首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
目的 探讨肝部分切除术对成年鼠和老年鼠海马区胶质纤维酸性蛋白(GFAP)、S100β表达的影响.方法 雄性成年SD大鼠和老年SD大鼠分别随机分为老年对照组、麻醉组和手术组以及成年对照组、麻醉组和手术组.手术组行肝部分切除术.实验鼠在术后1、3、7d行Morris水迷宫后,处死实验鼠取海马行免疫组化检测.结果 GFAP在成年鼠和老年鼠基础水平有统计学差异(P=0.039,P=0.002).当增加的GFAP阳性细胞在成年鼠术后第3d(P=0.09)恢复后,老年鼠GFAP阳性细胞在术后第3d(P<0.001)仍然明显增加,在术后第7d(P=0.823)恢复.S100β与GFAP变化趋势相同.结论 手术创伤引起成年鼠和老年鼠海马区GFAP、S100β可逆性表达增多,与成年鼠相比,老年鼠GFAP、S100β表达上调更加明显,持续时间更长.  相似文献   

2.
采用放射性配基结合分析法,对大鼠大脑皮质的5-HT受体作了检定,并观察了老年大鼠(36月龄)大脑皮质中该受体的变化。证实大鼠大脑皮质存在着丰富的、高亲和力和单一结合位点的5-HT受体。老年大鼠大脑皮质中5-HT受体的数目较成年大鼠(3月龄)明显减少,但亲和力无改变。应用荧光分光技术测定了成年和老年大鼠脑干和大脑皮质5-HT含量,证实老年大鼠上述两个脑区的5-HT含量均有降低。本研究的结果提示,老年大鼠中枢5-HT系统的功能减低,这一变化可能与老年期的一些表现如睡眠障碍、体温低、记忆力减退和易患精神疾病等有关。  相似文献   

3.
采用AtlasTM Rat cDNA Expression Array建立遗传性癫痫易感性P77PMC大鼠和正常对照Wistar大鼠的海马与大脑皮质基因表达谱,用Eagle EyeⅡStill Video System(Stratagene)图象分析仪分析两者基因表达谱差异.结果发现海马和大脑皮质中各有15个差异表达基因.海马组织中,12个基因在P77PMC大鼠中高表达而在正常对照Wistar大鼠中低表达,3个基因在正常对照Wistar大鼠中高表达,而在P77PMC大鼠中低表达;大脑皮质中,13个基因在P77PMC大鼠中高表达,而在正常对照Wistar大鼠中低表达,2个基因在正常对照Wistar大鼠中高表达,而在P77PMC大鼠中低表达. 结果说明,P77PMC大鼠与正常对照Wistar大鼠海马和大脑皮质存在多个差异表达基因,这些差异表达基因可能在癫痫的发生中扮演了重要角色.  相似文献   

4.
目的:探讨慢性间断性低氧(CIH)大鼠认知功能的进行性变化及其与脑胆碱能神经元变化的关系。方法:成年雄性SD大鼠40只,随机均分为对照组、慢性间断性低氧1,3,5周组。应用Morris水迷宫检测认知功能的变化;利用HE染色在光镜下计数前额叶皮层和海马坏死神经元数;利用免疫组化方法检测前额叶皮层和海马胆碱乙酰转移酶(ChAT)阳性表达。结果:CIH各组大鼠学习记忆能力呈进行性下降趋势;与对照组比较,CIH5w组出现明显学习记忆功能障碍(P〈0.05)。CIH各组前额叶皮层和海马变性坏死神经元数增多,且随低氧时间延长,上述改变呈慢性进行性加重趋势。CIH各组前额叶皮层和海马ChAT阳性表达逐渐下降;与对照组比较,CIH3w组和CIH5w组前额叶皮层和海马ChAT阳性表达明显减少,差异具有显著性(P〈0.05)。结论:慢性间断性低氧大鼠认知功能进行性下降与前额叶皮层和海马神经元病理性损伤、ChAT表达进行性减少有关。  相似文献   

5.
目的观察创伤后应激障碍(PTSD)大鼠大脑皮质内质网应激标志物葡萄糖调节蛋白78(GRP78)的表达变化,探讨内质网分子伴侣在PTSD发病机制中的作用。方法采用国际认定的SPS方法刺激建立大鼠PTSD模型,取成年健康雄性Wistar大鼠60只,随机分为SPS模型的1d、4d、7d组及正常对照组,采用免疫荧光法、免疫印迹和逆转录--聚合酶链式反应检测大鼠前额皮质GRP 78的表达变化。结果 SPS刺激后大鼠前额皮质神经元细胞内GRP78于1d开始逐渐升高,7d时表达最多;GRP 78mRNA的变化与之相一致。结论大脑皮质GRP 78的表达变化,可能是PTSD大鼠情感行为异常的重要病理生理基础之一。  相似文献   

