), a posture change from seated to Sup, and the same posture change with left atrial (LA) diameter maintained unchanged by lower body negative pressure (Sup + LBNP). During Sup, the prompt decreases in HR and mean arterial pressure (MAP) were sustained. HR decreased similarly within 30 s of NS (65 +/- 2 to 59 +/- 2 beats/min) and Sup + LBNP (65 +/- 2 to 58 +/- 2 beats/min) and thereafter gradually increased to values of seated. MAP decreased similarly within 5 min during Sup + LBNP and NS (by 7 +/- 1 to 9 +/- 1 mmHg) and thereafter tended to increase toward values of seated subjects. Arterial pulse pressure was increased the most by Sup, less so by Sup + LBNP, and was unchanged by NS. LA diameter was only increased by Sup. In conclusion, static carotid baroreceptor stimulation per se causes the acute (<30 s) decrease in HR during a posture change from seated to Sup, whereas the central volume expansion (increased LA diameter and/or arterial pulse pressure) is pivotal to sustain this decrease. Thus the effects of central volume expansion override adaptation of the carotid baroreceptors and/or buffering of aortic reflexes.  相似文献   

11.
The hypothesis was tested that changing the direction of the transverse gravitational stress in horizontal humans modulates cardiovascular and renal variables. On different study days, 14 healthy males were placed for 6 h in either the horizontal supine or prone position following 3 h of being supine. Eight of the subjects were in addition investigated in the horizontal left lateral position. Compared with supine, the prone position slightly increased free water clearance (349 +/- 38 vs. 447 +/- 39 ml/6 h, P = 0.05) and urine output (1,387 +/- 55 vs. 1,533 +/- 52 ml/6 h, P = 0.06) with no statistically significant effect on renal sodium excretion (69 +/- 3 vs. 76 +/- 5 mmol/6 h, P = 0.21). Mean arterial pressure and left atrial diameter were similar comparing effects of supine with prone. The prone position induced an increase in heart rate (54 +/- 2 to 58 +/- 2 beats/min, P < 0.05), total peripheral vascular resistance (13 +/- 1 to 16 +/- 1 mmHg. min(-1). l(-1), P < 0.05), forearm venous plasma concentration of norepinephrine (97 +/- 9 to 123 +/- 16 pg/ml, P < 0.05), and atrial natriuretic peptide (49 +/- 4 to 79 +/- 12 pg/ml, P < 0.05), whereas stroke volume decreased (122 +/- 5 to 102 +/- 3 ml, P < 0.05, n = 6). The left lateral position had no effect on renal variables, whereas left atrial diameter increased (32 +/- 1 to 35 +/- 1 mm, P < 0.05) and mean arterial pressure decreased (90 +/- 2 to mean value of 85 +/- 2 mmHg, P < 0.05). In conclusion, the prone position reduced stroke volume and increased sympathetic nervous activity, possibly because of mechanical compression of the thorax with slight impediment of arterial filling. The mechanisms of the slightly augmented urine output in prone position require further experimentation.  相似文献   

12.
The purpose of this study was to examine the effects of the increased sympathetic activity elicited by the upright posture on blood flow to exercising human forearm muscles. Six subjects performed light and heavy rhythmic forearm exercise. Trials were conducted with the subjects supine and standing. Forearm blood flow (FBF, plethysmography) and skin blood flow (laser Doppler) were measured during brief pauses in the contractions. Arterial blood pressure and heart rate were also measured. During the first 6 min of light exercise, blood flow was similar in the supine and standing positions (approximately 15 ml.min-1.100 ml-1); from minutes 7 to 20 FBF was approximately 3-7 ml.min-1.100 ml-1 less in the standing position (P less than 0.05). When 5 min of heavy exercise immediately followed the light exercise, FBF was approximately 30-35 ml.min-1.100 ml-1 in the supine position. These values were approximately 8-12 ml.min-1.100 ml-1 greater than those observed in the upright position (P less than 0.05). When light exercise did not precede 8 min of heavy exercise, the blood flow at the end of minute 1 was similar in the supine and standing positions but was approximately 6-9 ml.min-1.100 ml-1 lower in the standing position during minutes 2-8. Heart rate was always approximately 10-20 beats higher in the upright position (P less than 0.05). Forearm skin blood flow and mean arterial pressure were similar in the two positions, indicating that the changes in FBF resulted from differences in the caliber of the resistance vessels in the forearm muscles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The application of lower body negative pressure (LBNP) is very useful method for simulation of +Gz stress and for evaluation of orthostatic reaction. The different physiological changes that occur during LBNP test and +Gz acceleration test are similar. Lategola and Trent found that supine LBNP exposure at the level of -50 mmHg may be equivalent to +2Gz in producing the changes of heart rate (HR). Polese and coworkers compared hemodynamic changes occurring during upright and supine LBNP at the levels to -70 mmHg with identical measurements made during accelerations to +2Gz, +3Gz, and +4Gz in the same subjects. They noted for example that HR changes during upright LBNP exceeded HR supine levels. Peak values of HR during +3Gz and +4Gz significantly exceeded HR levels during both kinds of LBNP, but HR values at +2Gz were equivalent to those at -40 mmHg of upright and -70 mmHg of supine LBNP. So, the present study was undertaken to evaluate adaptating responses to LBNP stimulus at the level of -60 mmHg, regulatory mechanisms of the circulatory system (central and peripheral) and to look for the possibility of +Gz tolerance prediction based on the changes of some hemodynamic parameters during LBNP.  相似文献   

