首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The alpha- and beta-subunits of Na+,K+-ATPase and H+,K+-ATPase were expressed in Sf9 cells in different combinations. Immunoprecipitation of the alpha-subunits resulted in coprecipitation of the accompanying beta-subunit independent of the type of beta-subunit. This indicates cross-assembly of the subunits of the different ATPases. The hybrid ATPase with the catalytic subunit of Na+,K+-ATPase and the beta-subunit of H+,K+-ATPase (NaKalphaHKbeta) showed an ATPase activity, which was only 12 +/- 4% of the activity of the Na+,K+-ATPase with its own beta-subunit. Likewise, the complementary hybrid ATPase with the catalytic subunit of H+,K+-ATPase and the beta-subunit of Na+,K+-ATPase (HKalphaNaKbeta) showed an ATPase activity which was 9 +/- 2% of that of the recombinant H+,K+-ATPase. In addition, the apparent K+ affinity of hybrid NaKalphaHKbeta was decreased, while the apparent K+ affinity of the opposite hybrid HKalphaNaKbeta was increased. The hybrid NaKalphaHKbeta could be phosphorylated by ATP to a level of 21 +/- 7% of that of Na+,K+-ATPase. These values, together with the ATPase activity gave turnover numbers for NaKalphabeta and NaKalphaHKbeta of 8800 +/- 310 min-1 and 4800 +/- 160 min-1, respectively. Measurements of phosphorylation of the HKalphaNaKbeta and HKalphabeta enzymes are consistent with a higher turnover of the former. These findings suggest a role of the beta-subunit in the catalytic turnover. In conclusion, although both Na+,K+-ATPase and H+,K+-ATPase have a high preference for their own beta-subunit, they can function with the beta-subunit of the other enzyme, in which case the K+ affinity and turnover number are modified.  相似文献   

2.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124-132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ plus K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ plus K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca(2+), and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ plus K+)-activated ATPase activity averaged 10.07 plus or minus 2.80 mumol Pi/mg protein per h compared to 50.03 plus or minus 11.41 for Mg(2+)-activated ATPase and 58.66 plus or minus 10.07 for 5'-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ plus K+)-activated ATPase without any effect on Mg(2+)-activated ATPase. Both (Na+ plus K+)-activated ATPase and Mg(2+)-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ plus K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ plus K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

3.
This review updates our current knowledge on the regulation of Na+/H+ exchanger, Na+,K+,Cl- cotransporter, Na+,Pi cotransporter, and Na+,K+ pump in isolated epithelial cells from mammalian kidney by protein kinase C (PKC). In cells derived from different tubule segments, an activator of PKC, 4beta-phorbol 12-myristate 13-acetate (PMA), inhibits apical Na+/H+ exchanger (NHE3), Na+,Pi cotransport, and basolateral Na+,K+ cotransport (NKCCl) and augments Na+,K+ pump. In PMA-treated proximal tubules, activation of Na+,K+ pump probably plays a major role in increased reabsorption of salt and osmotically obliged water. In Madin-Darby canine kidney (MDCK) cells, which are highly abundant with intercalated cells from the collecting duct, PMA completely blocks Na+,K+,Cl- cotransport and decreases the activity of Na+,Pi cotransport by 30-40%. In these cells, agonists of P2 purinoceptors inhibit Na+,K+,Cl- and Na+,Pi cotransport by 50-70% via a PKC-independent pathway. In contrast with MDCK cells, in epithelial cells derived from proximal and distal tubules of the rabbit kidney, Na+,K+,Cl- cotransport is inhibited by PMA but is insensitive to P2 receptor activation. In proximal tubules, PKC-induced inhibition of NHE3 and Na+,Pi cotransporter can be triggered by parathyroid hormone. Both PKC and cAMP signaling contribute to dopaminergic inhibition of NHE3 and Na+,K+ pump. The receptors triggering PKC-mediated activation of Na+,K+ pump remain unknown. Recent data suggest that the PKC signaling system is involved in abnormalities of dopaminergic regulation of renal ion transport in hypertension and in the development of diabetic complications. The physiological and pathophysiological implications of PKC-independent regulation of renal ion transporters by P2 purinoceptors has not yet been examined.  相似文献   

