首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Polyamine profiles of 91 pectolytic and other plant-associated strains from 30 taxa of the Enterobacteriaceae were obtained by gradient high performance liquid chromatography (HPLC). Pectobacterium carotovorum, basonym Erwinia carotovora, contained a high amount of putrescine and less diaminopropane. Diaminopropane was absent in Pectobacterium chrysanthemi, basonym E. chrysanthemi, whereas cadaverine was present in addition to the major compound putrescine. This chemotaxonomic difference reflects the deepest phylogenetic branching point within the recently emended genus Pectobacterium which lies between the two species P. carotovorum and P. chrysanthemi. Both important soft rot pathogens are easily distinguishable from each other and from the type species of the genus Erwinia as diaminopropane is the only major polyamine compound in E. amylovora. Chemotaxonomic heterogeneity is also emerging with respect to DYE's Amylovora group proposed in an early phytopathological concept.  相似文献   

2.
The mRNA for a major outer membrane lipoprotein from Escherichia coli was found to hybridize specifically with one of the EcoRI and one of the HindIII restriction endonuclease-generated fragments of total DNA from nine bacteria in the family Enterobacteriaceae: E. coli, Shigella dysenteriae, Salmonella typhimurium, Citrobacter freundii, Klebsiella aerogenes, Enterobacter aerogenes, Edwardsiella tarda, Serratia marcescens, and Erwinia amylovora. However, among the Enterobacteriaceae, DNA from two species of Proteus (P. mirabilis and P. morganii) did not contain any restriction endonuclease fragments that hybridized with the E. coli lipoprotein mRNA. Furthermore, no hybrid bands were detected in four other gram-negative bacteria outside the family Enterobacteriaceae: Pseudomonas aeruginosa, Acinetobacter sp. HO1-N, Caulobacter crescentus, and Myxococcus xanthus. Envelope fractions from all bacteria in the family Enterobacteriaceae tested above cross-reacted with antiserum against the purified E. coli free-form lipoprotein in the Ouchterlony immunodiffusion test. Both species of Proteus, however, gave considerably weaker precipitation lines, in comparison with the intense lines produced by the other members of the family. All of the above four bacteria outside the family Enterobacteriaceae did not cross-react with anti-E. coli lipoprotein serum. From these results, the rate of evolutionary changes in the lipoprotein gene seems to be closely related to that observed for various soluble enzymes of the Enterobacteriaceae.  相似文献   

3.
Genes coding for lysozyme-inhibiting proteins (Ivy) were cloned from the chromosomes of the plant pathogens Erwinia amylovora and Erwinia pyrifoliae. The product interfered not only with activity of hen egg white lysozyme, but also with an enzyme from E. amylovora phage ΦEa1h. We have expressed lysozyme genes from the genomes of three Erwinia species in Escherichia coli. The lysozymes expressed from genes of the E. amylovora phages ΦEa104 and ΦEa116, Erwinia chromosomes and Arabidopsis thaliana were not affected by Ivy. The enzyme from bacteriophage ΦEa1h was fused at the N- or C-terminus to other peptides. Compared to the intact lysozyme, a His-tag reduced its lytic activity about 10-fold and larger fusion proteins abolished activity completely. Specific protease cleavage restored lysozyme activity of a GST-fusion. The bacteriophage-encoded lysozymes were more active than the enzymes from bacterial chromosomes. Viral lyz genes were inserted into a broad-host range vector, and transfer to E. amylovora inhibited cell growth. Inserted in the yeast Pichia pastoris, the ΦEa1h-lysozyme was secreted and also inhibited by Ivy. Here we describe expression of unrelated cloned 'silent' lyz genes from Erwinia chromosomes and a novel interference of bacterial Ivy proteins with a viral lysozyme.  相似文献   