14.
After overnight food and fluid restriction, nine healthy males were examined before, during, and after lower body positive pressure (LBPP) of 11 +/- 1 mmHg (mean +/- SE) for 30 min and before, during, and after graded lower body negative pressure (LBNP) of -10 +/- 1, -20 +/- 2, and -30 +/- 2 mmHg for 20 min each. LBPP and LBNP were performed with the subject in the supine position in a plastic box encasing the subject from the xiphoid process and down, thus including the splanchnic area. Central venous pressure (CVP) during supine rest was 7.5 +/- 0.5 mmHg, increasing to 13.4 +/- 0.8 mmHg (P less than 0.001) during LBPP and decreasing significantly at each step of LBNP to 2.0 +/- 0.5 mmHg (P less than 0.001) at 15 min of -30 +/- 2 mmHg LBNP. Plasma arginine vasopressin (AVP) did not change significantly in face of this large variation in CVP of 11.4 mmHg. Mean arterial pressure increased significantly during LBPP from 100 +/- 2 to 117 +/- 3 Torr (P less than 0.001) and only at one point during LBNP of -30 +/- 2 mmHg from 102 +/- 1 to 115 +/- 5 mmHg (P less than 0.05). Heart rate did not change during LBPP but increased slightly from 51 +/- 3 to 55 +/- 3 beats/min (P less than 0.05) only at 7 min of LBNP of -30 +/- 2 mmHg. Plasma osmolality, sodium, and potassium did not change during the experiment. Hemoglobin concentration increased during LBPP and LBNP, whereas hematocrit only increased during LBNP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
The electromyographic activity of the diaphragm (EMGdi) and scalene muscle (EMGsc) was studied in the supine and upright positions, respectively, during hyperoxic progressive hypercapnic rebreathing (HCVR) in five healthy males. End-expiratory esophageal pressure (EEPes) was quantified on a breath-to-breath basis as a reflection of altered end-expiratory lung volume. There was no significant difference in the slopes of EMGdi, expressed as a percentage of maximum at total lung capacity vs. minute volume of ventilation (VI), between the supine and upright positions [0.79 +/- 0.05 (SE) vs. 0.92 +/- 0.17, respectively]. In contrast, the slope of the regression line relating EMGsc to VI was steeper in the upright than in the supine position (0.69 +/- 0.05 vs. 0.35 +/- 0.04, respectively; P less than 0.005). Positive EEPes at comparable VI at the ends of HCVRs were of greater magnitude upright than supine (3.27 +/- 0.68 vs. 4.35 +/- 0.60 cmH2O, respectively, P less than 0.001). We conclude that altering posture has a greater effect on scalene and expiratory muscle activity than on diaphragmatic activity during hypercapnic stimulation.  相似文献   

16.
Occasionally, lifting of a heavy weight leads to dizziness and even to fainting, suggesting that, especially in the standing position, expiratory straining compromises cerebral perfusion. In 10 subjects, the middle cerebral artery mean blood velocity (V(mean)) was evaluated during a Valsalva maneuver (mouth pressure 40 mmHg for 15 s) both in the supine and in the standing position. During standing, cardiac output decreased by 16 +/- 4 (SE) % (P < 0.05), and at the level of the brain mean arterial pressure (MAP) decreased from 89 +/- 2 to 78 +/- 3 mmHg (P < 0.05), as did V(mean) from 73 +/- 4 to 62 +/- 5 cm/s (P < 0.05). In both postures, the Valsalva maneuver increased central venous pressure by approximately 40 mmHg with a nadir in MAP and cardiac output that was most pronounced during standing (MAP: 65 +/- 6 vs. 87 +/- 3 mmHg; cardiac output: 37 +/- 3 vs. 57 +/- 4% of the resting value; P < 0.05). Also, V(mean) was lowest during the standing Valsalva maneuver (39 +/- 5 vs. 47 +/- 4 cm/s; P < 0.05). In healthy individuals, orthostasis induces an approximately 15% reduction in middle cerebral artery V(mean) that is exaggerated by a Valsalva maneuver performed with 40-mmHg mouth pressure to approximately 50% of supine rest.  相似文献   

