首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracts of the mineralized phase of rat calvaria were shown to contain bone acidic glycoprotein-75, a new phosphorylated glycoprotein which co-purifies with small bone proteoglycans through anion-exchange chromatography. Final purification of each was brought about with a subsequent hydroxyapatite step. Bone acidic glycoprotein-75 is 75,000 in molecular weight with a 29.3% molar content of acidic amino acid residues, a 7.0% (w/w) content of sialic acid, and a 7.9% molar content of organic phosphate. Its N-terminal sequence was determined as Leu-Pro-Val-Ala-Arg-Tyr-Gln-Asn-Thr-Glu-Glu-Glu-Glu-. Because the size and charge density properties of bone acidic glycoprotein-75 are similar to those reported for rat bone sialoprotein II, calvarial sialoprotein II was also purified to homogeneity, and its amino acid composition and N-terminal sequence were determined. The sequence results showed an identity with the first 5 residues of human sialoprotein II and a complete lack of homology with bone acidic glycoprotein-75, which, furthermore, did not bind anti-sialoprotein II antibodies. Although the N-terminal sequence of bone acidic glycoprotein-75 appears to be unique, a 33% homology is shared with rat adhesive protein osteopontin. Affinity-purified antibodies against osteopontin were found to specifically bind to bone acidic glycoprotein-75 and to sialoprotein II upon immunoblotting, whether as purified proteins or as components of crude calvarial extracts. In summary, bone acidic glycoprotein-75 is a new phosphorylated glycoprotein from the mineralized compartment of rat calvarial tissue with a limited structural homology to osteopontin.  相似文献   

2.
Secreted phosphoprotein I (SPPI) is a prominent structural protein in mineralized connective tissues. Rat bone cells in culture produce several forms of SPPI that differ in post-translational modifications such as phosphorylation and sulphation. To determine the significance of protein sulphation in bone formation, the synthesis of SPPI was studied in vitro using rat bone marrow cells (RBMC) which form bone-like tissue when grown in the presence of dexamethasone (Dex) and beta-glycerophosphate (beta-GP). In the presence of 10(-7) M Dex SPPI expression was stimulated 4-5-fold. Radiolabelling multilayered RBMCs for 48 h with [35S]-methionine, Na2[35SO4], or Na3[32PO4] revealed that two major phosphorylated forms of SPPI were secreted into the culture medium: a highly phosphorylated form migrating at 44 kDa on 15% SDS-PAGE and a less phosphorylated 55 kDa form. In the mineralized tissue formed in the presence of Dex and beta-GP, both forms of SPPI, in addition to proteoglycans and a 67 kDa protein, incorporated significant amounts of [35SO4]. Sulphation of SPPI was not observed in the absence of mineral formation, indicating that the sulphation of SPPI is closely associated with mineralization and that it can be used as a sensitive and specific marker for the osteoblastic phenotype.  相似文献   

