首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study provides evidence that both rat and mouse thymic and splenic T cells express significant levels of MHC class II glycoproteins (MHCII) in vivo. Derivation of rat and mouse chimeras revealed that a major source of MHCII on thymic T cells was acquired from radioresistant host APC. Expression of MHC on thymic T cells appeared physiologically relevant because presentation of rat myelin basic protein (RMBP) by nonadherent, radiosensitive thymic T cells was associated with the adoptive transfer of tolerance. Mature MBP-specific effector T cells isolated from the CNS in both rat and mouse models of EAE also expressed significant levels of MHCII. Adoptive transfer of activated B10.PL MBP/I-A(u)-restricted TCR transgenic T cells into F1(C57BL/6 x B10.PL) mice revealed acquisition of allogeneic I-A(b) on encephalitogenic CNS-derived T cells. Overall, this study indicates that immature and mature T cells in rats and mice acquire functional MHCII in vivo during thymic development and pathogenic inflammation.  相似文献   

2.
Activated rat T cells, like human T cells, synthesize class II MHC glycoproteins (MHCII) and absorb MHCII from neighboring T cells. This study focused on interactions of myelin basic protein (MBP)-specific T cells that either synthesized MHCII or absorbed MHCII during activation to assess cellular structures associated with presentation of functional MHCII/peptide complexes. Synthesis of MHCII by CD4(+)TCR(+) T cells involved I-A(+) multivesicular MHC class II-like compartments (MIIC), release of MHCII(+) vesicles, and expression of MHCII on a dendritic arborization. T-cell-mediated adsorption of MHCII was a saturable process that required close cell proximity, actin polymerization, and a permissive temperature. Adsorbed MHCII existed on vesicles that were intimately associated with the responder cell membrane. T cells bearing adsorbed vesicular MHCII presented antigen and were specifically lysed by CD4(+) T cell responders, but when labeled with anti-MHCII antibody were not susceptible to complement-mediated lysis. In summary, this study reveals vesicular compartments associated with synthesis and intercellular exchange of functional MHCII/peptide complexes.  相似文献   

3.
Successful antigen presentation by xenogeneic human antigen-presenting cells (APC) to stimulate the proliferation of antigen-specific, keyhole limpet hemocyanin (KLH)-specific, ovalbumin (OVA)-specific, and purified protein derivative of Mycobacterium tuberculosis (PPD)-specific murine T cells was observed. Evidence indicating a direct cell interaction between antigen-specific murine T cells and xenogeneic human APC was given by experiments using antigen-specific murine T cell clones. The OVA-specific B10.S(9R) T cell line (9-0-A1) and PPD-specific B10.A(4R) T cell line (4-P-1) were stimulated by both xenogeneic human APC and murine APC from syngeneic or I-A compatible strains, while the PPD-specific human T cell line (Y-P-5) was stimulated by autologous human APC but not by murine APC. Anti-HLA-DR monoclonal antibodies (MoAb) blocked the xenogeneic human APC-antigen-specific murine T cell clone interaction. Thus, human xenogeneic APC can stimulate antigen-specific murine T cells through HLA-DR molecules in the same manner as syngeneic murine APC do through Ia molecules coded for by the I region of the H-2 complex, while murine APC failed to present antigen to stimulate human antigen-specific T cells.  相似文献   

4.
5.
The majority of in vitro studies investigating the activation of na?ve TCR transgenic T cells routinely employ an artificially high frequency of such cells. To assess whether employing high frequencies of TCR transgenic cells in vitro accurately reflects the in vivo activation of a normal number of T cells, we cultured between 300 and 3×10(6) Rag2(-/-) DO11.10 T cells per well under otherwise identical conditions. We find that those T cells cultured at low frequencies proliferate more and are more potently activated, as assessed by the expression of CD44 and CD62L, each giving rise to a much larger number of cytokine producing cells, comparable to the number generated in vivo when a normal number of CD4(+) T cells are activated. The effect of T cell frequency on the level of their activation was not due to differences in MHCII or CD80/86 expression by B cells, the major APC population present, nor to increased death of B cells in high frequency cultures. Taken together, our observations illustrate the necessity of culturing na?ve TCR transgenic CD4(+) T cells at a physiological frequency if one is to more accurately recapitulate the in vivo activation of na?ve CD4(+) T cells.  相似文献   

