首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The term “Puberty”, socially known as “Adolescence” is the transitional period from juvenile life to adulthood with functional maturation of gonads and genital organs. In this process, some remarkable developmental changes occur in morphology, physiology, and behavior leading to reproductive competence. Despite sufficient levels of gonadotropins (luteinizing hormone [LH] and follicle‐stimulating hormone [FSH]), robust spermatogenesis is not initiated during infancy in primates due to the immaturity of testicular Sertoli cells. Recent studies suggest that developmental competence augmenting functional activities of receptors for androgen and FSH is acquired by Sertoli cells somewhere during the prolonged hypo‐gonadotropic juvenile period. This juvenile phase is terminated with the re‐awakening of hypothalamic Kisspeptin/Neurokinin B/Dynorphin neurons which induce the release of the gonadotropin‐releasing hormone leading to reactivation of the hypothalamo‐pituitary‐testicular axis at puberty. During this period of pubertal development, FSH and LH facilitate further maturation of testicular cells (Sertoli cells and Leydig cells) triggering robust differentiation of the spermatogonial cells, ensuing the spermatogenic onset. This review aims to precisely address the evolving concepts of the pubertal regulation of hormone production with the corresponding cooperation of testicular cells for the initiation of robust spermatogenesis, which can be truly called “testicular puberty.”  相似文献   

2.
Basal serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH), and testosterone (T) and the responsiveness of these hormones to a challenge dose of luteinizing hormone releasing hormone (LHRH), were determined in juvenile, pubertal, and adult rhesus monkeys. The monkey gonadotrophins were analyzed using RIA reagents supplied by the World Health Organization (WHO) Special Programme of Human Reproduction. The FSH levels which were near the assay sensitivity in immature monkeys (2.4 +/- 0.8 ng/ml) showed a discernible increase in pubertal animals (6.4 +/- 1.8 ng/ml). Compared to other two age groups, the serum FSH concentration was markedly higher (16.1 +/- 1.8 ng/ml) in adults. Serum LH levels were below the detectable limits of the assay in juvenile monkeys but rose to 16.2 +/- 3.1 ng/ml in pubertal animals. When compared to pubertal animals, a two-fold increase in LH levels paralleled changes in serum LH during the three developmental stages. Response of serum gonadotrophins and T levels to a challenge dose of LHRH (2.5 micrograms; i.v.) was variable in the different age groups. The present data suggest: an asynchronous rise of FSH and LH during the pubertal period and a temporal correlation between the testicular size and FSH concentrations; the challenge dose of LHRH, which induces a significant rise in serum LH and T levels, fails to elicit an FSH response in all the three age groups; and the pubertal as compared to adult monkeys release significantly larger quantities of LH in response to exogenous LHRH.  相似文献   

3.
Moura AA  Erickson BH 《Theriogenology》2001,55(7):1469-1488
This article discusses the interactions between testis criteria and hormone profiles in Angus bulls with spermatogenic arrest. From 2 to 12 months (mo), testis diameter and hormone concentrations (basal and GnRH-stimulated) were evaluated in 27 bulls. At 12 mo, testes were excised. The z statistical test was used to determine whether parameters in three infertile bulls were different (P < 0.05) from those in 24 bulls with normal spermatouenesis. Bull 1 had Sertoli cell-only syndrome and Bull 2 had 90% of the tubules without germ cells and only A1 spermatogonia in the remaining. In Bull 3, germ cells did not advance beyond the primary spermatocyte stage. At 12 mo, testes of Bull 1 (99 g), Bull 2 (105 g) and Bull 3 (32 g) weighed less than those of normal bulls (251.5 +/- 56 g). Sertoli cell numbers/testis in Bull 1 (3.8 x 10(9)) and Bull 2 (4.3 x 10(9)) were not different from those in normal bulls (4.9 +/- 0.3 x 10(9)), but were reduced in Bull 3 (1.6 x 10(9)). The number of Leydig cells per gram of testis parenchyma was higher in Bull 1 (5.4 x 10(7)), Bull 2 (7.3 x 10(7)) and Bull 3 (19 x 10(7)) than in normal bulls (3.6 +/- 0.2 x 10(7)). In Bulls 1 and 2, basal and GnRH-stimulated LH, FSH, testosterone (T), androstenedione (delta4A) and estradiol 17-beta (E2) were within normal ranges at most ages. However, basal FSH and LH were greater in Bull 3 than in normal bulls, probably the causes for higher Leydig cell density. Also in the same animal, GnRH induced lower responses in LH and FSH, consequence of low basal T and E2 at some ages. Basal and GnRH-stimulated delta4A in Bull 3 were greater than in normal bulls after 6 mo, indicating impairment of Leydig cell differentiation. Deficiency in hormone secretion did not appear to be the cause of infertility, which points toward impaired gonadal responses or secretion of intratesticular factors, or genetic defects. Moreover, infertile animals may not always show pronounced changes in hormone secretion, but evaluation of testis growth around puberty can help identify those animals that do not have proper gonadal development.  相似文献   

