首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Natural killer T cells (NKT cells) represent a subset of T lymphocytes that express natural killer (NK) cell surface markers. A subset of NKT cells, termed invariant NKT cells (iNKT), express a highly restricted T cell receptor (TCR) and respond to CD1d-restricted lipid ligands. iNKT cells are now appreciated to play an important role in linking innate and adaptive immune responses and have been implicated in infectious disease, allergy, asthma, autoimmunity, and tumor surveillance. Advances in iNKT identification and purification have allowed for the detailed study of iNKT activity in both humans and mice during a variety of chronic and acute infections. Comparison of iNKT function between non-pathogenic simian immunodeficiency virus (SIV) infection models and chronic HIV-infected patients implies a role for iNKT activity in controlling immune activation. In vitro studies of influenza infection have revealed novel effector functions of iNKT cells including IL-22 production and modulation of myeloid-derived suppressor cells, but ex vivo characterization of human iNKT cells during influenza infection are lacking. Similarly, as recent evidence suggests iNKT involvement in dengue virus pathogenesis, iNKT cells may modulate responses to a number of emerging pathogens. This Review will summarize current knowledge of iNKT involvement in responses to viral infections in both human and mouse models and will identify critical gaps in knowledge and opportunities for future study. We will also highlight recent efforts to harness iNKT ligands as vaccine adjuvants capable of improving vaccination-induced cellular immune responses.  相似文献   

2.
Invariant NKT cells (iNKT cells) have been reported to play a role not only in innate immunity but also to regulate several models of autoimmunity. Furthermore, iNKT cells are necessary for the generation of the prototypic eye-related immune regulatory phenomenon, anterior chamber associated immune deviation (ACAID). In this study, we explore the role of iNKT cells in regulation of autoimmunity to retina, using a model of experimental autoimmune uveitis (EAU) in mice immunized with a uveitogenic regimen of the retinal Ag, interphotoreceptor retinoid-binding protein. Natural strain-specific variation in iNKT number or induced genetic deficiencies in iNKT did not alter baseline susceptibility to EAU. However, iNKT function seemed to correlate with susceptibility and its pharmacological enhancement in vivo by treatment with iNKT TCR ligands at the time of uveitogenic immunization reproducibly ameliorated disease scores. Use of different iNKT TCR ligands revealed dependence on the elicited cytokine profile. Surprisingly, superior protection against EAU was achieved with alpha-C-GalCer, which induces a strong IFN-gamma but only a weak IL-4 production by iNKT cells, in contrast to the ligands alpha-GalCer (both IFN-gamma and IL-4) and OCH (primarily IL-4). The protective effect of alpha-C-GalCer was associated with a reduction of adaptive Ag-specific IFN-gamma and IL-17 production and was negated by systemic neutralization of IFN-gamma. These data suggest that pharmacological activation of iNKT cells protects from EAU at least in part by a mechanism involving innate production of IFN-gamma and a consequent dampening of the Th1 as well as the Th17 effector responses.  相似文献   

3.
A significant barrier to effective immune clearance of cancer is loss of antitumor cytotoxic T cell activity. Antibodies to block pro-apoptotic/downmodulatory signals to T cells are currently being tested. Because invariant natural killer T cells (iNKT) can regulate the balance of Th1/Th2 cellular immune responses, we characterized the frequencies of circulating iNKT cell subsets in 21 patients with melanoma who received the anti-CTLA4 monoclonal antibody tremelimumab alone and 8 patients who received the antibody in combination with MART-126–35 peptide-pulsed dendritic cells (MART-1/DC). Blood T cell phenotypes and functionality were characterized by flow cytometry before and after treatment. iNKT cells exhibited the central memory phenotype and showed polyfunctional cytokine production. In the combination treatment group, high frequencies of pro-inflammatory Th1 iNKT CD8+ cells correlated with positive clinical responses. These results indicate that iNKT cells play a critical role in regulating effective antitumor T cell activity.  相似文献   