6.
The activation, proliferation, differentiation, and trafficking of CD4 T cells is central to the development of type I immune responses. MHC class II (MHCII)-bearing dendritic cells (DCs) initiate CD4(+) T cell priming, but the relative contributions of other MHCII(+) APCs to the complete Th1 immune response is less clear. To address this question, we examined Th1 immunity in a mouse model in which I-A(beta)(b) expression was targeted specifically to the DCs of I-A(beta)b-/- mice. MHCII expression is reconstituted in CD11b(+) and CD8alpha(+) DCs, but other DC subtypes, macrophages, B cells, and parenchymal cells lack of expression of the I-A(beta)(b) chain. Presentation of both peptide and protein Ags by these DC subsets is sufficient for Th1 differentiation of Ag-specific CD4(+) T cells in vivo. Thus, Ag-specific CD4(+) T cells are primed to produce Th1 cytokines IL-2 and IFN-gamma. Additionally, proliferation, migration out of lymphoid organs, and the number of effector CD4(+) T cells are appropriately regulated. However, class II-negative B cells cannot receive help and Ag-specific IgG is not produced, confirming the critical MHCII requirement at this stage. These findings indicate that DCs are not only key initiators of the primary response, but provide all of the necessary cognate interactions to control CD4(+) T cell fate during the primary immune response.  相似文献   

7.
Diabetes in nonobese diabetic (NOD) mice results from the activation of I-A(g7)-restricted, islet-reactive T cells. This study delineates several characteristics of NOD CD4 T cell activation, which, independent of I-A(g7), are likely to promote a dysregulated state of peripheral T cell tolerance. NOD CD4 T cell activation was found to be resistant to antigenic stimulation via the TCR complex, using the progression of cell division as a measure. The extent of NOD CD4 T cell division was highly sensitive to changes in Ag ligand density. Moreover, even upon maximal TCR complex-mediated stimulation, NOD CD4 T cell division prematurely terminated. Maximally stimulated NOD CD4 T cells failed to achieve the threshold number of division cycles required for optimal susceptibility to activation-induced death, a critical mechanism for the regulation of peripheral T cell tolerance. Importantly, these aberrant activation characteristics were not T cell-intrinsic but resulted from reliance on B cell costimulatory function in NOD mice. Costimulation delivered by nonautoimmune strain APCs normalized NOD CD4 T cell division and the extent of activation-induced death. Thus, by disrupting the progression of CD4 T cell division, polarization of APC costimulatory function to the B cell compartment could allow the persistence and activation of diabetogenic cells in NOD mice.  相似文献   

8.
We have examined the role of the human responder APC in the generation of CTL responses to xenogeneic antigens. Of six xenogeneic responses evaluated, only the human antimurine response was dependent on human APC for CTL generation. APC requirements for the other five xenogeneic responses more closely resembled those observed in the generation of human or murine alloreactive CTL. Depletion studies identified a defective human CD4+ Th cell-murine stimulator cell interaction that could be bypassed by the addition of exogenous IL-2. The function of the responder APC involved in the human antimurine CTL response was inhibited by chloroquine, suggesting a requirement for Ag processing. Effective presentation of murine stimulator Ag by human APC was completely blocked by anti-human Ia mAb, indicating that the Ag is presented to Th cells via the human class II molecule. These results are consistent with an Ia-dependent recognition of processed murine Ag by human T cells and represents a model for investigating human T cell activation requirements, Th cell function, and MHC restriction.  相似文献   

9.
Many studies have already been reported with regard to the serological cross-reactivities between the polymorphic determinants of murine Ia antigens and human HLA-DR antigens. In this paper, we examined the biological cross-reactivity of the polymorphism of Class II antigens in the xenogeneic antigen-presenting cell (APC)-T-cell interaction. The data indicate that purified protein derivative (PPD)-specific human T cells were not stimulated by PPD-pulsed murine APC from B10.S(9R) which possess I-As and I-Ek molecules serologically cross-reacting with human Class II antigens. On the contrary, B10.S(9R) T cells primed to PPD were stimulated by PPD-pulsed human APC. The failure of the murine APC-human T-cell interaction was not caused by the suppressive effect in culture with ongoing xenogeneic mixed lymphocyte reactions (MLR) or other cell culture conditions. Thus, a hierarchy of antigen-presenting ability in the xenogeneic APC-T-cell interaction was shown to exist.  相似文献   