4.
T Braun  P R Schofield    R Sprengel 《The EMBO journal》1991,10(7):1885-1890
Recombinant expression of truncated receptors for luteinizing hormone/chorionic gonadotropin (LH/CG) revealed that the amino-terminal leucine-rich repeats 1-8 of the extracellular receptor domain bind human chorionic gonadotropin (hCG) with an affinity (Kd = 0.72 +/- 0.2 nM) similar to that of the native LH/CG receptor (Kd = 0.48 +/- 0.05 nM). LH/CG receptor leucine-rich repeats 1-8 were used to replace homologous sequences in the closely related receptor for follicle stimulating hormone (FSH). Cells expressing such chimeric LH/CG-FSH receptors bind hCG and show elevated cylic AMP levels when stimulated by hCG but not by recombinant human FSH (rhFSH). Similarly, a chimeric LH/CG receptor in which leucine-rich repeats 1-11 originated from the FSH receptor is activated by rhFSH but not by hCG. For this chimera, no residual [125I] hCG binding was observed in a range of 2 pM to 10 nM. Our results demonstrate that specificity of gonadotropin receptors is determined by a high affinity hormone binding site formed by the amino-terminal leucine-rich receptor repeats.  相似文献   

5.
Testicular descent was prevented unilaterally in newborn rats by cutting the gubernaculum testis. At 100 days of age, the number of Leydig and Sertoli cells per testis, the concentration of receptors for LH, FSH, prolactin and GnRH, and endogenous concentrations of progesterone and testosterone were determined. The weight of the abdominal testes was reduced by 80%, but in spite of this they contained as many Sertoli (32.8 +/- 1.3 X 10(6), mean +/- s.e.m., n = 6) and Leydig (28.2 +/- 1.7 X 10(6) cells as did scrotal testes (32.1 +/- 2.5 X 10(6) and 24.3 +/- 1.2 X 10(6) respectively). The numbers of receptors for LH (3.2 +/- 0.2 and 1.0 +/- 0.2 pmol/testis, mean +/- s.e.m., n = 11), FSH (358 +/- 11.0 and 96.3 +/- 12.6 fmol/testis) and prolactin (535 +/- 32.7 and 92.4 +/- 13.2 fmol/testis) were reduced (P less than 0.001) in abdominal testes, but the number of GnRH receptors was unaffected (8.9 +/- 1.4 and 12.1 +/- 1.8 fmol/testis, n = 6). Testicular testosterone concentration (30.9 +/- 4.4 vs 15.4 +/- 3.2 ng/g, n = 11, P less than 0.001), but not that of progesterone (0.87 +/- 0.10 vs 1.01 +/- 0.21 ng/g), was decreased in abdominal testes. The decreased receptor and androgen values reflect functional disturbances in the abdominal testes. The changed local milieu within abdominal testes may reduce hormone receptor concentrations which are then involved in the observed Leydig cell dysfunction.  相似文献   