4.
Host-residual invariant NK T cells attenuate graft-versus-host immunity   总被引:2,自引:0,他引:2  
Invariant NK T (iNKT) cells have an invariant TCR-alpha chain and are activated in a CD1d-restricted manner. They are thought to regulate immune responses and play important roles in autoimmunity, allergy, infection, and tumor immunity. They also appear to influence immunity after hemopoietic stem cell transplantation. In this study, we examined the role of iNKT cells in graft-vs-host disease (GVHD) and graft rejection in a mouse model of MHC-mismatched bone marrow transplantation, using materials including alpha-galactosylceramide, NKT cells expanded in vitro, and Jalpha18 knockout mice that lack iNKT cells. We found that host-residual iNKT cells constitute effector cells which play a crucial role in reducing the severity of GVHD, and that this reduction is associated with a delayed increase in serum Th2 cytokine levels. Interestingly, we also found that host-residual iNKT cause a delay in engraftment and, under certain conditions, graft rejection. These results indicate that host-residual iNKT cells attenuate graft-vs-host immunity rather than host-vs-graft immunity.  相似文献   

5.
Invariant Vα14 bearing natural killer T cells (iNKT) cells constitute a subset of lymphocytes that recognize lipid-based ligands presented by the non-classical MHC class I-like molecule CD1d and responds with rapid cytokine production. Despite their multiple implications in regulating immune responses, pertaining to cancer and auto-immunity, the molecular requirements for their development in the thymus are poorly understood. Here we discuss recent evidence that c-Myc mediates an intrathymic proliferation wave immediately following agonist selection of iNKT cells that is vital for the generation of mature iNKT cells in vivo. We review aspects of early iNKT ontogeny in light of our findings and speculate about possible mechanistic links controlling c-Myc activity in newly selected cells.  相似文献   

6.
Information regarding the functional role of the innate immune T cell, invariant natural killer T (iNKT) cells, in the pathophysiology of liver diseases continues to emerge. Results from animal studies suggest that iNKT cells can have divergent roles by specifically promoting the development of proinflammatory or anti-inflammatory responses in liver diseases. In this themes article, I discuss the critical evidence from animal models that demonstrate a vital role for iNKT cells in the pathophysiology of liver diseases with emphasis on viral, autoimmune, and toxin-induced liver diseases. Furthermore, I discuss the controversial issues (including iNKT cell apoptosis) that typify some of these studies. Finally, I highlight areas that require additional investigation.  相似文献   

7.
《Cytotherapy》2022,24(5):482-488
ObjectiveSystemic sclerosis (SSc) is a connective tissue disease with poorly understood pathogenesis and limited treatment options. Patient mortality is rooted predominantly in the development of pulmonary and cardiac complications. The overactivated immune system is assumed to sustain the inflammatory signature of this autoimmune disease. Here, we investigate the potential of immunoregulatory invariant natural killer T (iNKT) cells to inhibit proinflammatory B cell responses in an in vitro model of inflammation.MethodsB cells from healthy volunteers (n = 17) and patients with SSc (n = 15) were used for functional testing upon lipopolysaccharide (LPS) stimulation in a co-culture system with third-party iNKT cells. Cytokine production was measured with antibody-based immunoassays (ELISA) and intracellular cytokine staining.ResultsiNKT cells strongly inhibited the production of proinflammatory interleukin-6 by B cells upon stimulation with LPS in both healthy volunteers and patients with SSc. In a Transwell assay, cell contact between B cells and iNKT cells proved necessary for this inhibitory effect. Similarly, blocking of CD1d on the surface of B cells abolished the immunoregulatory effect of iNKT cells on B cells. B cell subsets with higher expression of CD1d, namely unswitched memory B cells, were more susceptible to iNKT cell inhibition.ConclusionOur in vitro data underline the potential of iNKT cells in the control of SSc and provide a rationale for the use of novel iNKT cell–based therapeutic strategies in the context of autoimmune diseases.  相似文献   