4.
The plant pathogen Erwinia pyrifoliae has been classified as a separate species from Erwinia amylovora based in part on differences in molecular properties. In this study, these and other molecular properties were examined for E. pyrifoliae and for additional strains of E. amylovora, including strains from brambles (Rubus spp.). The nucleotide composition of the internal transcribed spacer (ITS) region was determined for six of the seven 16S-23S rRNA operons detected in these species with a 16S rRNA gene probe. Each species contained four operons with a tRNA(Glu) gene and two with tRNA(Ile) and tRNA(Ala) genes, and analysis of the operons from five strains of E. amylovora indicated a high degree of ITS variability among them. One tRNA(Glu)-containing operon from E. pyrifoliae Ep1/96 was identical to one in E. amylovora Ea110, but three tRNA(Glu) operons and two tRNA(Ile) and tRNA(Ala) operons from E. pyrifoliae contained unique nucleotide changes. When groEL sequences were used for species-specific identification, E. pyrifoliae and E. amylovora were the closest phylogenetic relatives among a set of 12 bacterial species. The placement of E. pyrifoliae distinct from E. amylovora corroborated molecular hybridization data indicating low DNA-DNA similarity between them. Determination of the nucleotide sequence of plasmid pEP36 from E. pyrifoliae Ep1/96 revealed a number of presumptive genes that matched genes previously found in pEA29 from E. amylovora and similar organization for the genes and origins of replication. Also, pEP36 and pEA29 were incompatible with clones containing the reciprocal origin regions. Finally, the ColE1-like plasmid pEP2.6 from strain Ep1/96 contained sequences found in small plasmids in E. amylovora strains IL-5 and IH3-1.  相似文献   

5.
The episomic element F'lac(+) was transferred, probably by conjugation, from Escherichia coli to Lac(-) strains of Erwinia herbicola, Erwinia amylovora, and Erwinia chrysanthemi (but not to several other Erwinia spp. In preliminary trials). The lac genes in the exconjugants of the Erwinia spp. showed varying degrees of stability depending on the strain (stable in E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but markedly unstable in E. chrysanthemi strain EC16). The lac genes and the sex factor (F) were eliminated from the exconjugants by treatment with acridine orange, thus suggesting that both lac and F are not integrated in the Erwinia exconjugants. All of the tested Lac(+) exconjugants of E. herbicola strains Y46 and Y74 and E. amylovora strain EA178, but not of E. chrysanthemi strain EC 16, were sensitive to the F-specific phage M13. The heterogenotes (which harbored F'lac(+)) of E. herbicola strains Y46 and Y74, E. amylovora strain EA178, and E. chrysanthemi strain EC16 were able to transfer lac genes by conjugation to strains of E. herbicola, E. amylovora, E. chrysanthemi, Escherichia coli, and Shigella dysenteriae. The frequency of such transfer from Lac(+) exconjugants of Erwinia spp. was comparable to that achieved by using E. coli F'lac(+) as donors, thus indicating the stability, expression, and restriction-and-modification properties of the sex factor (F) in Erwinia spp.  相似文献   

6.
In order to determine a possible genomic divergence of Erwinia amylovora'fruit tree' and raspberry strains from North America, several isolates were differentiated by pulsed-field gel electrophoresis (PFGE) analysis, the size of short DNA sequence repeats (SSRs) and the nucleotide and deduced amino acid sequences of their hrpN genes. By PFGE analysis European strains are highly related, whereas strains from North America were diverse and were further distinguished by the SSR numbers from plasmid pEA29. The E. amylovora strains from Europe showed identical HrpN sequences in contrast to the American isolates from fruit trees and raspberry. Those were related to each other, but distinguishable by their HrpN patterns. The Asian pear pathogens differed in HrpN among each other and from E. amylovora. Erwinia pyrifoliae isolates and the Erwinia strains from Japan were ordered via their HrpN sequences in agreement with the PFGE patterns. For all three pathogens, dendrograms from PFGE and sequence data indicate an evolutionary diversity within the species in spite of a genetic conservation for parts of the hrpN genes suggesting a long persistence of the Asian pear pathogens in Korea and Japan as well as of fire blight in North America. Some of the divergent American E. amylovora isolates share PFGE patterns with the relatively uniform European strains.  相似文献   

7.
Erwinia amylovora, the causative agent of fire blight, was identified independently from the common plasmid pEA29 by three different PCR assays with chromosomal DNA. PCR with two primers was performed with isolated DNA and with whole cells, which were directly added to the assay mixture. The oligonucleotide primers were derived from the ams region, and the PCR product comprised the amsB gene, which is involved in exopolysaccharide synthesis. The amplified fragment of 1.6 kb was analyzed, and the sequence was found to be identical for two E. amylovora strains. The identity of the PCR products was further confirmed by restriction analysis. The 1.6-kb signal was also used for detection of the fire blight pathogen in the presence of other plant-associated bacteria and in infected plant tissue. For further identification of isolated strains, the 16S rRNA gene of E. amylovora and other plant-associated bacteria was amplified and the products were digested with the restriction enzyme HaeIII. The pattern obtained for E. amylovora was different from that of other bacteria. The sequence of the 16S rRNA gene was determined from a cloned fragment and was found to be closely related to the sequences of Escherichia coli and other Erwinia species. Finally, arbitrarily primed PCR with a 17-mer oligonucleotide derived from the sequence of transposon Tn5 produced a unique banding pattern for all E. amylovora strains investigated. These methods expand identification methods for E. amylovora, which include DNA hybridization and a PCR technique based on plasmid pEA29.  相似文献   