6.
Testicular growth is depressed in the genetically sterile male rat (hd/hd) relative to its LE phenotype littermates (by 50% and 73% at 27 and 90 days of age, respectively). Within the hd/hd testis, both the tubular and seminiferous tubule tissues are affected by the mutation. In addition, there is significantly less germ cell production from the primary spermatocyte stage of spermatogenesis onwards and the total number of Sertoli cells observed is less. In the intertubular tissue, the total volume and the total number of Leydig cells per testis is significantly less, but the mean volume of an average Leydig cell is not modified. The serum gonadotropin levels are higher in the hd/hd rat, whereas from 40 days of age onwards the level of testosterone is lower. The FSH and LH binding affinity constants are unchanged by the mutation; however, the total number of FSH binding sites per 10(6) Sertoli cells is lower while that of LH per 10(6) Leydig cells is greater. Indeed, it is likely that the lesser concentration of serum testosterone in the hd/hd rat is a result of a smaller number of Leydig cells since their individual function is not modified. The testicular androgen binding protein (ABP) content and the ABP output towards the epididymis are lower as a consequence of both a lesser number and an altered function of the Sertoli cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The transition from mitosis to meiosis is unique to germ cells. In murine embryonic ovaries and juvenile testes, retinoic acid (RA) induces meiosis via the stimulated by retinoic acid gene 8 (Stra8), but its molecular pathway requires elucidation. We present genetic evidence in vivo and in vitro that neuregulins (NRGs) are essential for the proliferation of spermatogonia and the initiation of meiosis. Tamoxifen (TAM) was injected into 14-day post-partum (dpp) Sertoli cell-specific conditional Nrg1(Ser-/-) mutant mice. TAM induced testis degeneration, suppressed BrdU incorporation into spermatogonia and pre-leptotene primary spermatocytes, and decreased and increased the number of STRA8-positive and TUNEL-positive cells, respectively. In testicular organ cultures from 5-6 dpp wild-type mice and cultures of their re-aggregated spermatogonia and Sertoli cells, FSH, RA [all-trans-retinoic acid (ATRA), AM580, 9-cis-RA] and NRG1 promoted spermatogonial proliferation and meiotic initiation. However, TAM treatment of testicular organ cultures from the Nrg1(Ser-/-) mutants suppressed spermatogonial proliferation and meiotic initiation that was promoted by FSH or AM580. In re-aggregated cultures of purified spermatogonia, NRG1, NRG3, ATRA and 9-cis-RA promoted their proliferation and meiotic initiation, but neither AM580 nor FSH did. In addition, FSH, RAs and NRG1 promoted Nrg1 and Nrg3 mRNA expression in Sertoli cells. These results indicate that in juvenile testes RA and FSH induced meiosis indirectly through Sertoli cells when NRG1 and NRG3 were upregulated, as NRG1 amplified itself and NRG3. The amplified NRG1 and NRG3 directly induced meiosis in spermatogonia. In addition, ATRA and 9-cis-RA activated spermatogonia directly and promoted their proliferation and eventually meiotic initiation.  相似文献   

