首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The Escherichia coli protein Fis has been shown to bind a single site in the recombination region of phage lambda and to stimulate excisive recombination in vitro (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). We demonstrate that mutant strains deficient in fis expression show dramatically reduced rates of lambda excision in vivo. Phage yields after induction of a stable lysogen are reduced more than 200-fold in fis cells. The defect observed in phage yield is not due to inefficient phage replication or lytic growth. Direct examination of excisive recombination products reveals a severe defect in the rate of recombination in the absence of Fis. The excision defect observed in fis cells can be fully reproduced in fis+ cells by using phages that lack the Fis binding site on attR, indicating that the entire stimulatory effect of Fis on excisive recombination is due to binding at that site.  相似文献   

2.
Information analysis of Fis binding sites.   总被引:15,自引:6,他引:9       下载免费PDF全文
Originally discovered in the bacteriophage Mu DNA inversion system gin, Fis (Factor for Inversion Stimulation) regulates many genetic systems. To determine the base frequency conservation required for Fis to locate its binding sites, we collected a set of 60 experimentally defined wild-type Fis DNA binding sequences. The sequence logo for Fis binding sites showed the significance and likely kinds of base contacts, and these are consistent with available experimental data. Scanning with an information theory based weight matrix within fis, nrd, tgt/sec and gin revealed Fis sites not previously identified, but for which there are published footprinting and biochemical data. DNA mobility shift experiments showed that a site predicted to be 11 bases from the proximal Salmonella typhimurium hin site and a site predicted to be 7 bases from the proximal P1 cin site are bound by Fis in vitro. Two predicted sites separated by 11 bp found within the nrd promoter region, and one in the tgt/sec promoter, were also confirmed by gel shift analysis. A sequence in aldB previously reported to be a Fis site, for which information theory predicts no site, did not shift. These results demonstrate that information analysis is useful for predicting Fis DNA binding.  相似文献   

3.
The phage-encoded Xis protein is the major determinant controlling the direction of recombination in phage lambda. Xis is a winged-helix DNA binding protein that cooperatively binds to the attR recombination site to generate a curved microfilament, which promotes assembly of the excisive intasome but inhibits formation of an integrative intasome. We find that lambda synthesizes surprisingly high levels of Xis immediately upon prophage induction when excision rates are maximal. However, because of its low sequence-specific binding activity, exemplified by a 1.9 A co-crystal structure of a non-specifically bound DNA complex, Xis is relatively ineffective at promoting excision in vivo in the absence of the host Fis protein. Fis binds to a segment in attR that almost entirely overlaps one of the Xis binding sites. Instead of sterically excluding Xis binding from this site, as has been previously believed, we show that Fis enhances binding of all three Xis protomers to generate the microfilament. A specific Fis-Xis interface is supported by the effects of mutations within each protein, and relaxed, but not completely sequence-neutral, binding by the central Xis protomer is supported by the effects of DNA mutations. We present a structural model for the 50 bp curved Fis-Xis cooperative complex that is assembled between the arm and core Int binding sites whose trajectory places constraints on models for the excisive intasome structure.  相似文献   

4.
The Escherichia coli protein Fis is remarkable for its ability to interact specifically with DNA sites of highly variable sequences. The mechanism of this sequence-flexible DNA recognition is not well understood. In a previous study, we examined the contributions of Fis residues to high-affinity binding at different DNA sequences using alanine-scanning mutagenesis and identified several key residues for Fis-DNA recognition. In this work, we investigated the contributions of the 15-bp core Fis binding sequence and its flanking regions to Fis-DNA interactions. Systematic base-pair replacements made in both half sites of a palindromic Fis binding sequence were examined for their effects on the relative Fis binding affinity. Missing contact assays were also used to examine the effects of base removal within the core binding site and its flanking regions on the Fis-DNA binding affinity. The results revealed that: (1) the − 7G and + 3Y bases in both DNA strands (relative to the central position of the core binding site) are major determinants for high-affinity binding; (2) the C5 methyl group of thymine, when present at the + 4 position, strongly hinders Fis binding; and (3) AT-rich sequences in the central and flanking DNA regions facilitate Fis-DNA interactions by altering the DNA structure and by increasing the local DNA flexibility. We infer that the degeneracy of specific Fis binding sites results from the numerous base-pair combinations that are possible at noncritical DNA positions (from − 6 to − 4, from − 2 to + 2, and from + 4 to + 6), with only moderate penalties on the binding affinity, the roughly similar contributions of − 3A or G and + 3T or C to the binding affinity, and the minimal requirement of three of the four critical base pairs to achieve considerably high binding affinities.  相似文献   