8.
Autoimmune responses are normally kept in check by immune-tolerance mechanisms, which include regulatory T cells. In recent years, research has focused on the role of a subset of natural killer T (NKT) cells - invariant NKT (iNKT) cells, which are a population of glycolipid-reactive regulatory T cells - in controlling autoimmune responses. Because iNKT cells strongly react with a marine-sponge-derived glycolipid, alpha-galactosylceramide (alpha-GalCer), it has been possible to specifically target and track these cells. As I discuss here, although preclinical studies have shown considerable promise for the development of treatment with alpha-GalCer as a therapeutic modality for autoimmune diseases, several obstacles need to be overcome before moving alpha-GalCer therapy from the bench to the bedside.  相似文献   

9.
Although invariant NKT (iNKT) cells play a regulatory role in the pathogenesis of autoimmune diseases and allergy, an initial trigger for their regulatory responses remains elusive. In this study, we report that a proportion of human CD4+ iNKT cell clones produce enormous amounts of IL-5 and IL-13 when cocultured with CD1d+ APC in the presence of IL-2. Such IL-5 bias was never observed when we stimulated the same clones with alpha-galactosylceramide or anti-CD3 Ab. Suboptimal TCR stimulation by plate-bound anti-CD3 Ab was found to mimic the effect of CD1d+ APC, indicating the role of TCR signaling for selective induction of IL-5. Interestingly, DNA microarray analysis identified IL-5 and IL-13 as the most highly up-regulated genes, whereas other cytokines produced by iNKT cells, such as IL-4 and IL-10, were not significantly induced. Moreover, iNKT cells from BALB/c mice showed similar IL-5 responses after stimulation with IL-2 ex vivo or in vivo. The iNKT cell subset producing IL-5 and IL-13 could play a major role in the development of allergic disease or asthma and also in the immune regulation of Th1 inflammation.  相似文献   

10.
CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.  相似文献   

11.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

12.
Invariant NKT (iNKT) cells have been implicated in the regulation of autoimmune diseases. In several models of type 1 diabetes, increasing the number of iNKT cells prevents the development of disease. Because CD8 T cells play a crucial role in the pathogenesis of diabetes, we have investigated the influence of iNKT cells on diabetogenic CD8 T cells. In the present study, type 1 diabetes was induced by the transfer of CD8 T cells specific for the influenza virus hemagglutinin into recipient mice expressing the hemagglutinin Ag specifically in their beta pancreatic cells. In contrast to previous reports, high frequency of iNKT cells promoted severe insulitis and exacerbated diabetes. Analysis of diabetogenic CD8 T cells showed that iNKT cells enhance their activation, their expansion, and their differentiation into effector cells producing IFN-gamma. This first analysis of the influence of iNKT cells on diabetogenic CD8 T cells reveals that iNKT cells not only fail to regulate but in fact exacerbate the development of diabetes. Thus, iNKT cells can induce opposing effects dependent on the model of type 1 diabetes that is being studied. This prodiabetogenic capacity of iNKT cells should be taken into consideration when developing therapeutic approaches based on iNKT cell manipulation.  相似文献   

13.
Wen X  Yang JQ  Kim PJ  Singh RR 《PloS one》2011,6(10):e26536
Marginal zone B cells (MZB) mount a rapid antibody response, potently activate naïve T cells, and are enriched in autoreactive B cells. MZBs express high levels of CD1d, the restriction element for invariant natural killer T cells (iNKT). Here, we examined the effect of iNKT cells on MZB cell activation and numbers in vitro and in vivo in normal and autoimmune mice. Results show that iNKT cells activate MZBs, but restrict their numbers in vitro and in vivo in normal BALB/c and C57/BL6 mice. iNKT cells do so by increasing the activation-induced cell death and curtailing proliferation of MZB cells, whereas they promote the proliferation of follicular B cells. Sorted iNKT cells can directly execute this function, without help from other immune cells. Such MZB regulation by iNKTs is mediated, at least in part, via CD1d on B cells in a contact-dependent manner, whereas iNKT-induced proliferation of follicular B cells occurs in a contact- and CD1d-independent manner. Finally, we show that iNKT cells reduce ‘autoreactive’ MZB cells in an anti-DNA transgenic model, and limit MZB cell numbers in autoimmune-prone (NZB×NZW)F1 and non-obese diabetic mice, suggesting a potentially new mechanism whereby iNKT cells might regulate pathologic autoimmunity. Differential regulation of follicular B cells versus potentially autoreactive MZBs by iNKT cells has important implications for autoimmune diseases as well as for conditions that require a rapid innate B cell response.  相似文献   