3.
A monoclonal antibody was raised against a mineralized tissue-specific sialoprotein containing no phosphorus using partially purified noncollagenous bone matrix proteins from rats as antigen. Then the sialoprotein was purified by high performance liquid chromatography from rat mandibulae using the monoclonal antibody as a marker. The sialoprotein (59-kDa bone sialoprotein (BSP)) with a molecular weight of 59,000 contained 1.4% sialic acid but no detectable phosphorus. Immunohistochemical studies with the antibody showed that the protein was specific to mineralized tissues such as bone and dentin, and present in osteoblasts, osteocytes, and bone matrix. No other soft tissues, such as the cartilage, liver, kidney, and periosteum, were stained. However, Western blot analysis showed that plasma contained immunoreactive 59-kDa BSP. The quantitative amino acid composition of 59-kDa BSP resembled that of human alpha 2-HS glycoprotein (alpha 2-HSG) (Lee, C.-C., Bowman, B.H., and Yang, F. (1987) Proc. Natl. Acad. Sci. U.S.A. 84, 4403-4407; Kellermann, J., Haupt, H., Auerswald, E.-A., and Muller-Esterl, W. (1989) J. Biol. Chem. 264, 14121-14128) and rat 64-kDa protein (Franzén, A., and Heineg?rd, D. (1985) in The Chemistry and Biology of Mineralized Tissues (Butler, W.T., ed), p. 132, EBSCO Media, Birmingham, AL). Amino acid sequence analyses of the amino-terminal region and four peptide fragments of 59-kDa BSP revealed that about 50% of the amino acids were homologous with those of human alpha 2-HSG, which is known to be synthesized by the liver, transported in the bloodstream, and incorporated into calcified tissues. But when newborn rat calvaria, primary cultures of osteoblast-rich cells, and adult rat hepatocytes were incubated with radioactive leucine, immunoreactive 59-kDa BSP was detected in their conditioned medium by fluorography. Several characteristics, including the amino acid sequence, suggest that 59-kDa BSP may be the rat counterpart of human alpha 2-HSG. However, rat 59-kDa BSP is a single peptide and synthesized by both osteoblasts and hepatocytes, whereas human alpha 2-HSG is known to be a heterodimer and to be synthesized by the liver.  相似文献   

4.
The presence of membrane-associated proteins which stereospecifically bind cyclosporin A and react with anti-cyclophilin antibodies has been documented in rat tissues. Extraction of membranes with 6 M urea or 0.5% Chaps releases cyclosporin-binding activity that is 5-12% of that found in cytosol. Cyclosporin-A-binding proteins are present in most subcellular organelles of liver, but microsomes contain the greatest activity. These proteins can be purified by adsorption onto a cyclosporin-A affinity column and elution with cyclosporin A. Two major fractions are resolved on SDS/PAGE: an 18-kDa fraction is comprised of two isoforms that are similar if not identical to the two major cytosolic isoforms of cyclophilin. In addition, in microsomes an approximately equal quantity of a 22-kDa glycoprotein was detected. Based on partial sequencing (five peptides, 89 amino acids) this protein is similar but not identical to human cyclophilin B. This 22-kDa isoform is poorly recognized by affinity-purified anti-cyclophilin antibodies and comprises several predominant isoforms (pI approximately 9.3-9.6). Selective binding of membrane 22-kDa cyclophilin to peanut lectin suggests the oligosaccharides contain a terminal galactosyl-N-galactosamine residue.  相似文献   

5.
Two different sialoproteins were isolated from the mineralized matrix of bovine bone by using extraction with guanidinium chloride first without and then with EDTA. The sialoproteins were purified by chromatography on DEAE-cellulose eluted with a sodium acetate gradient in 7 M-urea, pH 6. Two sialoproteins (I and II) were then separated by chromatography on DEAE-cellulose eluted with a sodium chloride gradient in 7 M-urea, pH 4. The ratio between recovered sialoprotein I and II was 1:5. The chemical analysis of the two sialoproteins showed that they differed. Both, however, had very high contents of aspartic acid/asparagine and glutamic acid/glutamine though they differed markedly in contents of leucine and glycine. Both sialoproteins contained phosphate, sialoprotein I more than sialoprotein II. Content of sialic acid was substantially higher in the more prominent sialoprotein II (13.4% of dry weight) than in sialoprotein I (4.8% of dry weight). The peptide patterns produced by trypsin digests of [125I]iodinated sialoproteins I and II showed both structural similarities and structural differences. Sialoprotein II, being the major component, was characterized further. Its molecular mass was 57300 Da determined by sedimentation-equilibrium centrifugation in 6 M-guanidinium chloride, and its sedimentation coefficient (S0(20),w) was 2.53 S. Upon rotary shadowing, sialoprotein II appeared as an extended rod, having a core with an average length of 40 nm. Two types of oligosaccharides, N-glycosidically and O-glycosidically linked to the core protein, were isolated from sialoprotein II. Contents of mannose and sialic acid in the O-linked oligosaccharide were surprisingly high. Antibodies against sialoprotein II were raised in rabbits and an enzyme-linked immunosorbent assay was developed. Antigenicity of sialoprotein II was not affected by reduction and alkylation, was only partially lost upon trypsin digestion and was completely lost upon fragmentation of the core protein by alkaline-borohydride treatment, indicating that all antigenic sites were located in the protein portion. Sialoprotein I expectedly showed only partial immunological cross-reactivity with sialoprotein II. The quantity of sialoprotein II in bone extracts was found to be about 1.5 mg/g wet wt. of bone, but the protein was not detected in extracts of a number of other bovine tissues i.e. aorta, cartilage, dentine, kidney, liver, muscle, sclera, skin and tendon.  相似文献   