4.
Exogenous administration of 0.20, 0.40 and 0.60 microg/g body weight melatonin over a 24 hr cycle caused an inhibition of Na+, K+ ATPase activity in both brain and gills of A. testudineus. However, Ca2+ ATPase activity in the brain was significantly inhibited by the highest dose, and that in the gill at all the doses of melatonin. Evening injection of melatonin had an inhibitory effect on both brain and gill Na+ K+ and Ca2+ ATPase activity. Melatonin treatment in the morning for 12 hrs did not have an effect on brain Na+, K+ ATPase, while Ca2+ ATPase was inhibited. Similar treatment stimulated Na+, K+ and Ca2+ ATPase activity in the gills. Sodium, potassium and calcium ions in the gill were significantly reduced in the evening treated group while no change was observed in the morning melatonin injected group. The results suggest that melatonin elicits a time-dependent effect on the enzymes and ionic content in the brain and gills of A. testudineus.  相似文献   

5.
Membranous (Na+ + K+)-ATPase from the electric eel was solubilized with 3-[3-cholamidopropyl)-dimethylammonio)-1-propanesulfonate (Chaps). 50 to 70% of the solubilized enzyme was reconstituted in egg phospholipid liposomes containing cholesterol by using Chaps. The obtained proteoliposomes consisted of large vesicles with a diameter of 134 +/- 24 nm as the major component, and their protein/lipid ratio was 1.25 +/- 0.07 g protein/mol phospholipid. The intravesicular volume of these proteoliposomes is too small to consistently sustain the intravesicular concentrations of ligands, especially K+, during the assay. The decrease in K+ concentration was cancelled by the addition of 20 microM valinomycin in the assay medium. The low value of the protein/lipid ratio suggests that these proteoliposomes contain one Na+/K+-pump particle with a molecular mass of 280 kDa per one vesicle as the major component. In these proteoliposomes, the specific activity of the (Na+ + K+)-ATPase reaction was 10 mumol Pi/mg protein per min, and the turnover rate of the ATP-hydrolysis was 3500 min-1, the same as the original enzyme under the same assay condition. The ratio of transported Na+ to hydrolyzed ATP was 3, the same as that in the red cell. The proteoliposomes could be disintegrated by 40-50 mM Chaps without any significant inactivation. This disintegration of proteoliposomes nearly tripled the ATPase activity compared to the original ones and doubled the specific ATPase activity compared to the membranous enzyme, but the turnover rate was the same as the original proteoliposomes and the membranous enzyme. This disintegration of proteoliposomes by Chaps suggests the selective incorporation of the (Na+ + K+)-ATPase particle into the liposomes and the asymmetric orientation of the (Na+ + K+)-ATPase particle in the vesicle.  相似文献   

6.
Characterization of the plasma membrane ATPase of Candida tropicalis   总被引:1,自引:0,他引:1  
1) Plasma membrane vesicles from Candida tropicalis were isolated from protoplasts by differential centrifugation and purified in a continuous sucrose gradient. 2) The plasma membrane bound ATPase was characterized. It is highly specific for ATP and requires Mg2+. It is stimulated by K+, Na+ and NH4+. Lineweaver-Burk plots for ATPase activity are linear with a Vmax of 4.2 mumoles of ATP hydrolyzed min-1.mg-1 protein and a Km for ATP of 0.76 mM. The ATPase activity is inhibited competitively by ADP with a Ki of 1.7 mM and non competitively by vanadate with a Ki of 3 microM. The activity is unaffected by oligomycin or azide but is sensitive to DCCD.  相似文献   