14.
Natural killer T cells expressing an invariant T cell antigen receptor (iNKT cells) are cells of the innate immune system. After recognizing glycolipid antigens presented by CD1d molecules on antigen presenting cells (APCs), iNKT cells rapidly produce large quantities of cytokines, thereby stimulating many types of cells. Recent studies have described several mechanisms of iNKT cell activation and the contribution of these cells to antimicrobial responses. iNKT cells can be activated by endogenous antigens and/or inflammatory cytokines from APCs. However, iNKT cells also recognize certain microbial glycolipids by their invariant T cell antigen receptor (TCR), and they contribute to pathogen clearance in certain microbial infections. These findings indicate that the iNKT TCR is useful for detecting certain microbial pathogens. Moreover, recent studies suggest that iNKT cell glycolipid antigens may be useful in antimicrobial therapy and vaccines.  相似文献   

15.
Vitamin D status changes with season, but the effect of these changes on immune function is not clear. In this study, we show that in utero vitamin D deficiency in mice results in a significant reduction in invariant NKT (iNKT) cell numbers that could not be corrected by later intervention with vitamin D or 1,25-dihydroxy vitamin D(3) (active form of the vitamin). Furthermore, this was intrinsic to hematopoietic cells, as vitamin D-deficient bone marrow is specifically defective in generating iNKT cells in wild-type recipients. This vitamin D deficiency-induced reduction in iNKT cells is due to increased apoptosis of early iNKT cell precursors in the thymus. Whereas both the vitamin D receptor and vitamin D regulate iNKT cells, the vitamin D receptor is required for both iNKT cell function and number, and vitamin D (the ligand) only controls the number of iNKT cells. Given the importance of proper iNKT cell function in health and disease, this prenatal requirement for vitamin D suggests that in humans, the amount of vitamin D available in the environment during prenatal development may dictate the number of iNKT cells and potential risk of autoimmunity.  相似文献   

16.
Stimulated by an agonistic ligand, alpha-galactosylceramide (alphaGalCer), invariant NKT (iNKT) cells are capable of both eliciting antitumor responses and suppressing autoimmunity, while they become anergic after an initial phase of activation. It is unknown how iNKT cells act as either activators or regulators in different settings of cellular immunity. We examined effects of alphaGalCer administration on autoimmune inflammation and characterized phenotypes and functional status of iNKT cells and dendritic cells in alphaGalCer-treated NOD mice. Although iNKT cells became and remained anergic after the initial exposure to their ligand, anergic iNKT cells induce noninflammatory DCs in response to alphaGalCer restimulation, whereas activated iNKT cells induce immunogenic maturation of DCs in a small time window after the priming. Induction of noninflammatory DCs results in the activation and expansion of islet-specific T cells with diminished proinflammatory cytokine production. The noninflammatory DCs function at inflammation sites in an Ag-specific fashion, and the persistence of noninflammatory DCs critically inhibits autoimmune pathogenesis in NOD mice. Anergic differentiation is a regulatory event that enables iNKT cells to transform from promoters to suppressors, down-regulating the ongoing inflammatory responses, similar to other regulatory T cells, through a ligand-dependent mechanism.  相似文献   

17.
In addition to their role in binding antigen, antibodies can regulate immune responses through interacting with Fc receptors (FcRs). In recent years, significant progress has been made in understanding the mechanisms that regulate the activity of IgG antibodies in vivo. In this Review, we discuss recent studies addressing the multifaceted roles of FcRs for IgG (FcgammaRs) in the immune system and how this knowledge could be translated into novel therapeutic strategies to treat human autoimmune, infectious or malignant diseases.  相似文献   