6.
One of the major soybean allergens, Gly m Bd 28K, is suggested to be biosynthesized as a preproprotein form, which would be composed of a signal peptide, Gly m Bd 28K and the C-terminal peptide (the 23-kDa peptide). However, the 23-kDa peptide has never been characterized. In the present study, we prepared a monoclonal antibody (mAb) against a recombinant 23-kDa peptide expressed in Escherichia coli to detect the 23-kDa peptide in soybean. Several proteins were detected by immunoblotting with the mAb. All of the proteins were shown to have the identical N-terminal amino acid sequence, suggesting that the proteins correspond to the C-terminal part of the Gly m Bd 28K precursor. Furthermore, Gly m Bd 28K and the 23-kDa peptide were observed to come out at the 21st day after flowering and to locate in the crystalloid part of protein storage vacuoles in growing cotyledons. Some of the 23-kDa peptides were shown to be glycoproteins with an N-linked glycan moiety and exhibited the binding to IgE antibodies in the sera of patients sensitive to soybean. The binding of the peptides to IgE antibodies was suggested to be predominantly dependent on their glycan moiety. This study proves the occurrence of the 23-kDa peptide in soybean and that it is a new allergen.  相似文献   

7.
Chymotrypsin eliminated nine amino acid residues at the amino-terminal side of the extrinsic 23-kDa protein of the oxygen-evolving Photosystem II complex of spinach. The resultant 22-kDa fragment was able to bind to the Photosystem II complex but with lowered binding affinity. However, once the 22-kDa fragment bound to the complex, it retained most functions of the 23-kDa protein; the fragment provided a binding site for the extrinsic 18-kDa protein, preserved a tight trap for Ca2+ in the complex, and shifted the optimum Cl concentration for oxygen evolution from 30 to 10 mM, although it was less effective in sustaining oxygen evolution at Cl concentrations below 10 mM. These observations suggest that the elimination of nine amino acid residues at the amino-terminal region of the 23-kDa protein does not significantly alter the conformation of the protein, except for partial modification of its binding site and its interaction with Cl.  相似文献   

8.
The carbohydrate moieties present on laminin play a crucial role in the multiple biological activities of this basement membrane glycoprotein. We report the identification of a human laminin binding protein with an apparent molecular mass of 14 kDa on sodium dodecyl sulfate-polyacrylamide gels that was found, after purification and amino acid microsequencing, to be identical to the previously described 14-kDa galactoside binding soluble L-14 lectin. We have designated this human laminin binding protein as HLBP14. HLBP14 was purified from human melanoma cells in culture by laminin affinity chromatography and gel electroelution. We demonstrate that HLBP14 binds specifically to the poly-N-acetyllactosamine residues of murine laminin and does not bind to other glycoproteins that do not contain such structures, such as fibronectin. HLBP14 was eluted from a murine laminin column by lactose, N-acetyllactosamine, and galactose but not by other control saccharides, including glucose, fucose, mannose, and melibiose. It did not bind to laminin treated with endo-beta-galactosidase. Lactose also eluted HLBP14 off a human laminin affinity column, implying that human laminin also contains poly-N-acetyllactosamine residues. On immunoblots, polyclonal antibodies raised against HLBP14 recognized HLBP14 as well as 31- and 67-kDa molecules that are also laminin binding proteins, indicating that these proteins share common epitopes. L-14, a dimeric lactose binding lectin, is expressed in a wide variety of tissues. Although the expression of this molecule has been linked to a variety of biological events, the elucidation of its specific functions has been elusive. The observation that HLBP14, a human cancer cell laminin binding protein, is identical to L-14 strongly suggests that the functions attributed to this lectin could be mediated, at least in part, through its ability to interact with the poly-N-acetyllactosamine residues of laminin. HLBP14 could potentially play a role during tumor invasion and metastasis by modulating the interactions between cancer cells and laminin.  相似文献   