6.
目的:研究孕期饮用酒精对子代大鼠学习记忆及海马细胞周期依赖性蛋白激酶5(cdk5)表达的影响。方法:建立大鼠孕期饮用酒精模型,子代成年后,Y-型迷宫测试学习记忆成绩;聚合酶链式反应(RT-PCR)分析海马组织cdk5mRNA的表达;免疫荧光法检测子鼠海马区cdk5蛋白表达。结果:学习记忆测试结果显示孕期饮用酒精组子鼠学习记忆成绩比正常对照组和饮酒对照组明显下降;RT-PCR结果表明孕期饮用酒精组子鼠海马组织cdk5mRNA表达较正常对照组和饮酒对照组明显上升;免疫荧光结果显示孕期饮用酒精组子鼠海马区cdk5蛋白表达明显增加。结论:孕期饮用酒精对子代大鼠的神经损伤可能与cdk5蛋白表达的上调有关。  相似文献   

7.
对突触素(synaptophysin)、神经肽Y(NPY)在链尿佐菌素诱导的糖尿病模型大鼠额叶皮质和海马组织细胞中的表达进行研究,并利用UTHSCSA Image Tools 3.0进行图象分析,同时对其与学习记忆的关系进行探讨.选取成年Sprague-Dawley雄性大鼠20只,体重200-300g,随机分为两组.实验组用链尿佐菌素诱导产生糖尿病模型,并以血糖测定和尿糖水平测定进行筛选,另一组为空白对照组.继续饲养4周后,各组大鼠先进行Y型迷宫测试其学习记忆能力,然后取出脑组织,制做连续冰冻切片,对大脑额叶皮质和海马组织进行突触素、神经肽Y酶标免疫组织化学染色,观察这些蛋白在糖尿病大鼠和正常大鼠脑中表达的差异.结果发现糖尿病大鼠在Y型迷宫测试中,错误次数明显增多,糖尿病大鼠额叶皮质和海马神经元数目较正常对照组明显减少,神经细胞内突触素和神经肽Y的表达均较正常对照组明显下降.我们的研究显示突触素和神经肽Y在糖尿病大鼠大脑额叶皮质和海马组织内表达的减少可能与糖尿病组神经细胞突触数目及突触的可塑性下降、学习和记忆能力障碍有关.这可能是造成糖尿病性痴呆的一个因素.  相似文献   

8.
大鼠脑内caveolin-1蛋白的表达及其在分辨学习中的作用   总被引:5,自引:0,他引:5  
Zou W  Wang HX  Liu J  Zhang H  An LJ 《生理学报》2006,58(5):429-434
Caveolin-1(Cav—1)蛋白作为细胞质膜结构小窝(caveolae)的标志蛋白,在胆固醇运输、膜组装、信号转导和细胞转化过程中扮演重要的角色。为了探讨Cav-1蛋白在中枢神经系统可塑性及学习记忆中的作用,本文以Sprague—Dawley大鼠为实验对象,利用蛋白质免疫印迹杂交方法观察了Car-1蛋白在不同年龄大鼠脑内表达的特征,并研究了Y-迷宫训练前后Cav-1蛋白表达的变化。结果表明:(1)大鼠不同脑区Cav-1蛋白表达的年龄特征不同。海马内的表达属青年鼠最高,其次是老年鼠和幼年鼠;皮层内的表达属幼年鼠最高,其次是老年鼠,青年鼠最低;小脑内的表达无明显年龄差异。(2)Y-迷宫训练引起青年鼠海马和前额叶皮层内Cav-1蛋白的表达显著增加。结果提示,Cav-1蛋白与动物脑发育和学习记忆有密切关系,可能参与中枢可塑性的调节。  相似文献   

9.
目的:研究大鼠海马注射淀粉样β蛋白(β-amyloid,Aβ)后海马神经元凋亡及线粒体凋亡途径相关蛋白表达的变化,探讨其在阿尔茨海默病发病机制与病理改变中的作用.方法:SD大鼠36只随机分为正常对照组,生理盐水组和模型组.大鼠双侧海马注射Aβ1-42越建立AD模型,不同时间点Y迷宫进行行为学测试,TUNEL法检测海马神经元凋亡表达,western-blot检测海马细胞色素C、caspase-9蛋白表达.结果:模型组大鼠术后14天达到学会标准所需电击次数较生理盐水组和正常对照组增加(P<0.05),21天、28天增加更显著(P<0.01).模型组凋亡细胞数较正常对照组、生理盐水组明显增多(P<0.01).模型组大鼠海马细胞色素C与caspase-9蛋白表达明显高于生理盐水组与正常对照组(P<0.05).结论:Aβ1-42>海马注射通过激活线粒体凋亡途径诱导海马神经元凋亡.引起大鼠学习记忆能力损害,在AD的发病机制与病理进程中发挥重要作用.  相似文献   

