首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Na+/solute symporters are essential membrane integrated proteins that couple the flow of Na+ ions driven by electrochemical Na+ gradients to the transport of solutes across biological membranes. Here, we used a combination of molecular modeling techniques and evolutionary conservation analysis to construct and validate a first model of the Na+/proline symporter PutP of Escherichia coli based on the crystal structure of the bacterial Na+/galactose symporter vSGLT. Ligand docking experiments were employed to gain information about residues involved in proline binding. The proposed model is consistent with the available experimental data and was further validated by amino acid substitutions and kinetic and protein chemical analyses. Combination of the results of molecular modeling and functional studies predicts the location and organization of the Na+ and proline binding sites. Remarkably, as proposed computationally and discovered here experimentally, residues Y140, W244, and Y248 of transmembrane segments 4 and 7 are found to be particularly important for PutP function and suggested to participate in proline binding and/or gating.  相似文献   

2.
M Quick  S St?lting  H Jung 《Biochemistry》1999,38(41):13523-13529
The Na+/proline transporter of Escherichia coli (PutP) is a member of a large family of Na+/solute symporters. To investigate the role of Arg residues which are conserved within this family, Arg40 at the cytoplasmic end of transmembrane domain (TM) II and Arg117 in cytoplasmic loop 4 of PutP are subjected to amino acid substitution analysis. Removal of the positive charge at position 40 (PutP-R40C, Q, E) leads to a dramatic decrease of the V(max) of Na(+)-coupled proline uptake (1-10% of PutP-wild-type). The reduced transport rates are accompanied by decreased apparent affinities of the transporter for Na+ and Li+ while the apparent affinity for proline is only slightly altered. Furthermore, single Cys PutP-R40C reacts with N-ethylmaleimide (NEM), and this reaction is partially inhibited by proline and more efficiently by Na+ ions. Remarkably, NEM modification of Cys40 inhibits Na(+)-driven proline uptake almost completely while facilitated influx of proline into deenergized cells is stimulated by this reaction, suggesting an at least partially uncoupled phenotype under these conditions. These results suggest that Arg40 is located close to the site of ion binding and is important for the coupling of ion and proline transport. The observations confirm the functional importance of TM II described in earlier studies [M. Quick and H. Jung (1997) Biochemistry 36, 4631-4636]. In contrast to Arg40, Arg117 is apparently not important for function of the mature protein. The low transport rates observed upon substitution of Arg117 (PutP-R117C, K, Q) can at least partially be attributed to reduced amounts of PutP in the membrane. However, once inserted into the membrane, PutP containing Arg117 replacements shows a stability comparable to the wild-type as indicated by pulse-chase experiments. These observations suggest that Arg117 plays a crucial role at a stage prior to complete functional insertion of PutP into the membrane, i. e., by stabilizing a folding intermediate.  相似文献   

3.
To elucidate the functional importance of transmembrane domain II in the Na(+)/proline transporter (PutP) of Escherichia coli we analyzed the effect of replacing Ser-54 through Gly-58. Substitution of Asp-55 or Met-56 dramatically reduces the apparent affinity for Na(+) and Li(+) in a cation-dependent manner. Conversely, Cys in place of Gly-58 significantly reduces only the apparent proline affinity while substitution of Ser-57 results in a dramatic reduction of the apparent proline and cation affinities. Interestingly, upon increasing the proline concentration the apparent Na(+) affinity of Ser-57 replacement mutants converges toward the wild-type value, indicating a close cooperativity between cation and substrate site(s). This notion is supported by the fact that Na(+)-stimulated site-specific fluorescence labeling of a single Cys at position 57 is completely reversed by the addition of proline. Similar results are obtained upon labeling of a Cys at position 54 or 58. Taken together, these results indicate that Asp-55 and Met-56 are located at or close to the ion-binding site while Ser-54, Ser-57, and Gly-58 may be close to the proline translocation pathway. In addition, the data prod at an involvement of the latter residues in ligand-induced conformational dynamics that are crucial for cation-coupled transport.  相似文献   