9.
It was shown earlier that a 67-kDa protein purified from mouse kidney using polyclonal antibodies against melittin (a peptide from bee venom) interacted with Na,K-ATPase from rabbit kidney. In this study, a 43-kDa proteolytic fragment of Na,K-ATPase α-subunit interacting with the 67-kDa melittin-like protein was found. The α-subunit was hydrolyzed by trypsin in the presence of 0.5 mM ouabain (E2-conformation of Na,K-ATPase). A proteolytic fragment interacting with the 67-kDa melittin-like protein that was identified by mass-spectrometry is a region of the cytoplasmic domain of Na,K-ATPase α-subunit located between amino acid residues 591 and 775. The fragment includes a conservative DPPRA motif that occurs in many P-type ATPases. It was shown earlier that this motif of H,K-ATPase from gastric mucosa binds to melittin. We suggest that namely this motif of P-type ATPases is able to interact with proteins containing melittin-like modules.  相似文献   

10.
Using nondegradative isolation procedures we purified and characterized five major noncollagenous proteins from developing human bone. Small bone proteoglycan I, Mr approximately 350,000 on sodium dodecyl sulfate (SDS), 4-20% gradient polyacrylamide gels has a different amino-terminal sequence of NH2-Asp-Glu-Glu-()-Gly-Ala-Asp-Thr and is not cross-reactive with the small bone proteoglycan II, Mr approximately 200,000 on SDS-gradient polyacrylamide gels. Bone proteoglycan II is 95% N terminally blocked and the small amount that can be sequenced has an amino-terminal sequence (NH2-Asp-Glu-Ala-()-Gly-Ile. . .) that is apparently similar but not identical to a small proteoglycan isolated by Brennan, M.J., Oldberg, A., Pierschbacher, M.D., and Ruoslahti, E. (1984) J. Biol. Chem. 259, 13742-13750 from human fetal placenta membrane. Two bone sialoproteins, each of which migrates at a Mr approximately 80,000 on SDS gels, have also been isolated. Bone sialoprotein I has an amino-terminal sequence of NH2-Ile-Pro-Val-Lys-Gln-Ala. . . which is different from that of bone sialoprotein II with an amino-terminal sequence of NH2-Phe-Ser-Met-Lys-Asn-Leu. . . The two bone sialoproteins do not cross-react on Western blot analysis. Human bone osteonectin contains a large number of cysteines, more than 90% of which appear to be in disulfide bonds. The N-terminal amino acid sequence of human bone osteonectin was nearly identical to bovine bone osteonectin and had many similarities to a protein found in mouse parietal endoderm (Mason, I.J., Taylor, A., Williams, J.G., Sage, H., and Hogan, B.L.M. (1986) EMBO J. 5, 1831-1837.  相似文献   

11.
Bone matrix and tendon are compared in terms of their carbohydrate and non-collagenous protein composition. The collagen content of both tissues was similar (90-91%), but bone matrix had at least three times as much sialic acid (0.28%) as tendon (0.08%). Smaller differences were found in the analysis of hexoses and hexosamines. After digestion with bacterial collagenase, about 9% of the total protein from both tissues was non-diffusible on dialysis, and this contained only 0.15% (bone) and 0.7% (tendon) of the original hydroxyproline; recovery of sialic acid was 86-87%. The collagenase-resistant soluble material amounted to about 9% (bone matrix) and 5% (tendon); the insoluble residues were 1 and 4% respectively. There were clear differences in the carbohydrate contents of the digests, but the amino acid compositions were similar. When the soluble digests were chromatographed on DEAE-cellulose, the elution profiles indicated the presence in each tissue of a variety of glycoproteins and a proteoglycan fraction, and showed clearly that an acidic glycoprotein corresponding to bone sialoprotein was not present in tendon.  相似文献   