8.
Today, many patients, who are often young, undergo total body irradiation (TBI) followed by bone marrow transplantation. This procedure can have serious consequences for fertility, but the long-term intratesticular effects of this treatment in primates have not yet been studied. Testes and epididymides of rhesus monkeys that received doses of 4-8.5 Gy of TBI at 2-4 yr of age were studied 3-8 yr after irradiation. In all irradiated monkeys, at least some seminiferous tubule cross-sections lacked germ cells, indicating extensive stem cell killing that was not completely repaired by enhanced stem cell renewal, even after many years. Testes totally devoid of germ cells were only found in monkeys receiving doses of 8 Gy or higher and in both monkeys that received two fractions of 6 Gy each. By correlating the percentage of repopulated tubules (repopulation index) with testicular weight, it could be deduced that considerable numbers of proliferating immature Sertoli cells were killed by the irradiation. Because of their finite period of proliferation, Sertoli cell numbers did not recover, and potential adult testis size decreased from approximately 23 to 13 g. Most testes showed some dilated seminiferous tubules, indicating obstructed flow of the tubular fluid at some time after irradiation. Also, in 8 of the 29 irradiated monkeys, aberrant, densely packed Sertoli cells were found. The irradiation did not induce stable chromosomal translocations in spermatogonial stem cells. No apparent changes were seen in the epididymides of the irradiated monkeys, and the size of the epididymis adjusted itself to the size of the testis. In the irradiated monkeys, testosterone and estradiol levels were normal, whereas FSH levels were higher and inhibin levels lower when testicular weight and spermatogenic repopulation were low. It is concluded that irradiation before adulthood has considerable long-term effects on the testis. Potential testis size is reduced, repopulation of the seminiferous epithelium is generally not complete, and aberrant Sertoli cells and dilated tubules are formed. The latter two phenomena may have further consequences at still longer intervals after irradiation.  相似文献   

9.
Partially purified inhibin from primate Sertoli cell culture medium (pSCl) suppresses both LH and FSH secretion from cultured rat pituitary cells stimulated with GnRH. To examine the mechanism of action of pSCl, we have measured steady state levels of mRNAs for the gonadotropin subunits in pituitary cell cultures exposed to 10 nM GnRH for 6 h in control or pSCl-containing medium (short term) and after 72-h pretreatment with pSCl or control medium (long term). Messenger RNA levels were determined by Northern analysis using specific cDNA probes for rat FSH beta, LH beta, and the common alpha-subunit. In the long term experiments, pSCl inhibited GnRH-stimulated release of FSH (47.4 +/- 3.3% of control), LH (69.2 +/- 2.3%), and free glycoprotein alpha-subunit (74.2 +/- 4.5%), and intracellular FSH declined to 88.4 +/- 3.5% of control. Concentrations of the subunit mRNAs were all decreased: FSH beta to 54.4 +/- 5.0%, LH beta to 79.6 +/- 9.4%, and alpha to 70.8 +/- 8.7% of control. In the short-term experiments, pSCl also suppressed FSH, LH, and alpha-subunit secretion to 75.9 +/- 3.6%, 79.5 +/- 2.1%, and 90.9 +/- 1.8% of control, respectively. Intracellular LH and alpha-subunit levels were significantly increased in cells treated for 6 h with GnRH and pSCl (155 +/- 18%, 145 +/- 14% of control), while FSH was comparable to control. After 6 h, pSCl selectively reduced the level of mRNA for FSH beta (56.5 +/- 5.8% of control).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Five early-treated and four late-treated prenatally androgenized and five normal female rhesus monkeys were studied to determine whether prenatal testosterone propionate exposure beginning Gestational Days 40-44 (early-treated) or 100-115 (late-treated) affects follicular steroidogenesis during recombinant human FSH (rhFSH) treatment. All monkeys underwent rhFSH injections, without human chorionic gonadotropin administration, followed by oocyte retrieval. Serum FSH, LH, estradiol (E2), progesterone (P), 17alpha-hydroxyprogesterone (17 OHP), androstenedione (A4), testosterone, and dihydrotestosterone were measured basally during rhFSH therapy and at oocyte retrieval. Follicle fluid (FF) sex steroids, oocyte fertilization, and embryo development were analyzed. Circulating FSH, E2, 17 OHP, A4, and dihydrotestosterone levels increased similarly in all females. Serum LH levels decreased from basal levels in normal and late-treated prenatally androgenized females but were unchanged in early-treated prenatally androgenized females. Serum P levels at oocyte retrieval were comparable with those before FSH treatment in all females. All prenatally androgenized females showed reduced FF levels of A4 and E2 but not P or dihydrotestosterone. Intrafollicular T concentrations also were significantly lower in late-treated compared with early-treated prenatally androgenized females or normal females. In early-treated prenatally androgenized females, but not the other female groups, intrafollicular A4 and E2 levels were reduced in follicles containing oocytes that failed fertilization or produced zygotes with cleavage arrest before or at the five- to eight-cell embryo stage. Therefore, in monkeys receiving rhFSH therapy alone without human chorionic gonadotropin administration, early prenatal androgenization reduced FF concentrations of E2 and A4 in association with abnormal oocyte development, without having an effect on P, testosterone, or dihydrotestosterone concentrations.  相似文献   