7.
1. Microsomal preparations from the gills of the freshwater mussel anodonta cygnea cellensis show Mg2+ -dependent Na+ - or K+ -stimulated ATPase activity, which is not inhibited by ouabain. 2. Na+ - or Ka+ -ATPase activity is decreased by Ca2+, acetylcholine, choline, and tetramethylammonium, but slightly increased by ethyl alcohol. 3. It is tentatively suggested that Na+ - or K+ -ATPase is involved in the mechanism of active monovalent cation uptake through the gills of freshwater mussels.  相似文献   

8.
(1) Ethylenediamine is an inhibitor of Na+- and K+-activated processes of Na+/K+-ATPase, i.e. the overall Na+/K+-ATPase activity, Na+-activated ATPase and K+-activated phosphatase activity, the Na+-activated phosphorylation and the Na+-free (amino-buffer associated) phosphorylation. (2) The I50 values (I50 is the concentration of inhibitor that half-maximally inhibits) increase with the concentration of the activating cations and the half-maximally activating cation concentrations (Km values) increase with the inhibitor concentration. (3) Ethylenediamine is competitive with Na+ in Na+-activated phosphorylation and with the amino-buffer (triallylamine) in Na+-free phosphorylation. Significant, though probably indirect, effects can also be noted on the affinity for Mg2+ and ATP, but these cannot account for the inhibition. (4) Inhibition parallels the dual protonated or positively charged ethylenediamine concentration (charge distance 3.7 A). (5) Direct investigation of interaction with activating cations (Na+, K+, Mg+, triallylamine) has been made via binding studies. All these cations drive ethylenediamine from the enzyme, but K+ and Mg+ with the highest efficiency and specificity. Ethylenediamine binding is ouabain-insensitive, however. (6) Ethylenediamine neither inhibits the transition to the phosphorylation enzyme conformation, nor does it affect the rate of dephosphorylation. Hence, we provisionally conclude that ethylenediamine inhibits the phosphoryl transfer between the ATP binding and phosphorylation site through occupation of cation activation sites, which are 3-4 A apart.  相似文献   

9.
The plasma membrane/mitochondrial fractions of Penaeus indicus postlarvae contain Mg2+-dependent ATPase, Na+,K+-stimulated ATPase, Na+-stimulated ATPase and K+-stimulated ATPase. The Na+,K+-activated, Mg2+-dependent ATPase was investigated further in relation to different pH and temperature conditions, and at various concentrations of protein, ouabain, ATP and ions in the incubation medium. In vitro and in vivo effects of lead were studied on the enzyme activity. In vitro lead inhibited the enzyme activity in a concentration-dependent manner with an IC50 value of 204.4 microM. In correlation with in vitro studies, in vivo investigations (both concentration and time dependent) of lead also indicated a gradual inhibition in enzyme activity. A maximum decrease of 85.3% was observed at LC50 (7.2 ppm) of lead for concentration-dependent experiments. In time-dependent studies, the decrease was maximal (81.7%) at 30 days of sublethal exposure (1.44 ppm). In addition, the substrate- and ion-dependent kinetics of Na+,K+-ATPase was studied in relation to in vitro exposure of lead; these studies suggest a non-competitive type of inhibition.  相似文献   