12.
Partial protein sequences from the 59-kDa bovine heart and the 63-kDa bovine brain calmodulin-dependent phosphodiesterases (CaM-PDEs) were determined and compared to the sequence of the 61-kDa isozyme reported by Charbonneau et al. [Charbonneau, H., Kumar, S., Novack, J. P., Blumenthal, D. K., Griffin, P. R., Shabanowitz, J., Hunt, D. F., Beavo, J. A. & Walsh, K. A. (1991) Biochemistry (preceding paper in this issue)]. Only a single segment (34 residues) at the N-terminus of the 59-kDa isozyme lacks identity with the 61-kDa isozyme; all other assigned sequence is identical in the two isozymes. Peptides from the 59-kDa isozyme that correspond to residues 23-41 of the 61-kDa protein bind calmodulin with high affinity. The C-terminal halves of these calmodulin-binding peptides are identical to the corresponding 59-kDa sequence; the N-terminal halves differ. The localization of sequence differences within this single segment suggests that the 61- and 59-kDa isozymes are generated from a single gene by tissue-specific alternative RNA splicing. In contrast, partial sequence from the 63-kDa bovine brain CaM-PDE isozyme displays only 67% identity with the 61-kDa isozyme. The differences are dispersed throughout the sequence, suggesting that the 63- and 61-kDa isozymes are encoded by separate but homologous genes.  相似文献   

13.
The PO glycoprotein of peripheral nerve myelin   总被引:6,自引:0,他引:6  
The PO glycoprotein, the major protein of peripheral nerve myelin, is a hydrophobic glycoprotein which can be isolated in soluble and insoluble forms from rabbit sciatic nerve myelin following extensive defatting and mid acidic extraction. The PO glycoprotein was localized exclusively in peripheral nervous system (PNS) myelin of sciatic nerve and rootlets by the immunofluorescent technique using goat anti-PO serum which showed a single precipitin band in double diffusion and did not cross-react with the myelin basic protein or P2 protein. Central nervous system (CNS) myelin from brain and spinal cord was negative by the immunofluorescent procedure. The major glycoprotein bands in PNS myelin, in addition to the PO glycoprotein at 28K, exist at 23K and 19K, as shown by gel electrophoresis in dodecyl sulfate. These glycoproteins, isolated by gel filtration in 2% dodecyl sulfate, show identity to the PO glycoprotein in their monosaccharide profile and overlapping tryptic peptides on peptide mapping. We conclude that both the 23K and 19K glycoproteins are derived from the PO glycoprotein by in situ proteolysis; the 23K glycoprotein has the identical amino terminal sequence. The 19K glycoprotein, beginning with amino-terminal methionine, is identical with the TPO glycoprotein, shown previously to originate from tryptic hydrolysis of the PO glycoprotein in isolated myelin. A tryptic glycopeptide containing 27 amino acids was isolated from the PO glycoprotein and sequenced. It contained a relatively high proportion of aspartic acid (four residues) and glutamic acid (two residues), thus exhibiting a high negative charge. We conclude that the total carbohydrate of the PO, 23K, and 19K glycoproteins does indeed exist as a single nonasaccharide moiety linked through N-acetylglucosamine to Asp-14 of the glycopeptide in a N-glycosidic linkage. These results further support the role of the PO glycoprotein as a typical amphipathic membrane protein.  相似文献   