11.
The effect of nutrition on sexual development of bulls   总被引:1,自引:0,他引:1  
Most bulls that are managed for sale as yearlings are fed high-energy diets in the post-weaning period to maximize rates of gain in body weight. High-energy diets with adequate protein, vitamins and minerals result in a larger scrotal circumference at 1 y of age, however, part of this increase in size is likely due to scrotal fat. It is unclear whether testis size and spermatogenesis is significantly affected by nutritional intake in the post-weaning period. There are indications of an effect of calfhood nutrition on age at puberty and testis size. Scrotal circumference was smaller in yearling bulls raised by first-parity dams, compared to those raised by older dams. This may have been due to lower milk production by first-parity dams, an in utero effect, or both. The effect of reduced calfhood nutrition may be mediated through gonadotropin secretion. Calves destined to become later maturing bulls with smaller testes had lower amounts of LH secretion during the period of the early gonadotropin rise (8-16 wk of age). Furthermore, augmenting circulating LH concentrations at this time by treating calves with GnRH hastened pubertal development. In addition, FSH treatments in calfhood also increased scrotal circumference and hastened spermatogenesis. In that regard, FSH has been considered a main driver of Sertoli cell proliferation in prepubertal animals. Since Sertoli cell multiplication ceases at 20-25 wk of age in bulls, final testis size in bulls is likely determined in calfhood. Four experiments were done to investigate the effects of calfhood nutrition on pubertal development. These studies confirmed that superior calfhood nutrition augmented gonadotropin secretion (which is probably mediated by metabolic hormones); this resulted in larger testes at 1 y of age and an earlier onset of spermatogenesis.  相似文献   

12.
Testis cells of the toad Xenopus laevis were dissociated with collagenase and the cell suspension was enriched for steroidogenic cells by Percoll gradients. Results suggested that cells should be preincubated during a 6-h period before stimulation with gonadotropin. Our results indicate that a 2-h incubation period with gonadotropin was necessary to obtain a significant response. Furthermore, the cells can be maintained in a functional state longer than mammalian testis cells. Different gonadotropins were used to stimulate androgen production, and their effects were compared in both dissociated cells and testicular explants. Cells were more sensitive to luteinizing hormone (LH) and follicle stimulating hormone (FSH) than the explants (ED50LH = 0.041 +/- 0.003 micrograms for cells and 0.097 +/- 0.002 micrograms for explants: ED50FSH = 0.41 +/- 0.03 micrograms for cells and 0.63 +/- 0.03 micrograms for explants). Moreover, human chorionic gonadotropin (hCG) which only stimulates testicular explants at high doses, failed to stimulate the androgen production of dissociated cells; this indicates a low sensitivity of amphibian testis to hCG and a possible damaging effect of collagenase on the receptors of isolated cells.  相似文献   