10.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

11.
We show that the in vivo generation of cytokine-producing CD4 T cells specific for a given major histocompatibility class-II (MHCII)-binding peptide of hen egg lysozyme (HEL) is facilitated when mice are immunized with splenic antigen presenting cells (APC) pulsed with this HEL peptide and another peptide that binds a different MHCII molecule. This enhanced generation of peptide-specific effector CD4 T cells requires that the same splenic APC be pulsed with both peptides. Pulsed B cells, but not pulsed dendritic cells (DCs), can mediate CD4 T cell cooperation, which can be blocked by disrupting OX40-OX40L (CD134-CD252) interactions. In addition, the generation of HEL peptide-specific CD4 T cell memory is greater when mice are primed with B cells pulsed with the two peptides than with B cells pulsed with the HEL- peptide alone. Based on our findings, we suggest CD4 T cell cooperation is important for vaccine design, underlies the phenomenon of “epitope-spreading” seen in autoimmunity, and that the efficacy of B cell-depletion in the treatment of human cell-mediated autoimmune disease is due to the abrogation of the interactions between autoimmune CD4 T cells that facilitates their activation.  相似文献   

12.
Resting B cells stimulated the proliferation of two T cell clones much less efficiently than T cell-depleted low-density APC. In contrast, low-density cells and resting B cells stimulated the clones to produce similar levels of inositol phosphates, a rapid biochemical event dependent only on occupancy of the TCR. The inefficient stimulation of T cell proliferation by resting B cell APC was dramatically improved by the addition of allogeneic low-density accessory cells incapable of being recognized by the TCR on the responding T cells. The results are most consistent with a model where low-density and resting B cell APC display similar amounts of Ag/Ia molecule complexes capable of being recognized by the TCR on the responding T cells but differ in the provision of costimulatory signals that, together with TCR occupancy, are required for IL-2 production.  相似文献   

13.
Two monoclonal antibodies, OX-6 and OX-17, were used to evaluate respectively the roles of I-A and I-E major histocompatibility complex Class II gene products in the in vitro activation and subsequent function in recipient rats of encephalitogenic T-cell lines. Activation of the T-cell lines with guinea pig myelin basic protein (GP-BP) presented by accessory cells (APC) resulted in an increase in the number of blast cells in culture and was reflected by increased uptake of [3H]thymidine [( 3H]Tdy). The number of blasts recovered and [3H]Tdy uptake during activation was reduced drastically in the presence of OX-6, but to a much lesser extent in the presence of OX-17. OX-6 but not OX-17 appeared to block T-cell activation primarily by inhibiting APC function, since preincubation of APC but not T cells with OX-6 before stimulation resulted in complete inhibition of the cultures. After activation, the BP-1 T-cell line or D-9 clone transferred severe paralysis to normal recipient rats. Recipients of OX-6-treated BP-1 or D-9 T cells exhibited very mild or no signs, whereas recipients of OX-17-treated cells developed only slightly less severe experimental autoimmune encephalomyelitis (EAE) than recipients of untreated encephalitogenic control cultures. In contrast, treatment with OX-17 but not OX-6 reduced the ability of BP-reactive T cells to transfer delayed-type hypersensitivity reactions. Dermal testing with GP-BP in the ears of recipient rats just prior to onset of clinical signs decreased significantly the clinical intensity of EAE induced by activated BP-reactive T cells, but increased the clinical scores in rats which received unstimulated or OX-6-treated T cells. This potentiating effect of GP-BP was due most likely to the presentation of processed antigen to circulating BP-reactive T cells by APC in the ear. These results suggest that both the I-A and I-E gene products may contribute to the activation and subsequent function of encephalitogenic T cells, perhaps through separate mechanisms.  相似文献   