8.
RcsB belongs to a family of positive regulators of exopolysaccharide synthesis in various enterobacteria. The rcsB gene of the fire blight pathogen Erwinia amylovora was cloned by PCR amplification with consensus primers, and its role in exopolysaccharide (EPS) synthesis was investigated. Its overexpression from high-copy-number plasmids stimulated the synthesis of the acidic EPS amylovoran and suppressed expression of the levan-forming enzyme levansucrase. Inactivation of rcsB by site-directed mutagenesis created mutants that were deficient in amylovoran synthesis and avirulent on host plants. In addition, a cosmid which complemented rcsB mutants was selected from a genomic library. The spontaneous E. amylovora mutant E8 has a similar phenotype and was complemented by the cloned rcsB gene. The rcsB region of strain E8 was also amplified by PCR, and the mutation was characterized as a nine-nucleotide deletion at the start of the rcsB gene. Nucleotide sequence analysis of the E. amylovora rcsB region and the predicted amino acid sequence of RcsB revealed extensive homology to rcsB and the encoded protein of other bacteria such as Escherichia coli and Erwinia stewartii. In all three organisms, rcsB is localized adjacent to the rcsC gene, which is transcribed in the opposite direction of rcsB. The E. amylovora rcsB gene has now been shown to strongly affect the formation of disease symptoms of a plant pathogen.  相似文献   

9.
Many pathogenic and epiphytic bacteria isolated from apples and pears belong to the genus Erwinia; these include the species E. amylovora, E. pyrifoliae, E. billingiae, E. persicina, E. rhapontici and E. tasmaniensis. Identification and classification of freshly isolated bacterial species often requires tedious taxonomic procedures. To facilitate routine identification of Erwinia species, we have developed a PCR method based on species-specific oligonucleotides (SSOs) from the sequences of the housekeeping genes recA and gpd. Using species-specific primers that we report here, differentiation was done with conventional PCR (cPCR) and quantitative PCR (qPCR) applying two consecutive primer annealing temperatures. The specificity of the primers depends on terminal Single Nucleotide Polymorphisms (SNPs) that are characteristic for the target species. These PCR assays enabled us to distinguish eight Erwinia species, as well as to identify new Erwinia isolates from plant surfaces. When performed with mixed bacterial cultures, they only detected a single target species. This method is a novel approach to classify strains within the genus Erwinia by PCR and it can be used to confirm other diagnostic data, especially when specific PCR detection methods are not already available. The method may be applied to classify species within other bacterial genera.  相似文献   

10.
Fire blight has spread from North America to New Zealand, Europe, and the Mediterranean region. We were able to differentiate strains from various origins with a novel PCR method. Three Single Nucleotide Polymorphisms (SNPs) in the Erwinia amylovora genome were characteristic of isolates from North America and could distinguish them from isolates from other parts of the world. They were derived from the galE, acrB, and hrpA genes of strains Ea273 and Ea1/79. These genes were analyzed by conventional PCR (cPCR) and quantitative PCR (qPCR) with differential primer annealing temperatures. North-American E. amylovora strains were further differentiated according to their production of L: -2,5-dihydrophenylalanine (DHP) as tested by growth inhibition of the yeast Rhodotorula glutinis. E. amylovora fruit tree (Maloideae) and raspberry (rubus) strains were also differentiated by Single Strand Conformational Polymorphism analysis. Strains from the related species Erwinia pyrifoliae isolated in Korea and Japan were all DHP positive, but were differentiated from each other by SNPs in the galE gene. Differential PCR is a rapid and simple method to distinguish E. amylovora as well as E. pyrifoliae strains according to their geographical origin.  相似文献   