10.
目的:观察神经干细胞对AD大鼠海马周围微环境中SNAP-25 表达及其认知功能的影响。方法:取成年雄性Wistar大鼠30 只,随机分为对照组、AD模型组、细胞移植组,每组10 只。采用凝聚态Abeta1-42 注射到大鼠海马组织内建立阿尔茨海默病(AD)大 鼠动物模型,通过Y 迷宫测试大鼠学习记忆能力和Western blot技术检测大鼠海马组织内SNAP-25 的表达。结果:Y 迷宫测试结 果显示术后4 周时AD模型组和细胞移植组大鼠学习记忆均低于对照组,与AD模型组比较,细胞移植组大鼠学习记忆能力明显 高于AD模型组,差异有统计学意义(P< 0.05);Western blot 检测结果显示术后4 周时AD模型组和细胞移植组大鼠海马组织内 SNAP-25 蛋白表达量均低于对照组,与AD 模型组比较,细胞移植组大鼠海马组织SNAP-25 蛋白表达量高于AD 模型组差异有 统计学意义(P<0.05)。结论:移植的NSCs 可改善AD 大鼠的学习和记忆能力,其机制可能是通过改变海马区周围的微环境并上 调了海马组织内SNAP-25 表达。  相似文献   

11.
We studied the effects of aggregated amyloid β-peptide Aβ25–35 on spatial memory and the spectral-correlational characteristics of EEG of both the dorsal hippocampus and the frontal cortex both in adult and aged rats at the early stage of Aβ25–35 action. Spatial memory was characterized using a novel cognitive test. A decrease in low-frequency theta band oscillations in the dorsal hippocampus and the frontal cortex was observed. The mean coefficient of EEG cross-correlation between these structures was significantly reduced at the early stage of Aβ25–35 action both in adult and aged rats. In addition, we found that one month after Aβ25–35 injection spatial memory was impaired. These results suggest that the decrease in low-frequency theta band oscillations and the weakening of binding between the dorsal hippocampus and the frontal cortex under the action of Aβ25–35 may be an underlying cause of the typical memory breakdown associated with the Alzheimer’s disease.  相似文献   

12.
Agrin is a synapse-organizing protein that is concentrated in embryonic motor neurons and the synaptic basal lamina of the neuromuscular junction. Agrin or closely related proteins are also associated with most other basal laminae. Here I report that the major agrin-like proteins from the nervous system and other tissues of the chicken are immunochemically and biochemically similar. Four major agrin-like proteins of approximately 60, 72, 80, and 90 kDa were identified on immunoblots of agrin preparations from both neural and non-neural tissues. Agrin-like proteins from embryonic chicken brain and adult kidney were similar in amino acid composition. Rabbit antisera against each of the kidney proteins labeled basement membranes of several tissues, as well as spinal cord motor neurons. These antibodies specifically precipitated and inhibited acetylcholine receptor (AChR)-aggregating activity from the chicken nervous system and Torpedo electric organ. Thus, the agrin-like proteins of non-neural tissues in the chicken are closely related to agrin from the nervous system. However, the AChR-aggregating activity of chicken agrin preparations differed depending on the tissue of origin. Agrin enriched by immunoaffinity chromatography from the central nervous system induced large numbers of AChR aggregates on cultured myotubes. In contrast, agrin preparations from other chicken tissues induced dramatically fewer and smaller AChR aggregates. The difference in biological activity between these agrin preparations may reflect differential inactivation or the existence of tissue- or cell-specific isoforms of agrin.  相似文献   

13.
Agrin is a motor neuron-derived factor that directs formation of the postsynaptic apparatus of the neuromuscular junction. Agrin is also expressed in the brain, raising the possibility that it might serve a related function at neuron-neuron synapses. Previously, we identified an agrin signaling pathway in central nervous system (CNS) neurons, establishing the existence of a neural receptor that mediates responses to agrin. As a step toward identifying this agrin receptor, we have characterized the minimal domains in agrin that bind and activate it. Structures required for agrin signaling in CNS neurons are contained within a 20-kD COOH-terminal fragment of the protein. Agrin signaling is independent of alternative splicing at the z site, but requires sequences that flank it because their deletion results in a 15-kD fragment that acts as an agrin antagonist. Thus, distinct regions within agrin are responsible for receptor binding and activation. Using the minimal agrin fragments as affinity probes, we also studied the expression of the agrin receptor on CNS neurons. Our results show that both agrin and its receptor are concentrated at neuron-neuron synapses. These data support the hypothesis that agrin plays a role in formation and/or function of CNS synapses.  相似文献   