14.
We have used purified proteolytic fragments of von Willebrand factor (vWF) to characterize three related functional sites of the molecule that support interaction with platelet glycoprotein Ib, collagen, and heparin. A fragment of 116 kDa was found to be dimeric and consisted of disulfide-linked subunits which, after reduction and alkylation, corresponded to the previously described 52/48-kDa fragment extending from residue 449 to 728. Fragment III-T2, also a dimer, was composed of two pairs of disulfide-linked subunits, two 35-kDa heavy chains (residues 273-511) and two 10-kDa light chains (residues 674-728). The 116-kDa fragment, but not the constituent 52/48-kDa subunit, supported ristocetin-induced platelet aggregation and retained 20% (on a molar basis) of the ristocetin cofactor activity of native vWF; fragment III-T2 retained less than 5% activity. All three fragments, however, inhibited vWF interaction with glycoprotein Ib. Both 116-kDa and 52/48-kDa fragments inhibited vWF binding to heparin with similar potency, while fragment III-T2 had no effect in this regard. Only the 116-kDa fragment inhibited vWF binding to collagen. These results indicate that dimeric fragments containing two glycoprotein Ib-binding sites possess the minimal valency sufficient to support ristocetin-induced aggregation. The sequence comprising residues 512-673, missing in fragment III-T2, is necessary for binding to heparin and collagen and may be crucial for anchoring vWF to the subendothelium. Immunochemical and functional data suggest that the same sequence, although not essential for interaction with glycoprotein Ib, may influence the activity of the glycoprotein Ib-binding site. Only binding to collagen has absolute requirement for intact disulfide bonds. Thus, the three functional sites contained in the 116-kDa domain of vWF are structurally distinct.  相似文献   

15.
The distribution and function of an 80-kDa glycoprotein located at the surface of skeletal muscle cells and enriched in gelatin-binding fractions of skeletal muscle extracts are examined in the present study. The glycoprotein was purified by concanavalin A affinity chromatography followed by gel filtration and anion exchange chromatography. The purified protein did not display gelatin-binding although the protein bound to fibronectin in several assays. First, the glycoprotein bound to fibronectin-Sepharose and did not elute in high salt buffers although subsequent basic elutions displaced the 80-kDa protein from the column. Second, gel filtration of the 80-kDa glycoprotein in the presence of fibronectin showed separate peaks corresponding to the mass of the 80-kDa glycoprotein and fibronectin as well as a third, higher mass peak shown in immunoblots to contain both fibronectin and the 80-kDa glycoprotein. Third, immunoprecipitation with affinity-purified anti-80-kDa glycoprotein in the presence of the glycoprotein and radioiodinated fibronectin precipitated labeled fibronectin. The quantity of labeled fibronectin precipitated was reduced by the addition of nonradiolabeled fibronectin. Immunofluorescent microscopy using affinity-purified, anti-80-kDa showed this protein located at the myotendinous junctions of frog tadpoles and embryonic chicks. In chicks, it was discernible by immunofluorescence only during the morphogenetic stages that myotendinous junctions were being assembled. Amino acid analysis shows that the 80-kDa glycoprotein has a high concentration of acidic residues. There is only one cysteine per molecule in the 80-kDa glycoprotein and comparisons of reducing and nonreducing gels show that no disulfides are present, indicating that this is not an integrin protein. Amino terminal sequencing reveals that the protein contains marked similarity to the amino terminal of calsequestrin although the protein is distinct from calsequestrin in lacking Ca2(+)-dependent phenyl sepharose affinity and in its molecular weight and distribution. The observations indicate that the 80-kDa glycoprotein is a fibronectin receptor present at chick myotendinous junctions during junction morphogenesis. This apparently novel protein is named "myonexin" to reflect its location and likely function in attaching fibronectin to the surface of muscle cells.  相似文献   

16.
The glycoproteins of microsomes and cytosol were studied. Various washing procedures did not release the proteins from the microsomes, and immunological tests demonstrated that the sialoproteins are not serum components. Low concentrations of deoxycholate and incubation in 0.25 M sucrose solution liberated a small amount of microsomal sialoprotein and this fraction exhibited a high degree of labeling of protein-bound N-acetylneuraminic acid. A part of the glycoprotein fraction could not be solubilized, even with a high concentration of the detergent. Thoroughly perfused rat liver contained sialoproteins in the particle-free supernate. The level of sialoprotein present could not be due to contamination with serum or broken organelles. The high in vivo incorporation of [3H]glucosamine into protein-bound sialic acid of Golgi membranes and cytosol was paralleled by a delayed and lesser rate of incorporation into the rough and smooth microsomal membranes. This incorporation pattern suggests the possibility that the glycoproteins of cytosol and Golgi may later be incorporated into the membrane of the endoplasmic reticulum.  相似文献   