13.
Cryptorchidism for 28 or 10 days resulted in a severe disruption of spermatogenesis (assessed histologically or by fertility tests), Sertoli cell function (assessed by seminiferous tubule fluid production after efferent duct ligation, ABP levels, binding of 125I-labelled FSH to testis homogenates and serum FSH levels) and Leydig cell function (assessed by serum LH and testosterone levels, in-vitro testosterone production, binding of 125I-labelled hCG). Orchidopexy after 28 days of cryptorchidism resulted in a poor recovery of spermatogenesis since the majority of tubules were lined by Sertoli cells and a few spermatogonia. No recovery occurred in the indicators of Sertoli and Leydig cell function. Orchidopexy after 10 days of cryptorchidism also resulted in a poor recovery of spermatogenesis, with a few animals showing partial recovery after 6 months. No recovery occurred in seminiferous tubule fluid production but partial recovery occurred in ABP content and production rate. Serum FSH, LH levels and in-vitro testosterone production by the testis remained elevated and did not change from the values found during cryptorchidism. Fertility testing at 6 months revealed a small number of rats in which fertility was restored although the number of embryos was lower than in controls. In this group of animals there was a significant improvement in a number of indicators of Sertoli cell and Leydig cell function. These data provide further evidence to link the changes in Sertoli cell and Leydig cell function to the germ cell complement present in the testis.  相似文献   

14.
To determine the relationship between germ cell degeneration or germ cell:Sertoli cell ratio and daily sperm production, testes were obtained during the months of May to July (breeding season) and November to January (nonbreeding season) from adult (4 to 20-yr-old) stallions with either high (n = 15) or low (n = 15) sperm production. Serum was assayed for concentrations of LH, FSH and testosterone. Testes were assayed for testosterone content and for the number of elongated spermatids, after which parenchymal samples were prepared for histologic assessment. Using morphometric procedures, the types and numbers of spermatogonia, germ cells and Sertoli cells were determined. High sperm producing stallions had greater serum testosterone concentration, total intratesticular testosterone content, testicular parenchymal weight, seminiferous epithelial height, diameter of seminiferous tubules, numbers of A and B spermatogonia per testis, number of Sertoli cells per testis, and number of B spermatogonia, late primary spermatocytes, round spermatids and elongated spermatids per Sertoli cell than low sperm producing stallions (P < 0.05). The number of germ cells (total number of all spermatocytes and spermatids in Stage VIII tubules) accommodated by Sertoli cells was reduced in low sperm producing stallions (18.6 +/- 1.3 germ cells/Sertoli cell) compared with that of high sperm producing stallions (25.4 +/- 1.3 germ cells/Sertoli cell; P < 0.001). The conversion from (yield between) early to late primary spermatocytes and round to elongated spermatids was less efficient for the low sperm producing stallions (P < 0.05). Increased germ cell degeneration during early meiosis and spermiogenesis and reduced germ cell:Sertoli cell ratio was associated with low daily sperm production. These findings can be explained either by a compromised ability of the Sertoli cells to support germ cell division and/or maturation or the presence of defects in germ cells that predisposed them to degeneration.  相似文献   

15.
The jaguar, like most wild felids, is an endangered species. Since there are few data regarding reproductive biology for this species, our main goal was to investigate basic aspects of the testis and spermatogenesis. Four adult male jaguars were utilized; to determine the duration of spermatogenesis, two animals received an intratesticular injection of H(3)-thymidine. Mean (+/-SEM) testis weight and the gonadosomatic index were 17.7+/-2.2g and 0.05+/-0.01%, respectively, whereas the seminiferous tubules and the Leydig cells volume density were 74.7+/-3.8 and 16.7+/-1.6%. Eight stages of spermatogenesis were characterized, according to the tubular morphology system and acrosome development. Each spermatogenic cycle and the entire spermatogenic process (based on 4.5 cycles) lasted approximately 12.8+/-0.01 and 57.7+/-0.07 d. The number of Sertoli and Leydig cells per gram of testis was 29+/-4x10(6) and 107+/-12x10(6). Based on the number of round spermatids per pachytene spermatocyte (2.8+/-0.3:1; meiotic index); significant cell loss (30%) occurred during the two meiotic divisions. There were approximately eight spermatids for each Sertoli cell (Sertoli cell efficiency), whereas the daily sperm production per gram of testis was 16.9+/-1.2x10(6). We expect that in the near future, the knowledge obtained in the present investigation will facilitate, utilizing germ cell transplantation, preservation of the germinal epithelium and the ability to generate sperm from jaguars in testes of domestic cats.  相似文献   