4.
The proton-pumping NADH:ubiquinone oxidoreductase, the respiratory complex I, couples the transfer of electrons from NADH to ubiquinone with the translocation of protons across the membrane. Electron microscopy revealed the two-part structure of the complex with a peripheral arm involved in electron transfer and a membrane arm most likely involved in proton translocation. It was proposed that the quinone binding site is located at the joint of the two arms. Most likely, proton translocation in the membrane arm is enabled by the energy of the electron transfer reaction in the peripheral arm transmitted by conformational changes. For the detection of the conformational changes and the localization of the quinone binding site, we set up a combination of site-directed spin labeling and EPR spectroscopy. Cysteine residues were introduced to the surface of the Escherichia coli complex I. The spin label (1-oxyl-2,2,5,5-tetramethyl-Δ3-pyrroline-3-methyl)-methanethiosulfonate (MTSL) was exclusively bound to the engineered positions. Neither the mutation nor the labeling had an effect on the NADH:decyl-ubiquinone oxidoreductase activity. The characteristic signals of the spin label were detected by EPR spectroscopy, which did not change by reducing the preparation with NADH. A decyl-ubiquinone derivative with the spin label covalently attached to the alkyl chain was synthesized in order to localize the quinone binding site. The distance between a MTSL labeled complex I variant and the bound quinone was determined by continuous-wave (cw) EPR allowing an inference on the location of the quinone binding site. The distances between the labeled quinone and other complex I variants will be determined in future experiments to receive further geometry information by triangulation.  相似文献   

5.
Charge translocation associated with the activity of the Na(+)/proline cotransporter PutP of Escherichia coli was analyzed for the first time. Using a rapid solution exchange technique combined with a solid-supported membrane (SSM), it was demonstrated that Na(+)and/or proline individually or together induce a displacement of charge. This was assigned to an electrogenic Na(+)and/or proline binding process at the cytoplasmic face of the enzyme with a rate constant of k>50s(-1) which preceeds the rate-limiting step. Based on the kinetic analysis of our electrical signals, the following characteristics are proposed for substrate binding in PutP. (1) Substrate binding is electrogenic not only for Na(+), but also for the uncharged cosubstrate proline. The charge displacement associated with the binding of both substrates is of comparable size and independent of the presence of the respective cosubstrate. (2) Both substrates can bind individually to the transporter. Under physiological conditions, an ordered binding mechanism prevails, while at sufficiently high concentrations, each substrate can bind in the absence of the other. (3) Both substrate binding sites interact cooperatively with each other by increasing the affinity and/or the speed of binding of the respective cosubstrate. (4) Proline binding proceeds in a two-step process: low affinity (approximately 1mM) electroneutral substrate binding followed by a nearly irreversible electrogenic conformational transition.  相似文献   

6.
The carnitine transporter CaiT from Escherichia coli belongs to the betaine, choline, and carnitine transporter family of secondary transporters. It acts as an L-carnitine/gamma-butyrobetaine exchanger and is predicted to span the membrane 12 times. Unlike the other members of this transporter family, it does not require an ion gradient and does not respond to osmotic stress (Jung, H., Buchholz, M., Clausen, J., Nietschke, M., Revermann, A., Schmid, R., and Jung, K. (2002) J. Biol. Chem. 277, 39251-39258). The structure and oligomeric state of the protein was examined in detergent and in lipid bilayers. Blue native gel electrophoresis indicated that CaiT was a trimer in detergent solution. This result was further supported by gel filtration and cross-linking studies. Electron microscopy and single particle analysis of the protein showed a triangular structure of three masses or two parallel elongated densities. Reconstitution of CaiT into lipid bilayers yielded two-dimensional crystals that indicated that CaiT was a trimer in the membrane, similar to its homologue BetP. The implications of the trimeric structure on the function of CaiT are discussed.  相似文献   

7.
The membrane transporter ZitB responsible for Zn(II) efflux in Escherichia coli was studied by site-directed mutagenesis to elucidate the function of individual amino acid residues. Substitutions of several charged or polar residues, H53, H159, D163 and D186, located in predicted transmembrane domains resulted in loss of ZitB function. In contrast, neither the amino-terminal nor the carboxy-terminal regions, both histidine-rich, were required for function.  相似文献   