17.
A second form (form 2) of glycosylated esterase was isolated from liver microsomal membranes and characterized. The subunit molecular weight of form 2 is identical to that of the 60-kDa protein previously reported (Ozols, J. (1987) J. Biol. Chem. 262, 15316-15321). The NH2 terminus of the form 2 enzyme is blocked. Digestion of form 2 with pyroglutamyl aminopeptidase, followed by electroblotting and sequence analysis of the blotted protein, indicated that a pyroglutamyl residue was located at the NH2 terminus. Sequence analysis of the deblocked protein as well as characterization of the peptides obtained from enzymatic and chemical cleavages of the intact protein led to the elucidation of its complete amino acid sequence. The protein is a single polypeptide consisting of 532 residues. Carbohydrate is attached at asparaginyl residue 249. The sequence of form 2 esterase is 50% identical to the sequence of form 1 enzyme. The amino acid sequence of the first 26 residues of form 1 enzyme from human liver microsomes shows that 23 residues are identical to that of rabbit form 1, but only 8 residues that are identical to form 2. Treatment of the forms 1 and 2 isozymes with N-glycosidase F or endo-N-acetylglucosaminidase H resulted in a decrease of their subunit molecular weights, indicating that the carbohydrate attached is of the high mannose type. To determine whether the 60-kDa proteins are located on the cytoplasmic or luminal side of the endoplasmic membrane, microsomes were treated with proteolytic enzymes and the two 60-kDa isozymes were isolated and characterized. Sequence analysis of both proteins indicated that their NH2 termini were unaffected by proteolysis. Form 1 isozyme isolated from trypsin-treated microsomes, however, lacked the COOH-terminal heptapeptide (residues 533-539). These results, in addition to the finding of an N-linked carbohydrate, suggest that the two 60-kDa proteins are oriented on the luminal side of the endoplasmic membrane.  相似文献   

