首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stenotrophomonas maltophilia (Sm), with most of the isolates being resistant to multidrugs, is an opportunistic bacterium causing nosocomial infections. In this study, a novel virulent Sm phage, Smp14, was characterized. Electron microscopy showed that Smp14 resembled members of Myoviridae and adsorbed to poles of the host cells during infection. It lysed 37 of 87 clinical Sm isolates in spot test, displayed a latent period of ca. 20 min, and had a burst size of ca. 150. Its genome (estimated to be 160 kb by PFGE), containing m4C and two unknown modified bases other than m5C and m6A as identified by HPLC, resisted to digestion with many restriction endonucleases except MseI. These properties indicate that it is a novel Sm phage distinct from the previously reported phiSMA5 which has a genome of 250 kb digestible with various restriction enzymes. Sequencing of a 16 kb region revealed 12 ORFs encoding structural proteins sharing 15-45% identities with the homologues from T4-type phages. SDS-PAGE displayed 20 virion proteins, with the most abundant one being the 39 kDa major capsid protein (gp23), which had the N-terminal 52 amino acids removed. Phylogenetic analysis based on gp23 classified Smp14 into a novel single-membered T4-type subgroup.  相似文献   

2.
Aims:  To evaluate the phage diversity in the environment of a dairy industry which manufactures a product fermented with a probiotic strain of Lactobacillus paracasei .
Methods and Results:  Twenty-two Lact. paracasei phages were isolated from an industrial plant that manufactures a probiotic dairy product. Among them, six phages were selected based on restriction profiles, and two phages because of their notable thermal resistance during sample processing. Their morphology, host range, calcium dependency and thermal resistance were investigated. All phages belonged to the Siphoviridae family (B1 morphotype), were specific for Lact. casei and paracasei strains showing identical host spectrum, and only one phage was independent of calcium for completing its lytic cycle. Some of the phages showed an extraordinary thermal resistance and were protected by a commercial medium and milk.
Conclusions:  Phage diversity in a probiotic product manufacture was generated to a similar or greater extent than during traditional yogurt or cheese making.
Significance and Impact of the Study:  This work emphasizes probiotic phage infections as a new ecological situation beyond yogurt or cheese manufactures, where the balanced coexistence between phages and strains should be directed toward a favourable state, thus achieving a successful fermentation.  相似文献   

3.
AIMS: Three indigenous Lactobacillus delbrueckii subsp. bulgaricus bacteriophages and their adsorption process were characterized. METHODS AND RESULTS: Phages belonged to Bradley's group B or the Siphoviridae family (morphotype B1). They showed low burst size and short latent periods. A remarkably high sensitivity to pH was also demonstrated. Indigenous phage genomes were linear and double-stranded DNA molecules of approx. 31-34 kbp, with distinctive restriction patterns. Only one phage genome appeared to contain cohesive ends. Calcium ions did not influence phage adsorption, but it was necessary to accelerate cell lysis and improve plaque formation. The adsorption kinetics were similar on viable and nonviable cells, and the adsorption rates were high between 0 and 50 degrees C. SDS and proteinase K treatments did not influence the phage adsorption but mutanolysin and TCA reduced it appreciably. No significant inhibitory effect on phage adsorption was observed for the saccharides tested. This study also revealed the irreversibility of phage adsorption to their hosts. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The study increases the knowledge on phages of thermophilic lactic acid bacteria.  相似文献   