18.
NKT cells with an invariant Ag receptor (iNKT cells) represent a highly conserved and unique subset of T lymphocytes having properties of innate and adaptive immune cells. They have been reported to regulate a variety of immune responses, including the response to cancers and the development of autoimmunity. The development and activation of iNKT cells is dependent on self-Ags presented by the CD1d Ag-presenting molecule. It is widely believed that these self-Ags are glycosphingolipids (GSLs), molecules that contain ceramide as the lipid backbone. In this study, we used a variety of methods to show that mammalian Ags for mouse iNKT cells need not be GSLs, including the use of cell lines deficient in GSL biosynthesis and an inhibitor of GSL biosynthesis. Presentation of these Ags required the expression of CD1d molecules that could traffic to late endosomes, the site where self-Ag is acquired. Extracts of APCs contain a self-Ag that could stimulate iNKT cells when added to plates coated with soluble, rCD1d molecules. The Ag(s) in these extracts are resistant to sphingolipid-specific hydrolase digestion, consistent with the results using live APCs. Lyosphosphatidylcholine, a potential self-Ag that activated human iNKT cell lines, did not activate mouse iNKT cell hybridomas. Our data indicate that there may be more than one type of self-Ag for iNKT cells, that the self-Ags comparing mouse and human may not be conserved, and that the search to identify these molecules should not be confined to GSLs.  相似文献   

19.
CD1d-restricted NKT cells expressing invariant TCR alpha-chain rearrangements (iNKT cells) have been reported to be deficient in humans with a variety of autoimmune syndromes and in certain strains of autoimmune mice. In addition, injection of mice with alpha-galactosylceramide, a specific glycolipid agonist of iNKT cells, activates these T cells and ameliorates autoimmunity in several different disease models. Thus, deficiency and reduced function in iNKT cells are considered to be risk factors for the development of such diseases. In this study we report that the development of systemic lupus erythematosus in (New Zealand Black (NZB) x New Zealand White (NZW))F(1) mice was paradoxically associated with an expansion and activation of iNKT cells. Although young (NZB x NZW)F(1) mice had normal levels of iNKT cells, these expanded with age and became phenotypically and functionally hyperactive. Activation of iNKT cells in (NZB x NZW)F(1) mice in vivo or in vitro with alpha-galactosylceramide indicated that the immunoregulatory role of iNKT cells varied over time, revealing a marked increase in their potential to contribute to production of IFN-gamma with advancing age and disease progression. This evolution of iNKT cell function during the progression of autoimmunity may have important implications for the mechanism of disease in this model of systemic lupus erythematosus and for the development of therapies using iNKT cell agonists.  相似文献   

20.
Invariant NK T (iNKT) cells are a distinct subset of T cells that rapidly produce an array of immunoregulatory cytokines upon activation. Cytokines produced by iNKT cells subsequently transactivate other leukocytes and elicit their respective effector functions. In this way, iNKT cells play a central role in coordinating the development of immune responses in a variety of settings. However, the mechanisms governing the quality of the iNKT cell response elicited remain poorly defined. To address whether changes in the CD1d expression pattern could regulate iNKT cell function, we generated a transgenic (Tg) mouse model in which thymocytes and peripheral T cells express high levels of CD1d (Lck-CD1d Tg+ mice). The expression of CD1d by T cells was sufficient to rescue development of iNKT cells in mice deficient of endogenous CD1d. However, the relative proportions of iNKT cell subsets in Lck-CD1d Tg+ mice were distinctly different from those in wild-type mice, suggesting an altered developmental program. Additionally, iNKT cells were hyporesponsive to antigenic stimulation in vivo. Interestingly, Lck-CD1d Tg+ mice develop liver pathology in the absence of any exogenous manipulation. The results of these studies suggest that changes to the CD1d expression program modulate iNKT cell development and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号