16.
To determine what changes occur in the activity of gonadotropin-releasing hormone (GnRH) neurons during pubertal development in primate species we tested the hypotheses that there are morphologic differences between GnRH-containing neurons in juvenile versus adult monkeys, and the low activity of the reproductive axis is governed by hypothalamic GnRH release in monkeys prior to puberty. We removed the brains from 5 juvenile and 5 adult male monkeys (Macaca fascicularis) and blocked, sectioned, and prepared each hypothalamus for light microscopic immunocytochemistry for GnRH-containing cells. The distribution and number of GnRH-containing neurons were similar in adult and juvenile brains; however, GnRH-containing perikarya in adult brains were significantly larger in total cross-sectional area (200 +/- 12 vs. 169 +/- 8 micron 2, P less than 0.05) and in cross-sectional area of the cytoplasm (139 +/- 2 vs. 88 +/- 6 micron 2, P less than 0.05) than in juvenile brains. In another group of 10 juvenile male macaques, we administered an antiserum to GnRH (Fraser #94; 2 ml/kg, i.v.) and monitored the effects on plasma luteinizing hormone (LH) and testosterone concentrations. The percentage of plasma samples with detectable LH levels decreased significantly (from 26.67 +/- 8.3% to 5.3 +/- 3.4%, P less than 0.05) after GnRH antiserum administration; however, plasma testosterone concentrations (0.08 +/- 0.02 ng/ml) remained unchanged. We conclude that during pubertal maturation in primate species there is increased synthesis and release of GnRH from a population of GnRH neurons that are active prior to puberty.  相似文献   

17.
Ovine LH is needed for differentiation of juvenile Leydig cells and for their maintenance and steroidogenic potential, while FSH is necessary for Sertoli cell activity and spermatogonial multiplication suggesting that LH is steroidogenic hormone and FSH is gametogenic in the developing pigeon, C. livia. Homoplastic pituitary extract is more potent than ovine LH + FSH in stimulating gametogenic and endocrine components of the developing testis.  相似文献   

18.
Ten chronically hemiovariectomized cynomolgus and rhesus monkeys were luteectomized 5.5 +/- 0.3 days after the midcycle luteinizing hormone (LH) and follicle-stimulating hormone (FSH) surge in two consecutive cycles. The corpus luteum (CL) was removed, weighed, dispersed with collagenase and the luteal cells counted. Luteal cells (50,000/ml) were incubated in Ham's F10 medium for 3 h at 37 degrees C either in the presence or absence of 100 ng/ml human chorionic gonadotropin (hCG). Daily blood samples were taken from the monkeys throughout the study for determination of LH, FSH, estradiol (E2) and progesterone levels. Within 5 days following each luteectomy (LX), all monkeys responded with a significant increase in FSH and LH (P less than 0.05). Ovulatory LH/FSH surges occurred 14.4 +/- 0.5 days after the first LX. Hormonal profiles of serum progesterone prior to the first and second LX, CL weight and number of luteal cells/CL were similar (P greater than 0.05). However, luteal cells obtained at the second LX produced more progesterone (P less than 0.05) in vitro under basal and hCG-stimulated conditions than cells from the first LX. The areas under the LH and FSH curves following the first LX were highly correlated (P less than 0.05) with the in vitro progesterone production following the second LX. Thus, the monkeys with the largest areas under the LH and FSH curves subsequently had the highest in vitro progesterone production.  相似文献   