5.
Fis (factor for inversion stimulation) is a nucleoid-associated protein in Escherichia coli and other bacteria that stimulates certain site-specific DNA recombination events, alters DNA topology, and serves as a global gene regulator. DNA binding is central to the functions of Fis and involves a helix-turn-helix DNA binding motif located in the carboxy-terminal region. Specific DNA binding is observed at a number of sites exhibiting poorly related sequences. Such interactions require four critical base pairs positioned − 7, − 3, + 3, and + 7 nucleotides relative to the central nucleotide of a 15-bp core-binding site. To further understand how Fis interacts with DNA, we identified the positions of 14 DNA phosphates (based on ethylation interference assays) that are required for Fis binding. These are the 5′ phosphates of the nucleotides at positions − 8, − 7, − 6, + 1, + 2, + 3, and + 4 relative to the central nucleotide on both DNA strands. Another five phosphates located in the flanking regions from positions + 10 through + 14 can serve as additional contact sites. Using a combination of biochemical approaches and various mutant Fis proteins, we probed possible interactions between several key Fis residues and DNA bases or phosphates within a high-affinity binding site. We provide evidence in support of interactions between the R85 Fis residue and a highly conserved guanine at position − 7 and between T87 and the critical base pairs at − 3 and + 3. In addition, we present evidence in support of interactions between N84 and the phosphate 5′ to the base at + 4, between R89 and the − 7 phosphate, between T87 and the + 3 and + 4 phosphates, and between K90 and the + 3 phosphate. This work provides functional evidence for some of the most critical interactions between Fis and DNA required for a high binding affinity and demonstrates the large contribution made by numerous phosphates to the stability of the Fis-DNA complex.  相似文献   

6.
We show, using gel retardation, that crude Escherichia coli cell extracts contain a protein which binds specifically to DNA fragments carrying either end of the phage Mu genome. We have identified this protein as Fis, a factor involved in several site-specific recombinational switches. Furthermore, we show that induction of a Mucts62 prophage in a fis lysogen occurs at a lower temperature than that of a wild-type strain, and that spontaneous induction of Mucts62 is increased in the fis mutant. DNasel footprinting using either crude extracts or purified Fis indicate that binding on the left end of Mu occurs at a site which overlaps a weak transposase binding site. Thus, Fis may modulate Mu growth by influencing the binding of transposase, or other proteins, to the transposase binding site(s), in a way similar to its influence on Xis binding in phage lambda.  相似文献   

7.
8.
Fis is a small, basic, site-specific DNA-binding protein present in Escherichia coli. A Fis-binding site (F) has been previously identified in the attP recombination site of phage lambda (J. F. Thompson, L. Moitoso de Vargas, C. Koch, R. Kahmann, and A. Landy, Cell 50:901-908, 1987). The present study demonstrates that in the absence of the phage-encoded Xis protein, the binding of Fis to F can stimulate integrative recombination and therefore increase the frequency of lambda lysogeny in vivo. Additionally, Fis exerts a stimulatory effect on both integration and lysogeny that is independent of binding to the attP F site. Maintenance of the lysogenic state also appears to be enhanced in the presence of Fis, as shown by the increased sensitivity of lambda prophages encoding temperature-sensitive repressors to partial thermoinduction in a fis mutant. In the presence of Xis, however, Fis binding to F interferes with integration by stimulating excision, the competing back-reaction. Since Fis stimulates both excision and integration, depending on the presence or absence of Xis, respectively, we conclude that Xis binding to X1 is the key determinant directing the formation of an excisive complex.  相似文献   