8.
The amino acid sequence of the sodium ion-dependent citrate transporter CitS of K. pneumoniae contains 12 hydrophobic stretches that could form membrane-spanning segments. A previous analysis of the membrane topology in Escherichia coli using the PhoA gene fusion technique indicated that only nine of these hydrophobic segments span the membrane, while three segments, Vb, VIII and IX, were predicted to have a periplasmic location (Van Geest, M., and Lolkema, J. S. (1996) J. Biol. Chem. 271, 25582-25589). A topology study of C-terminally truncated CitS molecules in dog pancreas microsomes revealed that the protein traverses the endoplasmic reticulum membrane 11 times. In agreement with the PhoA fusion data, segment Vb was predicted to have a periplasmic location, but, in contrast, segments VIII and IX were found to be membrane-spanning (Van Geest, M., Nilsson, I., von Heijne, G., and Lolkema, J. S. (1999) J. Biol. Chem. 274, 2816-2823). In the present study, using site-directed Cys labeling, the topology of segments VIII and IX in the full-length CitS protein was determined in the E. coli membrane. Engineered cysteine residues in the loop between the two segments were accessible to a membrane-impermeable thiol reagent exclusively from the cytoplasmic side of the membrane, demonstrating that transmembrane segments (TMSs) VIII and IX are both membrane-spanning. It follows that the folding of CitS in the E. coli and endoplasmic reticulum membrane is the same. Cysteine accessibility studies of CitS-PhoA fusion molecules demonstrated that in the E. coli membrane segment VIII is exported to the periplasm in the absence of the C-terminal CitS sequences, thus explaining why the PhoA fusions do not correctly predict the topology. An engineered cysteine residue downstream of TMS VIII moved from a periplasmic to a cytoplasmic location when the fusion protein containing TMSs I-VIII was extended with segment IX. Thus, downstream segment IX is both essential and sufficient for the insertion of segment VIII of CitS in the E. coli membrane.  相似文献   

9.
Proximity relationships within three doubly spin-labeled variants of the Na+/proline transporter PutP of Escherichia coli were studied by means of four-pulse double electron-electron resonance spectroscopy. The large value of 4.8 nm for the interspin distance determined between positions 107 in loop 4 and 223 in loop 7 strongly supports the idea of these positions being located on opposite sides of the membrane. Significant smaller values of between 1.8 and 2.5 nm were found for the average interspin distances between spin labels attached to the cytoplasmic loops 2 and 4 (position 37 and 107) and loops 2 and 6 (position 37 and 187). The large distance distribution widths visible in the pair correlation functions reveal a high flexibility of the studied loop regions. An increase of the distance between positions 37 and 187 upon Na+ binding suggests ligand-induced structural alterations of PutP. The results demonstrate that four-pulse double electron-electron resonance spectroscopy is a powerful means to investigate the structure and conformational changes of integral membrane proteins reconstituted in proteoliposomes.  相似文献   

10.
A gene encoding Na(+)/serine symporter (SstT) of Escherichia coli has been cloned and sequenced in our laboratory [Ogawa et al. (1998) J. Bacteriol. 180, 6749-6752]. In an attempt to overproduce the protein and purify it, we first constructed a plasmid pTSTH in which the modified sstT gene (sstT gene with 8 successive codons for His at the 3'-terminus) is located downstream from the trc promoter. Upon induction by IPTG, the His-tagged SstT protein was overproduced (about 15% of total membrane proteins), and showed activity as high as the wild type SstT. The His-tagged SstT was solubilized with octylglucoside and purified to homogeneity using a nickel nitrilotriacetic acid (Ni(2+)-NTA) affinity resin. The N-terminal sequence (20 amino acid residues) of the purified protein showed that the sequence was identical to that deduced from the DNA sequence of the sstT gene and that the initiation methionine was excised. The purified His-tagged SstT was reconstituted into liposomes by the detergent dilution method. Reconstituted proteoliposomes mediated the transport of serine driven by an artificially imposed electrochemical Na(+) gradient. The K(m) and the V(max) values for serine transport with the proteoliposomes were 0.82 microM and 0.37 nmol/min/mg protein, respectively. Serine transport was inhibited by L-threonine, but not by other amino acids. The purified protein was stable for at least 6 months at -80 degrees C.  相似文献   