10.
To better comprehend the mechanisms of ionic regulation, we investigate the modulation by Na+, K+, NH4(+) and ATP of the (Na+, K+)-ATPase in a microsomal fraction from Callinectes ornatus gills. ATP hydrolysis obeyed Michaelis-Menten kinetics with KM=0.61+/-0.03 mmol L(-1) and maximal rate of V=116.3+/-5.4 U mg(-1). Stimulation by Na+ (V=110.6+/-6.1 U mg(-1); K0.5=6.3+/-0.2 mmol L(-1)), Mg2+ (V=111.0+/-4.7 U mg(-1); K0.5=0.53+/-0.03 mmol L(-1)), NH4(+) (V=173.3+/-6.9 U mg(-1); K0.5=5.4+/-0.2 mmol L(-1)) and K+ (V=116.0+/-4.9 U mg(-1); K0.5=1.5+/-0.1 mmol L(-1)) followed a single saturation curve, although revealing site-site interactions. In the absence of NH4(+), ouabain (K(I)=74.5+/-1.2 micromol L(-1)) and orthovanadate inhibited ATPase activity by up to 87%; the inhibition patterns suggest the presence of F0F1 and K+-ATPases but not Na+-, V- or Ca2+-ATPase as contaminants. (Na+, K+)-ATPase activity was synergistically modulated by K+ and NH4(+). At 10 mmol L(-1) K+, increasing NH4(+) concentrations stimulated maximum activity to V=185.9+/-7.4 U mg(-1). However, at saturating NH4(+) (50 mmol L(-1)), increasing K+ concentrations did not stimulate activity further. Our findings provide evidence that the C. ornatus gill (Na+, K+)-ATPase may be particularly well suited for extremely efficient active NH4(+) excretion. At elevated NH4(+) concentrations, the enzyme is fully active, regardless of hemolymph K+ concentration, and K+ cannot displace NH4(+) from its exclusive binding sites. Further, the binding of NH4(+) to its specific sites induces an increase in enzyme apparent affinity for K+, which may contribute to maintaining K+ transport, assuring that exposure to elevated ammonia concentrations does not lead to a decrease in intracellular potassium levels. This is the first report of modulation by ammonium ions of C. ornatus gill (Na+, K+)-ATPase, and should further our understanding of NH4(+) excretion in benthic crabs.  相似文献   

11.
The reactivity towards Na+ and K+ of Na+/K+-ATPase phosphoenzymes formed from ATP and Pi during Na+-ATPase turnover and that obtained from Pi in the absence of ATP, Na+ and K+ was studied. The phosphoenzyme formed from Pi in the absence of cycling and with no Na+ or K+ in the medium showed a biphasic time-dependent breakdown. The fast component, 96% of the total EP, had a decay rate of about 4 s(-1) in K+-free 130 mm Na+, and was 40% inhibited by 20 mm K+. The slow component, about 0.14 s(-1), was K+ insensitive. Values for the time-dependent breakdown of the phosphoenzymes obtained from ATP and from Pi during Na+-ATPase activity were indistinguishable from each other. In K+-free medium containing 130 mm Na+, the decays followed a single exponential with a rate constant of 0.45 s(-1). The addition of 20 mm K+ markedly increased the decays and made them biphasic. The fast components had a rate of approximately 220 s-1 and accounted for 92-93% of the total phosphoenzyme. The slow components decayed at a rate of about 47-53 s(-1). A second group of experiments examined the reactivity towards Na+ of the E2P forms obtained with ATP and Pi when the enzyme was cycling. In both cases, the rate of dephosphorylation was a biphasic function of [Na+]: inhibition at low [Na+], with a minimum at about 5 mm Na+, followed by recovery at higher [Na+]. Although qualitatively similar, the phosphoenzyme formed from Pi showed slightly less inhibition and more pronounced recovery. These results indicate that forward and backward phosphorylation during Na+-ATPase turnover share the same intermediates.  相似文献   

12.
The effect of triiodothyronine (T3) on Na+,K(+)-ATPase activity of K562 human erythroleukemic cell was studied to understand why the erythrocyte sodium pump activity is decreased in hyperthyroidism. Na+,K(+)-ATPase activity of K562 cell lysates was assayed by measuring the release of inorganic phosphate (Pi) from ATP. Na+,K(+)-ATPase activity of K562 cell grown in the presence of T3 for 48 hours was significantly higher than that of control (0.98 +/- 0.05 mumol Pi h-1 mg protein-1 vs 0.82 +/- 0.10 mumol Pi h-1 mg protein-1, p < 0.05). The Na+,K(+)-ATPase activity could be stimulated in a time- and concentration-dependent manner; maximum stimulatory effect of T3 was seen at a concentration of 10(-7) mol/L. When an inducer [cytosine-beta-D-arabino-furanoside (ARA-C)] was added to the culture medium, the K562 cells showed signs of differentiation and synthesised haemoglobin. At the same time, the Na+,K(+)-ATPase activity remained high. We conclude that T3 stimulates Na+,K(+)-ATPase activity of K562 cells and in the presence of T3 during differentiation, the enzyme activity remains high.  相似文献   