9.
10.
R Osuna  S E Finkel    R C Johnson 《The EMBO journal》1991,10(6):1593-1603
The Fis protein of E. coli binds to a recombinational enhancer sequence that is required to stimulate Hin-mediated DNA inversion. Fis is also required for efficient lambda prophase excision in vivo. The properties of mutant Fis proteins were examined in vivo and in vitro with respect to their stimulatory effects on these two different site-specific DNA recombination reactions. Both recombination reactions are dramatically affected by mutations altering a helix-turn-helix DNA binding motif located near the Fis C-terminus (residues 74-93). These mutations invariably decrease DNA binding affinity and some cause reduced DNA bending. Mutations in the Fis N-terminal region reduce or abolish the stimulation of Hin-mediated DNA recombination by Fis, but have little or no effect on DNA binding or lambda excision. We conclude that there are at least two functionally distinct domains in Fis: a C-terminal DNA binding region that is required for promoting both DNA recombination reactions and an N-terminal region that is uniquely required for Hin-mediated inversion.  相似文献   

11.
12.
HK022, a temperate coliphage related to lambda, forms lysogens by inserting its DNA into the bacterial chromosome through site-specific recombination. The Escherichia coli Fis and phage Xis proteins promote excision of HK022 DNA from the bacterial chromosome. These two proteins also act during lysogenization to prevent a prophage rearrangement: lysogens formed in the absence of either Fis or Xis frequently carried a prophage that had suffered a site-specific internal DNA inversion. The inversion is a product of recombination between the phage attachment site and a secondary attachment site located within the HK022 left operon. In the absence of both Fis and Xis, the majority of lysogens carried a prophage with an inversion. Inversion occurs during lysogenization at about the same time as prophage insertion but is rare during lytic phage growth. Phages carrying the inverted segment are viable but have a defect in lysogenization, and we therefore suggest that prevention of this rearrangement is an important biological role of Xis and Fis for HK022. Although Fis and Xis are known to promote excision of lambda prophage, they had no detectable effect on lambda recombination at secondary attachment sites. HK022 cIts lysogens that were blocked in excisive recombination because of mutation in fis or xis typically produced high yields of phage after thermal induction, regardless of whether they carried an inverted prophage. The usual requirement for prophage excision was bypassed in these lysogens because they carried two or more prophages inserted in tandem at the bacterial attachment site; in such lysogens, viable phage particles can be formed by in situ packaging of unexcised chromosomes.  相似文献   

13.
We report evidence indicating that Fis protein plays a role in initiation of replication at oriC in vivo. At high temperatures, fis null mutants form filamentous cells, show aberrant nucleoid segregation, and are unable to form single colonies. DNA synthesis is inhibited in these fis mutant strains following upshift to 44 degrees C. The pattern of DNA synthesis inhibition upon temperature upshift and the requirement for RNA synthesis, but not protein synthesis, for resumed DNA synthesis upon downshift to 32 degrees C indicate that synthesis is affected in the initiation phase. fis mutations act synergistically with gyrB alleles known to affect initiation. oriC-dependent plasmids are poorly established and maintained in fis mutant strains. Finally, purified Fis protein interacts in vitro with sites in oriC. These interactions could be involved in mediating the effect of Fis on DNA synthesis in vivo.  相似文献   

14.
Fis binding in the dnaA operon promoter region.   总被引:2,自引:0,他引:2       下载免费PDF全文
The region between the rpmH and dnaA genes contains five promoters that divergently express the ribosomal protein L34 and the proteins of the dnaA operon, including DnaA, the beta clamp of DNA polymerase III holoenzyme, and RecF. The DNA-binding protein Fis was shown by the band shift assay to bind near the rpmHp2 and dnaAp2 promoters and by DNase I footprinting to bind to a single site in the dnaAp2 promoter overlapping the -35 and spacer sequences. There were no observable differences in Fis affinity or the angle of bending induced by Fis between methylated and unmethylated DNA fragments containing the Fis binding site in the dnaAp2 promoter. Fis directly or indirectly represses the expression of DnaA protein and the beta clamp of DNA polymerase III. A fis null mutant containing a dnaA-lacZ in-frame fusion had twofold greater beta-galactosidase activity than a fis wild-type strain, and induced expression of Fis eliminated the increase in activity of the fusion protein. A two- to threefold increase in the levels of DnaA and beta clamp proteins was found in a fis null mutant by immunoblot gel analysis.  相似文献   