17.
The interaction between opiate and adrenergic receptors on cardiac electrophysiologic function in the conscious dog was addressed in our study. We examined the effects of opiate receptor blockade with naloxone on clonidine-induced changes in refractoriness of the cardiac ventricle. Nine dogs were chronically instrumented for recording mean arterial blood pressure, administration of drugs and for measurement of effective refractory period of the ventricle. Clonidine (10 micrograms/kg, i.v.) significantly (p less than 0.05) decreased heart rate to 72 +/- 5 beats/minute from 108 +/- 8 beats/minute; mean arterial pressure decreased significantly (p less than 0.05) to 83 +/- 3 mmHg from 91 +/- 4 mmHg. Ventricular refractoriness was increased significantly (p less than 0.05) at current levels of 7 and 10 mA and pacing rates 180 and 200 beats/minute. Naloxone (3-10 mg/kg, i.v.) abolished clonidine's effects on heart rate, mean arterial pressure and ventricular refractoriness. We conclude that ventricular refractoriness may be regulated in part by interactions between central adrenergic and opioidergic systems.  相似文献   

18.
Role of cardiopulmonary baroreflexes during dynamic exercise   总被引:2,自引:0,他引:2  
To examine the role of cardiopulmonary (CP) mechanoreceptors in the regulation of arterial blood pressure during dynamic exercise in humans, we measured mean arterial pressure (MAP), cardiac output (Q), and forearm blood flow (FBF) during mild cycle ergometer exercise (77 W) in 14 volunteers in the supine position with and without lower-body negative pressure (LBNP). During exercise, MAP averaged 103 +/- 2 mmHg and was not altered by LBNP (-10, -20, or -40 mmHg). Steady-state Q during exercise was reduced from 10.2 +/- 0.5 to 9.2 +/- 0.5 l/min (P less than 0.05) by application of -10 mmHg LBNP, whereas heart rate (97 +/- 3 beats/min) was unchanged. MAP was maintained during -10 mmHg LBNP by an increase in total systemic vascular resistance (TSVR) from 10.3 +/- 0.5 to 11.4 +/- 0.6 U and forearm vascular resistance (FVR) from 17.5 +/- 1.9 to 23.3 +/- 2.6 U. The absence of a reflex tachycardia or reduction in arterial pulse pressure during -10 mmHg LBNP supports the hypothesis that the increase in TSVR and FVR results primarily from the unloading of CP mechanoreceptors. Because CP mechanoreceptor unloading during exercise stimulates reflex circulatory adjustments that act to defend the elevated MAP, we conclude that the elevation in MAP during exercise is regulated and not merely the consequence of differential changes in Q and TSVR. In addition, a major portion of the reduction in FBF in our experimental conditions occurs in the cutaneous circulation. As such, these data support the hypothesis that CP baroreflex control of cutaneous vasomotor tone is preserved during mild dynamic exercise.  相似文献   

19.
During an antiorthostatic posture change, left atrial (LA) diameter and arterial pulse pressure (PP) increase, and plasma arginine vasopressin (AVP) is suppressed. By comparing the effects of a 15-min posture change from seated to supine with those of 15-min seated negative pressure breathing in eight healthy males, we tested the hypothesis that with similar increases in LA diameter, suppression of AVP release is dependent on the degree of increase in PP. LA diameter increased similarly during the posture change and negative pressure breathing (-9 to -24 mmHg) from between 30 and 31 +/- 1 to 34 +/- 1 mm (P < 0.05). The increase in PP from 38 +/- 2 to 44 +/- 2 mmHg (P < 0.05) was sustained during the posture change but only increased during the initial 5 min of negative pressure breathing from 36 +/- 3 to 42 +/- 3 mmHg (P < 0.05). Aortic transmural pressure decreased during the posture change and increased during negative pressure breathing. Plasma AVP was suppressed to a lower value during the posture change (from 1.5 +/- 0.3 to 1.2 +/- 0.2 pg/ml, P < 0.05) than during negative pressure breathing (from 1.5 +/- 0.3 to 1.4 +/- 0.3 pg/ml). Plasma norepinephrine was decreased similarly during the posture change and negative pressure breathing compared with seated control. In conclusion, the results are in compliance with the hypothesis that during maneuvers with similar cardiac distension, suppression of AVP release is dependent on the increase in PP and, furthermore, probably unaffected by static aortic baroreceptor stimulation.  相似文献   

20.
1. In unanesthetized, minimally restrained three-toed sloths, Bradypus tridactylus, the mean arterial pressure was 125/85 mmHg and the heart rate was 83.6 beats/min. There was no significant difference between these parameters whether the animal was erect or supine in the experimental chair. 2. Animals without any restraint had a mean blood pressure of 133/87 mmHg and a heart rate of 78.1 beats/min. There was no significant difference between these parameters whether the animal was seated or suspended from a horizontal bar and there was no significant difference between the minimally restrained and the unrestrained animals. 3. Tilting from the erect to the supine position produced large increases in blood pressure parameters, 37% in systolic and 21% in diastolic, reaching the maximum effect in a mean time of 38 sec. Tilting from the supine to the erect position caused even greater increases in pressure, 43% and 38% respectively, and reaching the maximum also in a mean time of 38 sec. 4. Tilting initially increased the heart rate, in going from erect to supine by 21% in 16 sec and from supine to erect by 23% in 20 sec. 5. In going from erect to supine there was a reflex bradycardia later, 15% below control level with a maximum at 40 sec, and to a lesser degree in going from supine to erect, 9% with maximum at 50 sec.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号