11.
A new sensitive and specific method for the detection of Erwinia amylovora was developed. The method is based on the detection of a chromosomal DNA sequence specific for this bacterial species and enables the detection of E. amylovora pathogenic strains, including the recent isolates that lack plasmid pEA29 and thus cannot be detected by the previously popular PCR methods based on the detection of this plasmid. Species-specific random amplified polymorphic DNA (RAPD) marker was identified, cloned, and sequenced, and sequence characterized amplified region (SCAR) primers for specific PCR were developed. The E. amylovora specific sequence, 1269 bp long, was amplified in polymerase chain reaction and detected with electrophoresis in agarose gel stained with ethidium bromide. Amplification with other bacterial species did not produce any PCR product detectable by electrophoresis. Belonging of the E. amylovora specific sequence to chromosomal DNA was confirmed by computer analysis of the E. amylovora genome. A consistent sensitivity limit of the method was 3 CFU/reaction, and in some cases it was possible to detect 0.6 CFU/reaction. Due to its high sensitivity and specificity, our method of E. amylovora detection is currently the most reliable, taking into account that the reliability of PCR methods based on plasmid pEA29 has been compromised by the isolation of pathogenic E. amylovora strains that lack this plasmid.  相似文献   

12.
Examination of the midgut bacteria of two Danish populations of healthy fifth instar turnip moth larvae, Scotia (=Agrotis) segetum, living on potatoes and celery gave the following results. The total number of living microorganisms in the midgut varied between 1.0 × 104 and 4.0 × 105. Larvae from celery in N. W. Zeeland always contained Streptococcus faecalis and six members of Enterobacteriaceae, viz., Citrobacter freundii, Klebsiella pneumoniae, Hafnia alvei, Proteus mirabilis, P. vulgaris, and Erwinia amylovora. In larvae from potatoes in E. Jutland, the species consistently present were Streptococcus faecalis and four species of Enterobacteriaceae, viz., Escherichia coli, Erwinia amylovora, E. carotovora var. atroseptica, and one other, probably a member of the E. carotovora group. Streptococcus faecalis is supposed to occur as a mutualist in the alimentary tract, suppressing Gram-positive bacteria.  相似文献   

13.
Stigma colonization by Erwinia amylovora is the crucial first step in the development of most fire blight infections in apple and pear trees. Suppression at this point of the disease process by antagonists of E. amylovora, such as Pantoea agglomerans (Erwinia herbicola) strain Eh1087, is a rational approach to control fire blight. We tested the hypothesis that the ability of E. amylovora to compete with Eh1087 for colonization of a stigma is reduced by the potential for Eh1087 to produce the phenazine antibiotic, d-alanylgriseoluteic acid (AGA). In competition experiments on the stigmas of apple flowers, E. amylovora was significantly less successful against Eh1087 (AGA+) than against EhDeltaAGA (AGA-). Further experiments to test the importance of pre-emptive colonization of the stigma by either the pathogen or the antagonist suggested that AGA production significantly enhanced the competitiveness of Eh1087 when it was applied at the same time or 24 h before the pathogen. We also found that pre-emptive stigma colonization by either the pathogen or the antagonist resulted in a population that was resilient to subsequent invasion by a second species suggesting that niche exclusion has a dominant influence on the dynamics of bacterial populations on stigmas.  相似文献   

14.
Autoinducers are important for cellular communication of bacteria. The luxS gene has a central role in the synthesis of autoinducer-2 (AI-2). The gene was identified in a shotgun library of Erwinia amylovora and primers designed for PCR amplification from bacterial DNA. Supernatants of several Erwinia amylovora strains were assayed for AI-2 activity with a Vibrio harveyi mutant and were positive. Many other plant-associated bacteria also showed AI-2 activity such as Erwinia pyrifoliae and Erwinia tasmaniensis. The luxS genes of several bacteria were cloned, sequenced, and complemented Escherichia coli strain DH5alpha and a Salmonella typhimurium mutant, both defective in luxS, for synthesis of AI-2. Assays to detect AI-2 activity in culture supernatants of several Pseudomonas syringae pathovars failed, which may indicate the absence of AI-2 or synthesis of another type. Several reporter strains did not detect synthesis of an acyl homoserine lactone (AHL, AI-1) by Erwinia amylovora, but confirmed AHL-synthesis for Erwinia carotovora ssp. atroseptica and Pantoea stewartii.  相似文献   