18.
An 80-kDa glycoprotein of Dictyostelium discoideum, designated contact site A, has been implicated in EDTA-stable cell adhesion. This protein is known to be the major sulfated protein of aggregation-competent cells and has been shown to contain two types of carbohydrate, sulfated type 1 and unsulfated type 2 carbohydrate moieties. Here we investigate the cell-free sulfation of this protein. In the homogenate of developing cells, [35S]sulfate was transferred by endogenous sulfotransferase from [35S]3'-phosphoadenosine-5'-phosphosulfate to the contact site A glycoprotein and to various other endogenous proteins. The sulfate was transferred to carbohydrate rather than to tyrosine residues. After differential centrifugation of the homogenate, the capacity for sulfation of the contact site A glycoprotein was barely detected in the plasma membrane-enriched 10,000 X g pellet fraction which contained the bulk of this glycoprotein, but was largely recovered in the 100,000 X g pellet fraction which contained only a small portion of this glycoprotein. After sucrose gradient centrifugation, the membranes containing the sulfation capacity were found to have a density characteristic for Golgi membranes. In immunoblots, monoclonal antibodies raised against the contact site A glycoprotein recognized not only this 80-kDa protein, but also a sulfatable 68-kDa protein found in the 100,000 X g pellet fraction. The 68-kDa protein did not react with monoclonal antibodies against type 2 carbohydrate but was converted by endoglycosidases F and H into a 53-kDa protein, indicating that it was a partially glycosylated form of the 80-kDa glycoprotein containing only type 1 carbohydrate. Isoelectric focusing showed that a substantial portion of the 68-kDa glycoprotein was unsulfated, even after cell-free sulfation. The 68-kDa glycoprotein was not found in the plasma membrane-enriched 10,000 X g pellet fraction and did not accumulate in parallel with the 80-kDa contact site A glycoprotein during cell development. We conclude that the 68-kDa glycoprotein is a precursor that is converted by attachment of type 2 carbohydrate and sulfation of type 1 carbohydrate into the mature 80-kDa glycoprotein. The precursor nature of the 68-kDa glycoprotein was supported by results obtained with mutant HL220 which is defective in glycosylation (Murray, B. A., Wheeler, S., Jongens, T., and Loomis, W. F. (1984) Mol. Cell. Biol. 4, 514-519). This mutant specifically lacks type 2 carbohydrate and produces a 68-Kda glycoprotein instead of the 80-kDa contact site A glycoprotein (Yoshida, M., Stadler, J., Bertholdt, G., and Gerisch, G. (1984) EMBO J. 3, 2663-2670).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
The membrane-binding domain of a 23-kDa G-protein is carboxyl methylated   总被引:3,自引:0,他引:3  
We have purified to homogeneity a 23-kDa protein from bovine brain membranes using [35S]guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) binding as an assay. GTP gamma S binding to the purified protein is inhibited by GDP, GTP, and GTP analogs but not by cGMP, GMP, or adenine nucleotides, consistent with the nucleotide-binding behavior of members of the family of GTP-binding regulatory proteins. On addition of the methyl donor S-adenosyl-L-methionine and a methyltransferase present in bovine brain membranes, the purified 23-kDa G-protein is carboxyl methylated. When subjected to limited tryptic proteolysis, the 23-kDa protein is converted to a 22-kDa major fragment with concomitant release of a carboxyl methylated protein fragment of 1 kDa. Furthermore, when the cleaved protein is reconstituted with stripped bovine brain membranes, the small carboxyl-methylated fragment but not the 22-kDa major fragment is found to reassociate with the membranes. These results indicate that the site of carboxyl methylation and the region responsible for membrane anchoring, most likely, are localized to a small region at the carboxyl terminus. It is attractive to speculate that carboxyl methylation and membrane anchoring are interrelated processes and play key roles in the function of this small G-protein.  相似文献   

20.
Gel electrophoresis, lectin affinity blotting, and endoglycosidase H digestion have been used to analyze the glycoprotein profiles of bloodstream and procyclic forms of Trypanosoma brucei brucei and T. b. gambiense. Proteins resolved by polyacrylamide gel electrophoresis were stained with silver nitrate or electrophoretically transferred to nitrocellulose and probed with a horseradish peroxidase conjugate of either concanavalin A or wheat germ agglutinin. Silver staining showed, as expected, that the expression of the variant specific glycoprotein was restricted to the bloodstream forms. Twenty-three concanavalin A binding proteins were resolved in blots of bloodstream forms. Concanavalin A binding molecules corresponding in electrophoretic mobility to 21 of these 23 bloodstream form glycoproteins were detected in blots of procyclic forms. The two concanavalin A binding glycoproteins present only in bloodstream form extracts were variant specific glycoprotein and an 81-kDa protein designated glycoprotein 81b. One concanavalin A binding molecule of 84 kDa, glycoprotein 84p, was detected only in procyclic forms. The 19 major wheat germ agglutinin binding glycoproteins expressed by bloodstream forms were not detected in procyclic forms; only small proteins or protein fragments in procyclic form extracts bound wheat germ agglutinin. Incubating transferred proteins in endoglycosidase H eliminated subsequent binding of concanavalin A to most of the 22 common glycoproteins of bloodstream forms. Three major concanavalin A binding glycoproteins of bloodstream forms, variant specific glycoprotein, glycoprotein 81b, and a 110-kDa molecule (glycoprotein 110b), and other minor glycoproteins carried sugar chains that resisted endoglycosidase H digestion. In contrast, concanavalin A did not bind to any procyclic form glycoproteins, including a 110-kDa concanavalin A binding molecule (glycoprotein 110p) after endoglycosidase H treatment.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号