13.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

14.
In the present paper, the presence of a ouabain-insensitive Na(+)-stimulated, Mg(2+)-dependent ATPase activity in T. cruzi epimastigotes CL14 clone and Y strain was investigated. The increase in Na+ concentration (from 5 to 170 mM), in the presence of 2 mM ouabain, increases the ATPase activity in a saturable manner along a rectangular hyperbola. The Vmax was 18.0 +/- 1.0 and 21.1 +/- 1.1 nmoles Pi x mg-1 x min-1 and the half-activation value (K50) for Na+ was 34.3 +/- 5.8 mM and 37.7 +/- 5.3 in CL14 clone and in Y strain, respectively. The Na(+)-stimulated ATPase activity was inhibited by 5-[aminosulfonyl]-4-chloro-2-[(2-furanylmethyl)-amino] benzoic acid (furosemide) in a dose-dependent manner. The half-inhibition value (I50) was 0.22 +/- 0.03 and 0.24 +/- 0.07 mM, and the Hill number (n) was 0.99 +/- 0.2 and 2.16 +/- 0.29 for CL14 clone and Y strain, respectively. These data indicate that both cell types express the ouabain-insensitive Na(+)-ATPase activity, which might be considered the biochemical expression of the second Na+ pump.  相似文献   

15.
The possibility that H+ might substitute for Na+ at Na+ sites of Na+,K+-ATPase was studied. Na+,K+-ATPase purified from pig kidney showed ouabain-sensitive K+-dependent ATPase activity in the absence of Na+ at acid pH (H+,K+-ATPase). The specific activity was 1.1 mumol Pi/mg/min at pH 5.7, whereas the specific activity of Na+,K+-ATPase was 14 mumol Pi/mg/min at pH 7.5. The enzyme was phosphorylated from ATP in the absence of Na+ at the acid pH. The initial rate of the phosphorylation was also accelerated at the acid pH in the absence of Na+, and the maximal rate obtained at pH 5.5 without Na+ was 9% of the rate at pH 7.0 with Na+. The phosphoenzyme was sensitive to K+ but almost insensitive to ADP. The phosphoenzyme was sensitive to hydroxylamine treatment and the alpha-subunit of the enzyme was found to be phosphorylated. H+,K+-ATPase was inhibited as effectively as Na+,K+-ATPase by N-ethylmaleimide but was less inhibited by oligomycin or dimethyl sulfoxide. These results indicate that protons have an Na+-like effect on the Na+ sites of Na+,K+-ATPase and suggest that protons can be transported by the sodium pump in place of Na+.  相似文献   

16.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

17.
To better comprehend physiological adaptation to dilute media and the molecular mechanisms underlying ammonia excretion in palaemonid shrimps, we characterized the (Na+,K+)-ATPase from Macrobrachium amazonicum gills, disclosing high- (K(0.5) = 4.2+/-0.2 micromol L(-1); V = 33.9+/-1.9 U mg(-1)) and low-affinity (K(0.5) = 0.144+/-0.010 mmol L(-1); V = 232.9+/-15.3 U mg(-1)) ATP hydrolyzing sites. Stimulation by Na+ (K(0.5) = 5.5+/-0.3 mmol L(-1); V = 275.1+/-15.1 U mg(-1)), Mg2+ (K(0.5) = 0.79+/-0.06 mmol L(-1); V = 261.9+/-18.3 U mg(-1)), K+ (K(M) = 0.88+/-0.04 mmol L(-1); V = 271.8+/-10.9 U mg(-1)) and NH4(+) (K(M) = 5.0+/-0.2 mmol L(-1); V = 385.9+/-15.8 U mg(-1)) obeys single saturation curves, activity being stimulated synergistically by NH4(+) and K+. There is a single K+ binding site, NH4(+) binding to a second, exclusive site, stimulating activity by 33%, modulating K+ affinity. (Na+,K+)-ATPase activity constitutes approximately 80% of total ATPase activity (K(Iouabain) = 147.5+/-8.9 micromol L(-1)); Na+-, K+-, Ca2+-, V- and F(o)F(1)-ATPases are also present. M. amazonicum microsomal fractions possess approximately 2-fold less (Na+,K+)-ATPase alpha-subunit than M. olfersi, consistent with a 2.6-fold lower specific activity. These differences in (Na+, K+)-ATPase stimulation by ATP and ions, and specific activities of other ATPases, suggest the presence of distinct biochemical adaptations to life in fresh water in these related species.  相似文献   