15.
J L Vanneste  J Yu    S V Beer 《Journal of bacteriology》1992,174(9):2785-2796
Erwinia herbicola Eh252 is a nonpathogenic epiphytic bacterium that reduces fire blight incidence when sprayed onto apple blossoms before inoculation with Erwinia amylovora, the causal agent of fire blight. Eh252 was found to produce on minimal medium an antibiotic that inhibited the growth of E. amylovora. This antibiotic was inactivated by histidine but not by Fe(II), was sensitive to proteolytic enzymes, and showed a narrow host range of activity. To determine the role of this antibiotic in the control of fire blight, two prototrophic Tn5-induced mutants, 10:12 and 17:12, that had lost their ability to inhibit E. amylovora on plates (Ant- mutants) were compared with the wild-type strain for their ability to suppress fire blight in immature pear fruits. The two mutants had single Tn5 insertions in the chromosome; although they grew in immature pear fruits at a rate similar to that of the wild-type strain, neither of these mutants suppressed fire blight as well as Eh252 did. The Tn5-containing fragment isolated from 10:12 was used to mutagenize Eh252 by marker exchange. Derivatives that acquired the Tn5-containing fragment by homologous recombination lost the ability to inhibit E. amylovora on minimal medium. Furthermore, the three Ant- derivatives tested were also affected in their ability to inhibit E. amylovora in immature pear fruits. The results obtained suggest that antibiotic production is a determinant of the biological control of E. amylovora by Eh252, but that another mechanism(s) is involved.  相似文献   

16.
Here, we present the genome of a strain of Erwinia amylovora, the fire blight pathogen, with pathogenicity restricted to Rubus spp. Comparative genomics of ATCC BAA-2158 with E. amylovora strains from non-Rubus hosts identified significant genetic differences but support the inclusion of this strain within the species E. amylovora.  相似文献   

17.
r.k. taylor and c.n. hale. 2003. AIMS: To determine the effect of cold storage on the survival of Erwinia amylovora. METHODS AND RESULTS: The survival of E. amylovora was assessed during storage at 2 degrees C. Populations of E. amylovora inoculated into phosphate-buffered saline remained static, whereas in nutrient media populations increased at low temperatures. In contrast, populations of E. amylovora on tissue in the apple calyx decreased during cold storage. CONCLUSIONS: Erwinia amylovora has the ability, in nutrient media, to multiply at low temperatures. However, populations of E. amylovora on tissue in the apple calyx decrease with the time spent in cold storage. SIGNIFICANCE AND IMPACT OF THE STUDY: Cold storage of apples will provide assurance that mature fruit from orchards, free of fire blight, or even with low levels of fire blight, may be exported with a negligible risk of introducing the disease into countries free of fire blight.  相似文献   

18.
19.
Erwinia amylovora causes fire blight disease of apple, pear, and other members of the Rosaceae. Here we present the first evidence for autoinduction in E. amylovora and a role for an N-acyl-homoserine lactone (AHL)-type signal. Two major plant virulence traits, production of extracellular polysaccharides (amylovoran and levan) and tolerance to free oxygen radicals, were controlled in a bacterial-cell-density-dependent manner. Two standard autoinducer biosensors, Agrobacterium tumefaciens NTL4 and Vibrio harveyi BB886, detected AHL in stationary-phase cultures of E. amylovora. A putative AHL synthase gene, eamI, was partially sequenced, which revealed homology with autoinducer genes from other bacterial pathogens (e.g., carI, esaI, expI, hsII, yenI, and luxI). E. amylovora was also found to carry eamR, a convergently transcribed gene with homology to luxR AHL activator genes in pathogens such as Erwinia carotovora. Heterologous expression of the Bacillus sp. strain A24 acyl-homoserine lactonase gene aiiA in E. amylovora abolished induction of AHL biosensors, impaired extracellular polysaccharide production and tolerance to hydrogen peroxide, and reduced virulence on apple leaves.  相似文献   

20.
RcsA is a positive activator of extracellular polysaccharide synthesis in the Enterobacteriaceae. A cosmid clone containing the rcsA gene from Erwinia amylovora was identified by its ability to restore mucoidy to an E. stewartii rcsA mutant. The rcsA gene was subcloned on a 2.2-kilobase HindIII-PstI fragment that hybridized with an E. stewartii rcsA probe and complemented E. stewartii and Escherichia coli rcsA mutants. In addition, the cloned E. amylovora rcsA gene stimulated expression of cps::lac fusions in E. coli and E. stewartii. The rcsA region was sequenced, and one open reading frame of 211 amino acids was found. The predicted protein sequence specified by this open reading frame was 55% homologous with that of the Klebsiella pneumoniae RcsA protein. Highly conserved regions in the 3' and 5' ends of the two proteins were observed. An E. amylovora rcsA mutant was constructed by Tn5 mutagenesis of the cloned gene followed by recombination of the mutation into the chromosome of wild-type strain Ea1/79. The synthesis of both amylovorin and levan was reduced by more than 90% in this mutant, indicating common regulation of the two polysaccharides by rcsA. Virulence of the rcsA mutant on immature pear fruit was diminished but not completely abolished.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号