14.
Group A streptococcus (GAS, Streptococcus pyogenes) is the cause of a variety of clinical conditions, ranging from pharyngitis to autoimmune disease. Peptide-major histocompatibility complex class II (pMHCII) tetramers have recently emerged as a highly sensitive means to quantify pMHCII-specific CD4+ helper T cells and evaluate their contribution to both protective immunity and autoimmune complications induced by specific bacterial pathogens. In lieu of identifying an immunodominant peptide expressed by GAS, a surrogate peptide (2W) was fused to the highly expressed M1 protein on the surface of GAS to allow in-depth analysis of the CD4+ helper T cell response in C57BL/6 mice that express the I-A(b) MHCII molecule. Following intranasal inoculation with GAS-2W, antigen-experienced 2W:I-A(b)-specific CD4+ T cells were identified in the nasal-associated lymphoid tissue (NALT) that produced IL-17A or IL-17A and IFN-γ if infection was recurrent. The dominant Th17 response was also dependent on the intranasal route of inoculation; intravenous or subcutaneous inoculations produced primarily IFN-γ+ 2W:I-A(b+) CD4+ T cells. The acquisition of IL-17A production by 2W:I-A(b)-specific T cells and the capacity of mice to survive infection depended on the innate cytokine IL-6. IL-6-deficient mice that survived infection became long-term carriers despite the presence of abundant IFN-γ-producing 2W:I-A(b)-specific CD4+ T cells. Our results suggest that an imbalance between IL-17- and IFN-γ-producing CD4+ T cells could contribute to GAS carriage in humans.  相似文献   

15.
Studies in Jurkat cells have shown that combined stimulation through the TCR and CD28 is required for activation of c-Jun N-terminal kinase (JNK), suggesting that JNK activity may mediate the costimulatory function of CD28. To examine the role of JNK signaling in CD28 costimulation in normal T cells, murine T cell clones and CD28(+/+) or CD28(-/-) TCR transgenic T cells were used. Although ligation with anti-CD28 mAb augmented JNK activation in Th1 and Th2 clones stimulated with low concentrations of anti-CD3 mAb, higher concentrations of anti-CD3 mAb alone were sufficient for JNK activation even in the absence of anti-CD28. JNK activity was comparably induced in both CD28(+/+) and CD28(-/-) 2C/recombinase-activating gene 2(RAG2)(-/-) T cells stimulated with anti-CD3 mAb alone, and with L(d)/peptide dimers, a direct alphabeta TCR ligand. Moreover, JNK activation was also detected in 2C/RAG2(-/-) T cells stimulated with P815 cells that express the relevant alloantigen L(d) whether or not B7-1 was coexpressed. However, IL-2 production by both Th1 clones and CD28(+/+) 2C/RAG2(-/-) T cells was detected only upon TCR and CD28 coengagement. Thus, CD28 coligation is not necessary, and stimulation through the TCR is sufficient, for JNK activation in normal murine T cells. The concept that JNK mediates the costimulatory function of CD28 needs to be reconsidered.  相似文献   

16.
T cells express MHC class II glycoproteins under various conditions of activation or inflammation. To assess whether T cell APC (T-APC) activity had long-term tolerogenic consequences, myelin basic protein (MBP)-specific rat T cells were induced to acquire MBP-derived I-A complexes to promote reciprocal antigen presentation. T-T antigen presentation caused extensive cell death among T-APC and MBP-specific T responders and caused long-term desensitization of surviving responders. Addition of the anti-I-A mAb OX6 to activated I-A+ responders inhibited T-APC activity, accelerated recovery from postactivation refractoriness, and prevented long-term loss of reactivity in responder T cells. Antigenic activation of responder T cells with irradiated T-APC induced profound losses in reactivity that lasted for over 1 month of propagation in IL-2 and was associated with preferential outgrowth of CD4- T cells. Antigen-activated CD4- T cells exhibited more rapid IL-2-dependent growth that eventually normalized compared to CD4+ T cells 1-2 months after antigen exposure. In conclusion, expression of T-APC activity by activated T cells represents an important negative feedback pathway that depletes antigen-reactive T cells and causes long-term desensitization of surviving T cells. Hence, T cell APC may be an important mechanism of self-tolerance.  相似文献   