19.
Much of what is known about the molecular regulation and function of adult Sertoli cells has been inferred from in vitro studies of immature Sertoli cells. However, adult and immature cells differ in significant ways and, moreover, many Sertoli cell functions are regulated by conditions that are difficult to replicate in vitro. Our objective was to develop a procedure to isolate Sertoli cells rapidly and in sufficient number and purity to make it possible to assess Sertoli cell function immediately after the isolation of the cells. The isolation procedure described herein takes less than 4 h and does not require culturing the cells. From a single 4-mo-old adult rat, we routinely obtain 7.0 +/- 0.4 x 10(6) Sertoli cells per testis, and from a 21-mo-old rat, 7.2 +/- 0.4 x 10(6) Sertoli cells per testis. The purity, determined by morphologic analyses of plastic-embedded cells or after staining for tyrosine-tubulin or vimentin, averaged 80%. The contaminants typically included germ cells (10%) and myoid cells (10%). The germ cell-expressed genes protamine-2 and hemiferrin were not detected in the Sertoli cell preparations by Northern blot analyses, but the Sertoli cell-expressed genes clusterin, cathepsin L, and transferrin were highly expressed. Transferrin mRNA levels were greater in Sertoli cells isolated from aged than from young adult rats, consistent with previous analyses of whole testes; and cathepsin L mRNA levels were far more highly expressed in Sertoli cells isolated from stages VI-VII than from other stages of the cycle of the seminiferous epithelium, also consistent with previous analyses of whole testes and isolated tubules. These studies indicate that the freshly isolated cells retain differentiated function, and thus it should be possible to assess the in vivo function of adult Sertoli cells by isolating the Sertoli cells and immediately assessing their function.  相似文献   

20.
BACKGROUND: The common marmoset (Callithrix jacchus) is a New World primate that has been used increasingly in toxicological evaluations including testing for testicular toxicity of pharmaceutical and environmental chemicals. Information on structural and functional characteristics of the testis in common marmosets ("marmoset" in this review) is critical for designing experiments, interpreting data collected, and determining relevance to humans in risk assessment. METHODS: This study provides a comprehensive review on testicular development, structure, function, and regulation in common marmosets. RESULTS: There is little information regarding testicular formation and development during gestation. Based on the overall pattern of embryonic development in marmosets, it is postulated that gonadal formation and testicular differentiation most likely takes place during gestational Week 6-12. After birth, the neonatal period of the first 2-3 weeks and the pubertal period from Months 6-12 are critical for establishment of spermatogenesis in the adult. In the adult, a nine-stage model has been used to describe the organization of seminiferous epithelium and multiple stages per tubular cross-section have been observed. Seminiferous epithelium is organized in a wave or partial-wave manner. There are on average two stages per cross-section of seminiferous tubules in adult marmoset testis. Sertoli cells in the marmoset have a uniform morphology. Marmoset spermatogenesis has a high efficiency. The prime determinant of germ cell production is proliferation and survival of spermatogonia. Sertoli cell proliferation during the neonatal period is regulated by follicle-stimulating hormone (FSH), but chorionic gonadotropin (CG), instead of luteinizing hormone (LH), is the only gonadotropin with luteinizing function in marmoset. The receptor gene for CG in marmoset is unique in that it does not have exon 10. Marmosets have a "generalized steroid hormone resistance," i.e., relatively high levels of steroid hormones in circulation and relatively low response to exogenous steroids. Blockage of FSH, CG, and testosterone production during the first 3 months after birth does not cause permanent damage to the male reproductive system. Initiation of spermatogenesis in the marmoset requires unique factors that are probably not present in other mammals. Normal male marmosets respond to estradiol injection positively (increased LH or CG levels), a pattern seen in normal females or castrated males, but not usually in normal males of other mammalian species. CONCLUSIONS: It seems that the endocrine system including the testis in marmosets has some unique features that have not been observed in rodents, Old World primates, and humans, but detailed comparison in these features among these species will be presented in another review. Based on the data available, marmoset seems to be an interesting model for comparative studies. However, interpretation of experimental findings on the testicular effects in marmosets should be made with serious caution. Depending on potential mode of testicular actions of the chemical under investigation, marmoset may have very limited value in predicting potential testicular or steroid hormone-related endocrine effects of test chemicals in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号