15.
The Escherichia coli nucleoid-associated protein Fis was previously shown to be involved in bacteriophage lambda site-specific recombination in vivo, enhancing the levels of both integrative recombination and excisive recombination. While purified Fis protein was shown to stimulate in vitro excision, Fis appeared to have no effect on in vitro integration reactions even though a 15-fold drop in lysogenization frequency had previously been observed in fis mutants. We demonstrate here that E. coli Fis protein does stimulate integrative lambda recombination in vitro but only under specific conditions which likely mimic natural in vivo recombination more closely than the standard conditions used in vitro. In the presence of suboptimal concentrations of Int protein, Fis stimulates the rate of integrative recombination significantly. In addition, Fis enhances the recombination of substrates with nonstandard topologies which may be more relevant to the process of in vivo phage lambda recombination. These data support the hypothesis that Fis may play an essential role in lambda recombination in the host cell.  相似文献   

16.
Integrative recombination between specific attachment (att) regions of the bacteriophage lambda genome (attP) and the Escherichia coli genome (attB) results in a prophage flanked by the hybrid recombinant sites attL and attR. Each att site contains sequences to which proteins involved in recombination bind. Using site-directed mutagenesis, we have constructed a related set of point mutations within each of the five Int "arm-type" binding sites located within attP, attL and attR. Footprint analyses of binding demonstrate that mutating the arm-type sites significantly disrupts the binding of Int. Recombination analyses of mutant att sites in vivo and in vitro demonstrate that only three wild-type arm-type sites within attP are required for efficient integrative recombination. Similar analyses demonstrate that efficient excision can occur with two other different sets of wild-type arm-type sites in attL and attR. These results demonstrate that integrative and excisive recombination may involve interactions of Int with distinct and different subsets of arm-type sites.  相似文献   

17.
Bacteriophage lambda integrase (Int) catalyzes site-specific recombination between pairs of attachment (att) sites. The att sites contain weak Int-binding sites called core-type sites that are separated by a 7-bp overlap region, where cleavage and strand exchange occur. We have characterized a number of mutant Int proteins with substitutions at positions S282 (S282A, S282F, and S282T), S286 (S286A, S286L, and S286T), and R293 (R293E, R293K, and R293Q). We investigated the core- and arm-binding properties and cooperativity of the mutant proteins, their ability to catalyze cleavage, and their ability to form and resolve Holliday junctions. Our kinetic analyses have identified synapsis as the rate-limiting step in excisive recombination. The IntS282 and IntS286 mutants show defects in synapsis in the bent-L and excisive pathways, respectively, while the IntR293 mutants exhibit synapsis defects in both the excision and bent-L pathways. The results of our study support earlier findings that the catalytic domain also serves a role in binding to core-type sites, that the core contacts made by this domain are important for both synapsis and catalysis, and that Int contacts core-type sites differently among the four recombination pathways. We speculate that these residues are important for the proper positioning of the catalytic residues involved in the recombination reaction and that their positions differ in the distinct nucleoprotein architectures formed during each pathway. Finally, we found that not all catalytic events in excision follow synapsis: the attL site probably undergoes several rounds of cleavage and ligation before it synapses and exchanges DNA with attR.  相似文献   

18.
The abundant Fis nucleoid protein selectively binds poorly related DNA sequences with high affinities to regulate diverse DNA reactions. Fis binds DNA primarily through DNA backbone contacts and selects target sites by reading conformational properties of DNA sequences, most prominently intrinsic minor groove widths. High-affinity binding requires Fis-stabilized DNA conformational changes that vary depending on DNA sequence. In order to better understand the molecular basis for high affinity site recognition, we analyzed the effects of DNA sequence within and flanking the core Fis binding site on binding affinity and DNA structure. X-ray crystal structures of Fis-DNA complexes containing variable sequences in the noncontacted center of the binding site or variations within the major groove interfaces show that the DNA can adapt to the Fis dimer surface asymmetrically. We show that the presence and position of pyrimidine-purine base steps within the major groove interfaces affect both local DNA bending and minor groove compression to modulate affinities and lifetimes of Fis-DNA complexes. Sequences flanking the core binding site also modulate complex affinities, lifetimes, and the degree of local and global Fis-induced DNA bending. In particular, a G immediately upstream of the 15 bp core sequence inhibits binding and bending, and A-tracts within the flanking base pairs increase both complex lifetimes and global DNA curvatures. Taken together, our observations support a revised DNA motif specifying high-affinity Fis binding and highlight the range of conformations that Fis-bound DNA can adopt. The affinities and DNA conformations of individual Fis-DNA complexes are likely to be tailored to their context-specific biological functions.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号