11.
The Na+/solute symporter family comprises more than 400 members of pro- and eukaryotic origin. Using the Na+/proline transporter PutP of Escherichia coli as a model, the role of two conserved residues, Ser-340 and Thr-341, is investigated to obtain insights into the mechanism of transport catalyzed by members of this family. Substitution of these amino acids alters the transport kinetics of cells and proteoliposomes containing the PutP variants significantly. In particular, the apparent affinities for Na+ and Li+ are reduced by 2 orders of magnitude or more. Also proline binding is affected, albeit to a lesser extent than ion binding. Thereby, the presence of a hydroxyl group at position 341 is essential for high affinity ligand binding. Furthermore, Cys placed at position 340 or 341 reacts with sulfhydryl reagents of different polarity, indicating accessibility from the water phase. In addition, Cys cross-linking suggests proximity of the residues to other amino acids previously shown to be crucial for ligand binding. For these reasons it is suggested that Ser-340 and Thr-341 are located in a ligand translocation pathway. Furthermore, it is proposed that the side chain of Thr-341 directly participates in Na+ binding.  相似文献   

12.
13.
14.
The Na+/proline transporter PutP of Escherichia coli is a member of a large family of Na+/substrate symporters. Previous work on PutP suggests an involvement of the region ranging from Asp-55 to Gly-58 in binding of Na+ and/or proline (Pirch, T., Quick, M., Nietschke, M., Langkamp, M., Jung, H. (2002) J. Biol. Chem. 277, 8790-8796). In this study, a complete Cys scanning mutagenesis of transmembrane domain II (TM II) of PutP was performed to further elucidate the role of the TM in the transport process. Strong defects of PutP function were observed upon substitution of Ala-48, Ala-53, Trp-59, and Gly-63 by Cys in addition to the previously characterized residues Asp-55, Ser-57, and Gly-58. However, except for Asp-55 none of these residues proved essential for function. The activity of eight mutants was sensitive to N-ethylmaleimide inhibition with the sensitive positions clustering predominantly on a hydrophilic face in the cytoplasmic half of TM II. The same face was also highly accessible to the bulky sulfhydryl reagent fluorescein 5-maleimide in randomly oriented membrane vesicles, suggesting an unrestricted accessibility of the corresponding amino acid positions via an aqueous pathway. Na+ stimulated the reactivity of Cys toward fluorescein 5-maleimide at two positions while proline inhibited reaction of the sulfhydryl group at nine positions. Taken together, the results demonstrate that TM II of PutP is of particular functional importance. It is proposed that hydrophilic residues in the cytoplasmic half of TM II participate in the formation of an aqueous cavity in the membrane that allows Na+ and/or proline binding to residues located in the middle of the TM (e.g. Asp-55 and Ser-57). In addition, the data indicate that TM II participates in Na+- and proline-induced conformational alterations.  相似文献   

15.
16.
A major proline carrier in Escherichia coli encoded by the putP gene mediates proline/Na+ or Li+ symport. Proline carrier mutants with altered cation specificity were obtained by mutagenesis with nitrous acid in vitro of a plasmid carrying the wild-type putP gene. Two mutant strains harboring plasmid pMOP4135 and pMOP4141 could transport proline efficiently only in the presence of an increased concentration of sodium ion. Mutations of these plasmids, putP4135 and putP4141, caused reduction of affinity for Na+ of proline transport and binding, without remarkable change in the affinity for proline or in production of the carriers. Consistent with the lower affinity of the putP4141 carrier for Na+, the mutant carrier was supersensitive to N-ethylmaleimide inhibition. The pH dependence of proline binding was also changed in these mutant carriers. The lesions of putP4135 and putP4141 were located in the N-terminal part of the putP gene (ClaI-PvuII fragment) by in vitro recombination and subsequent examination of the phenotype of the transformants. DNA sequencing of these fragments revealed one base alteration of G to A at nucleotides 299 and 656 in pMOP4141 and pMOP4135, respectively, which corresponded to amino acid changes from Gly22 to glutamic acid and Cys141 to tyrosine, respectively.  相似文献   