14.
大鼠学习记忆能力与nov基因表达的关系   总被引:9,自引:0,他引:9  
Su BY  Cai WQ  Xiong Y  Zhang CG  Perbal B 《生理学报》2000,52(4):290-294
采用主动回避法进行大鼠学习记忆训练 ,选出学习成绩好和差的大鼠 ,用原位杂交、免疫细胞化学结合图像分析方法观察nov基因表达的差异。结果显示 ,novmRNA和NOV蛋白阳性神经元主要分布于海马、扣带皮质和联合皮质锥体层、基底神经节和下丘脑等脑区。好成绩组NOV蛋白免疫反应最强 ,阳性细胞最多 ,差成绩组nov基因的表达比假性条件反射组的表达稍强。novmRNA的表达在各组之间无明显的差异。以上结果提示 ,nov基因可能参与学习记忆的调控过程 ,这种调控发生在NOV蛋白翻译水平。  相似文献   

15.
Insulin-like growth factor-I (IGF-I) is a multifunctional polypeptide and has diverse effects on brain functions. In the present study, we compared IGF-I and IGF-I receptor (IGF-IR) immunoreactivity and their protein levels between the adult (postnatal month 6) and aged (postnatal month 24) mouse hippocampus and somatosensory cortex. In the adult hippocampus, IGF-I immunoreactivity was easily observed in the pyramidal cells of the stratum pyramidale in the hippocampus proper and in the granule cells of the granule cell layer of the dentate gyrus. In the adult somatosensory cortex, IGF-I immunoreactivity was easily found in the pyramidal cells of layer V. In the aged groups, IGF-I expression was dramatically decreased in the cells. Like the change of IGF-I immunoreactivity, IGF-IR immunoreactivity in the pyramidal and granule cells of the hippocampus and in the pyramidal cells of the somatosensory cortex was also markedly decreased in the aged group. In addition, both IGF-I and IGF-IR protein levels were significantly decreased in the aged hippocampus and somatosensory cortex. These results indicate that the apparent decrease of IGF-I and IGF-IR expression in the aged mouse hippocampus and somatosensory cortex may be related to age-related changes in the aged brain.  相似文献   

16.
Poly(ADP-ribose) polymerase-1 (PARP-1, EC 2.4.2.30), a DNA-bound enzyme, plays a key role in genome stability, but after overactivation can also be responsible for cell death. The aim of the present study was to investigate PARP-1 activity in the hippocampus, brain cortex, striatum and cerebellum in adult (4 months) and aged (24 months) specific pathogen free Wistar rats and to correlate it with PARP-1 protein level and p53 expression. Moreover, the response of PARP-1 in adult and aged hippocampus to oxidative/genotoxic stress was evaluated. Our data indicated a statistically significant enhancement of PARP-1 activity in aged hippocampus and cerebral cortex comparing to adults without statistically significant changes in PARP-1 protein level. The expression of p53 mRNA was elevated in all aged brain parts with the exception of the cerebral cortex. Our data suggest that enhancement of PARP-1 activity and p53 expression in aged brain may indicate higher DNA damage. Our data also indicate that during excessive oxidative/genotoxic stress there is no response of PARP-1 activity in aged hippocampus in contrast to a significant enhancement of PARP-1 activity in adults which may have important consequences for the physiology and pathology of the brain.  相似文献   