18.
The occurrence and response of Na+-K+ATPase specific activity to environmental salinity changes were studied in gill extracts of all of the gills of the euryhaline crab Chasmagnathus granulata from Mar Chiquita coastal lagoon (Buenos Aires Province, Argentina). All of the gills exhibited a salinity dependent Na+-K+ATPase activity, although the pattern of response to environmental salinity was different among gills. As described in other euryhaline crabs highest Na+-K+ATPase specific activity was found in posterior gills (6 to 8), which, with exception of gill 6, increased upon acclimation to reduced salinity. However, a high increase of activity also occurred in anterior gills (1 to 5) in diluted media. Furthermore, both short and long term differential changes of Na+-K+ATPase activity occurred among the gills after the transfer of crabs to reduced salinity. The fact that variations of Na+-K+ATPase activity in the gills were concomitant with the transition from osmoconformity to ionoregulation suggests that this enzyme is a component of the branchial ionoregulatory mechanisms at the biochemical level in this crab.  相似文献   

19.
The effects of K+, Na+ and ATP on the gastric (H+ + K+)-ATPase were investigated at various pH. The enzyme was phosphorylated by ATP with a pseudo-first-order rate constant of 3650 min-1 at pH 7.4. This rate constant increased to a maximal value of about 7900 min-1 when pH was decreased to 6.0. Alkalinization decreased the rate constant. At pH 8.0 it was 1290 min-1. Additions of 5 mM K+ or Na+, did not change the rate constant at acidic pH, while at neutral or alkaline pH a decrease was observed. Dephosphorylation of phosphoenzyme in lyophilized vesicles was dependent on K+, but not on Na+. Alkaline pH increased the rate of dephosphorylation. K+ stimulated the ATPase and p-nitrophenylphosphatase activities. At high concentrations K+ was inhibitory. Below pH 7.0 Na+ had little or no effect on the ATPase and p-nitrophenylphosphatase, while at alkaline pH, Na+ inhibited both activities. The effect of extravesicular pH on transport of H+ was investigated. At pH 6.5 the apparent Km for ATP was 2.7 microM and increased little when K+ was added extravesicularly. At pH 7.5, millimolar concentrations of K+ increased the apparent Km for ATP. Extravesicular K+ and Na+ inhibited the transport of H+. The inhibition was strongest at alkaline pH and only slight at neutral or acidic pH, suggesting a competition between the alkali metal ions and hydrogen ions at a common binding site on the cytoplasmic side of the membrane. Two H+-producing reactions as possible candidates as physiological regulators of (H+ + K+)-ATPase were investigated. Firstly, the hydrolysis of ATP per se, and secondly, the hydration of CO2 and the subsequent formation of H+ and HCO3-. The amount of hydrogen ions formed in the ATPase reaction was highest at alkaline pH. The H+/ATP ratio was about 1 at pH 8.0. When CO2 was added to the reaction medium there was no change in the rate of hydrogen ion transport at pH 7.0, but at pH 8.0 the rate increased 4-times upon the addition of 0.4 mM CO2. The results indicate a possible co-operation in the production of acid between the H+ + K+-ATPase and a carbonic anhydrase associated with the vesicular membrane.  相似文献   

20.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号