17.
Selected residues of transmembrane domain (TM) IX were previously shown to play key roles in ligand binding and transport in members of the Na+/solute symporter family. Using the Na+/proline transporter PutP as a model, a complete Cys scanning mutagenesis of TM IX (positions 324 to 351) was performed here to further investigate the functional significance of the domain. G328, S332, Q345, and L346 were newly identified as important for Na+-coupled proline uptake. Placement of Cys at one of these positions altered Km(pro) (S332C and L346C, 3- and 21-fold decreased, respectively; Q345C, 38-fold increased), K0.5(Na+) (S332C, 13-fold decreased; Q345C, 19-fold increased), and/or Vmax [G328C, S332C, Q345C, and L346C, 3-, 22-, 2-, and 8-fold decreased compared to PutP(wild type), respectively]. Membrane-permeant N-ethylmaleimide inhibited proline uptake into cells containing PutP with Cys at distinct positions in the middle (T341C) and cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) and had little or no effect on all other single Cys PutP variants. The inhibition pattern was in agreement with the pattern of labeling with fluorescein-5-maleimide. In addition, Cys placed into the cytoplasmic half of TM IX (C344, L347C, V348C, and S351C) was protected from fluorescein-5-maleimide labeling by proline while Na+ alone had no effect. Membrane-impermeant methanethiosulfonate ethyltrimethylammonium modified Cys in the middle (A337C and T341C) and periplasmic half (L331C) but not in the cytoplasmic half of TM IX in intact cells. Furthermore, Cys at the latter positions was partially protected by Na+ but not by proline. Based on these results, a model is discussed according to which residues of TM IX participate in the formation of ligand-sensitive, hydrophilic cavities in the protein that may reconstitute part of the Na+ and/or proline translocation pathway of PutP.  相似文献   

18.
Specificity of the Escherichia coli proline transport system.   总被引:7,自引:4,他引:3       下载免费PDF全文
The presence of both the carbonyl portion of the carboxyl group at position 2 of the pyrrolidine ring and a secondary amine was essential for uptake of a compound by the proline permease of Escherichia coli. The permease possessed a high affinity for azetidine-2-carboxylic acid and for compounds with ring structures smaller than the pyrrolidine ring. Pipecolic acid, the higher homologue of proline, and its derivatives were not transported. Cis- and trans-3,4-methano-prolines, also six-membered ring structures, behaved anomolously in that they possessed a high affinity for the permease. The difference between the methano-prolines and other six-membered ring structures probably resides in the fact that the former exist in the "boat" configuration whereas the latter possess the "chair" configuration. In general, substituted prolines in the cis configuration displayed a higher affinity for the permease than did corresponding trans isomers, though the affinity for substituted prolines was influenced by the position, size, and polar or nonpolar nature of the substituent group. At O C many analogues with affinity for proline permease exchanged with intracellular proline, but some analogues, notably trans-3-methyl- and trans-4-methyl-L-prolines, though possessing high affinity for the permease, showed an almost complete inability to exchange with intracellular proline.  相似文献   

19.
Abstract Using a genomic subtraction technique, we cloned a DNA sequence that is present in wild-type Escherichia coli strain CSH4 but is missing in a presumptive proline dehydrogenase deletion mutant RM2. Experimental evidence indicated that the cloned fragment codes for proline dehydrogenase (EC 1.5.99.8) since RM2 cells transformed with a plasmid containing this sequence was able to survive on minimal medium supplemented with proline as the sole nitrogen and carbon sources. The cloned DNA fragment has an open reading frame of 3942 bp and encodes a protein of 1313 amino acids with a calculated M r of 143 808. The deduced amino acid sequence of the E. colli proline dehydrogenase has an 84.9% homology to the previously reported Salmonella typhimurium putA gene but it is 111 amino acids longer at the C-terminal than the latter.  相似文献   

20.
Asp187 and Gln190 were predicted as conserved and closely located at the Na(+) binding site in a topology and homology model structure of Na(+)/proline symporter (PutP) of Escherichia coli. The replacement of Asp187 with Ala or Leu did not affect proline transport activity; whereas, change to Gln abolished the active transport. The binding affinity for Na(+) or proline of these mutants was similar to that of wild-type (WT) PutP. This result indicates Asp187 to be responsible for active transport of proline without affecting the binding. Replacement of Gln190 with Ala, Asn, Asp, Leu and Glu had no effect on transport or binding, suggesting that it may not have a role in the transport. However, in the negative D187Q mutant, a second mutation, of Gln190 to Glu or Leu, restored 46 or 7% of the transport activity of WT, respectively, while mutation to Ala, Asn or Asp had no effect. Thus, side chain at position 190 has a crucial role in suppressing the functional defect of the D187Q mutant. We conclude that Asp187 is responsible for transport activity instead of coupling-ion binding by constituting the translocation pathway of the ion and Gln190 provides a suppressing mutation site to regain PutP functional activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号