17.
It is known that age is an important factor for postoperative cognitive dysfunction (POCD) and the patients with POCD suffer from the impairment of multiple brain regions and multiple brain functions. However currently animal studies of POCD mainly focus on hippocampus region, therefore in this study we performed partial hepatectomy in young adult and aged rats to test the questions (1) whether POCD in animals involves other brain areas besides hippocampus; (2) how age influences POCD of young adult and aged animals. We found that (1) in young adult rats, the memory was not significantly affected (P>0.05) 1d, 3d and 7d after partial hepatectomy, but was significantly impaired (p<0.001) in aged rats 1d and 3d post-surgery; (2) in young adult rats, the surgery did not significantly affect the densities of dendritic spines of neurons at CA1, dentate gyrus (DG) and cingulate cortex (P>0.05, respectively) 1d and 3d post-surgery, but the spine densities at CA1 and DG of aged rats were significant reduced 1d and 3d post-surgery (p<0.001, respectively), however this didn’t happen at cingulate cortex (P>0.05); (3) In young adult rats, surgery didn’t affect the activation of microglia and levels of TNF-α and IL-1β at hippocampus (P>0.05), but significantly activated microglia and increased levels of TNF-α and IL-1β at hippocampus of aged rats (P<0.05). Our data suggest that (1) partial hepatectomy-induced POCD mainly involves hippocampus impairments, and (2) differential loss of neuronal dendritic spines and neuroinflammation at hippocampus are most likely the mechanism for the formation of POCD in aged rats.  相似文献   

18.
We assayed N-methyl-d-aspartate (NMDA) receptors [3H]3-(2-carboxypiperazin-4-yl)propyl-1-phosphonic acid ([3H]CPP) bindings) and evaluated their distribution in the brain by quantitative autoradiography in young adult and aged rats. In the young adult rats, NMDA receptors were present at relatively high concentrations in the cerebral cortex and hippocampus. In the aged rats, NMDA receptors were decreased in the nealy all areas of the brain, especially in the cerebral cortex and hippocampus. Chronic administration of bifemelane hydrochloride, a drug for sequela of cerebrovascular diseased, at a dose of 15 mg/kg/day for 14 days, markedly attenuated these decrease in NMDA receptors. Since NMDA receptors are considered to be involved in memory and learning processes, our results suggest that bifemelane hydrochloride may be applicable to the treatment of disturbed memory and learning.  相似文献   

19.
Hilgenberg LG  Su H  Gu H  O'Dowd DK  Smith MA 《Cell》2006,125(2):359-369
Agrin, through its interaction with the receptor tyrosine kinase MuSK, mediates accumulation of acetylcholine receptors (AChR) at the developing neuromuscular junction. Agrin has also been implicated in several functions in brain. However, the mechanism by which agrin exerts its effects in neural tissue is unknown. Here we present biochemical evidence that agrin binds to the alpha3 subunit of the Na+/K+-ATPase (NKA) in CNS neurons. Colocalization with agrin binding sites at synapses supports the hypothesis that the alpha3NKA is a neuronal agrin receptor. Agrin inhibition of alpha3NKA activity results in membrane depolarization and increased action potential frequency in cortical neurons in culture and acute slice. An agrin fragment that acts as a competitive antagonist depresses action potential frequency, showing that endogenous agrin regulates native alpha3NKA function. These data demonstrate that, through its interaction with the alpha3NKA, agrin regulates activity-dependent processes in neurons, providing a molecular framework for agrin action in the CNS.  相似文献   

20.
Fluoride and arsenic are two common inorganic contaminants in drinking water that are associated with impairment in child development and retarded intelligence. The present study was conducted to explore the effects on spatial learning, memory, glutamate levels, and group I metabotropic glutamate receptors (mGluRs) expression in the hippocampus and cortex after subchronic exposure to fluoride, arsenic, and a fluoride and arsenic combination in rats. Weaned male Sprague-Dawley rats were assigned to four groups. The control rats drank tap water. Rats in the three exposure groups drank water with sodium fluoride (120 mg/L), sodium arsenite (70 mg/L), and a sodium fluoride (120 mg/L) and sodium arsenite (70 mg/L) combination for 3 months. Spatial learning and memory was measured in Morris water maze. mGluR1 and mGluR5 mRNA and protein expression in the hippocampus and cortex was detected using RT-PCR and Western blot, respectively. Compared with controls, learning and memory ability declined in rats that were exposed to fluoride and arsenic both alone and combined. Combined fluoride and arsenic exposure did not have a more pronounced effect on spatial learning and memory compared with arsenic and fluoride exposure alone. Compared with controls, glutamate levels decreased in the hippocampus and cortex of rats exposed to fluoride and combined fluoride and arsenic, and in cortex of arsenic-exposed rats. mGluR5 mRNA and protein expressions in the hippocampus and mGluR5 protein expression in the cortex decreased in rats exposed to arsenic alone. Interestingly, compared with fluoride and arsenic exposure alone, fluoride and arsenic combination decreased mGluR5 mRNA expression in the cortex and protein expression in the hippocampus, suggesting a synergistic effect of fluoride and arsenic. These data indicate that fluoride and arsenic, either alone or combined, can decrease learning and memory ability in rats. The mechanism may be associated with changes of glutamate level and mGluR5 expression in cortex and hippocampus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号