17.
Although microbial (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP) can activate primate Vgamma2Vdelta2 T cells, molecular mechanisms by which HMBPP interacts with Vgamma2Vdelta2 T cells remain poorly characterized. Here, we developed soluble, tetrameric Vgamma2Vdelta2 TCR of rhesus macaques to define HMBPP/APC interaction with Vgamma2Vdelta2 TCR. While exogenous HMBPP was associated with APC membrane in an appreciable affinity, the membrane-associated HMBPP readily bound to the Vgamma2Vdelta2 TCR tetramer. The Vgamma2Vdelta2 TCR tetramer was shown to bind stably to HMBPP presented on membrane by various APC cell lines from humans and nonhuman primates but not those from mouse, rat, or pig. The Vgamma2Vdelta2 TCR tetramer also bound to the membrane-associated HMBPP on primary monocytes, B cells and T cells. Consistently, endogenous phosphoantigen produced in Mycobacterium-infected dendritic cells was transported and presented on membrane, and bound stably to the Vgamma2Vdelta2 TCR tetramer. The capability of APC to present HMBPP for recognition by Vgamma2Vdelta2 TCR was diminished after protease treatment of APC. Thus, our studies elucidated an affinity HMBPP-APC association conferring stable binding to the Vgamma2Vdelta2 TCR tetramer and the protease-sensitive nature of phosphoantigen presentation. The findings defined APC presentation of phosphoantigen HMBPP to Vgamma2Vdelta2 TCR.  相似文献   

18.
The interaction between the clonally selected TCR, the processed Ag peptide and the Ia molecule is not fully understood in molecular terms. Our study intended to delineate the residues of Ab alpha molecules that function as contact sites for Ag and for the TCR of a panel of T cells specific for the A chain of insulin in combination with mixed haplotype Ab alpha:Ak beta molecules. Multiple L cell transfectants expressing alpha,beta-heterodimers composed of wild-type A beta- and chimeric or mutant A alpha-chains served as antigen presenting cells. The recombinant A alpha-chains had been generated by an exchange of allelically hypervariable regions (ahv) or amino acids. The results point out a broad spectrum of b sequence requirements for the bovine insulin-specific activation of the various T cell populations. Activation of some T cells seemed quite permissive, requiring b-haplotype amino acids in any one of the three ahv, while others had strict requirements, demanding b-haplotype sequence in all three ahv. Our data stress the role of ahvII and especially ahvIII in T cell activation. Interestingly, single amino-acid substitutions in ahvII or ahvIII of Ak alpha were sufficient to bring up full stimulation potential for two T cell hybridomas. We also found that some ahv permutations influenced the Ag preference (beef insulin versus pig insulin) of some T cells. These data suggest a critical role for the three-dimensional structure of the complex formed by Ia and the processed Ag peptide. The stability of the trimolecular complex essential for T cell activation is envisioned as being the sum of the interactions between Ag/I-A, TCR/Ag, and TCR/I-A, each variable in strength and compensated for by the others.  相似文献   

19.
We have investigated the role of CD2 molecules in Ag-specific T cell activation by using a mouse model system in which the function of CD2 can be analyzed without the apparent influence of major accessory molecules, such as CD4 or LFA-1. Transfection of the CD2 gene into a CD2- T cell hybridoma confers the enhancement of IL-2 production upon Ag stimulation. Anti-CD2 mAb inhibits the Ag-specific response of the CD2-transfectant, not only to the level of CD2- cells but to the background. B cells, but not MHC class II-transfected L cells, serve as APC to induce the inhibition of Ag response. The complete abrogation of the response is observed only upon the stimulation through TCR with Ag in the presence of APC but not through either TCR-CD3 or other molecules such as Thy-1. Furthermore, the inhibition can also be observed when anti-CD2 mAb is immobilized on culture plates, suggesting that the inhibition of Ag response results from transducing the negative signal through the CD2 molecule. The experiments on cytoplasmic domain-deleted CD2-transfected T cells reveal that the cytoplasmic portion is responsible for the CD2-mediated abrogation of Ag responses. These results imply that CD2 has important roles in T cell responses not only as an activation and adhesion molecule but also as a regulatory molecule of Ag-specific responses through the TCR.  相似文献   

20.
CD4+ T cells require two signals to produce maximal amounts of IL-2, i.e., TCR occupancy and an unidentified APC-derived costimulus. Here we show that this costimulatory signal can be delivered by the T cell molecule CD28. An agonistic anti-CD28 mAb, but not IL-1 and/or IL-6, stimulated T cell proliferation by tetanus toxoid-specific T cells cultured with Ag-pulsed, costimulation-deficient APC. Furthermore, the ability of B cell tumor lines to provide costimulatory signals to purified T cells correlated well with expression of the CD28 ligand B7/BB-1. Finally, like anti-CD28 mAb, autologous human APC appeared to stimulate a cyclosporine A-resistant pathway of T cell activation. Together, these results suggest that the two signals required for IL-2 production by CD4+ T cells can be transduced by the TCR and CD28.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号