4.
The immergence and dissemination of multidrug-resistant strains of Staphylococcus aureus in recent years have expedited the research on the discovery of novel anti-staphylococcal agents promptly. Bacteriophages have long been showing tremendous potentialities in curing the infections caused by various pathogenic bacteria including S. aureus. Thus far, only a few virulent bacteriophages, which do not carry any toxin-encoding gene but are capable of eradicating staphylococcal infections, were reported. Based on the codon usage analysis of sixteen S. aureus phages, previously three phages were suggested to be useful as the anti-staphylococcal agents. To search for additional S. aureus phages suitable for phage therapy, relative synonymous codon usage bias has been investigated in the protein-coding genes of forty new staphylococcal phages. All phages appeared to carry A and T ending codons. Several factors such as mutational pressure, translational selection and gene length seemed to be responsible for the codon usage variation in the phages. Codon usage indeed varied phage to phage. Of the phages, phages G1, Twort, 66 and Sap-2 may be extremely lytic in nature as majority of their genes possess high translational efficiency, indicating that these phages may be employed in curing staphylococcal infections.  相似文献   

5.
A recently isolated phage, vB_EcoP_SU10 (SU10), with the unusual elongated C3 morphotype, can infect a wide range of Escherichia coli strains. We have sequenced the genome of this phage and characterized it further by mass spectrometry based proteomics, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and ultra-thin section electron microscopy. The genome size is 77,327 base pairs and its genes, and genome architecture, show high similarity to the phiEco32 phage genes and genome. The TEM images reveal that SU10 have a quite long tail for being a Podoviridae phage, and that the tail also changes conformation upon infection. The ultra-thin section electron microscopy images of phages at the stage of replication within the host cell show that the phages form a honeycomb-like structure under packaging of genomes and assembly of mature capsids. This implies a tight link between the replication and cutting of the concatemeric genome, genome packaging, and capsid assembly. We have also performed a phylogenetic analysis of the structural genes common between Podoviridae phages of the C1 and C3 morphotypes. The result shows that the structural genes have coevolved, and that they form two distinct groups linked to their morphotypes. The structural genes of C1 and C3 phages appear to have diverged around 280 million years ago applying a molecular clock calibrated according to the presumed split between the Escherichia – Salmonella genera.  相似文献   

6.
CP81 is a virulent Campylobacter group III phage whose linear genome comprises 132,454 bp. At the nucleotide level, CP81 differs from other phages. However, a number of its structural and replication/recombination proteins revealed a relationship to the group II Campylobacter phages CP220/CPt10 and to T4-type phages. Unlike the T4-related phages, the CP81 genome does not contain conserved replication and virion modules. Instead, the respective genes are scattered throughout the phage genome. Moreover, most genes for metabolic enzymes of CP220/CPt10 are lacking in CP81. On the other hand, the CP81 genome contains nine similar genes for homing endonucleases which may be involved in the attrition of the conserved gene order for the virion core genes of T4-type phages. The phage apparently possesses an unusual modification of C or G bases. Efficient cleavage of its DNA was only achieved with restriction enzymes recognizing pure A/T sites. Uncommonly, phenol extraction leads to a significant loss of CP81 DNA from the aqueous layer, a property not yet described for other phages belonging to the T4 superfamily.  相似文献   

7.
Vancomycin-resistant Enterococcus faecalis (VRE) has become a significant threat in nosocomial settings. Bacteriophage (phage) therapy is frequently proposed as a potential alternative therapy for infections caused by this bacterium. To search for candidate therapeutic phages against Enterococcus faecalis infections, 30 Enterococcus faecalis phages were isolated from the environment. One of these, virulent phage phiEF24C, which has a broad host range, was selected for analysis. The plaque-forming ability of phiEF24C was virtually unaffected by differences in the clinical host strains. Furthermore, the phage had a shorter latent period and a larger burst size than ordinary tailed phages, indicating that phiEF24C has effective lytic activity against many Enterococcus faecalis strains, including VRE. Morphological and genomic analyses revealed that phiEF24C is a large myovirus (classified as family Myoviridae morphotype A1) with a linear double-stranded DNA genome of c. 143 kbp. Analyses of the N-terminal amino acid sequences of the virion proteins, together with the morphology and the genome size, speculated that phiEF24C is closely related to other myoviruses of Gram-positive bacteria that have been used experimentally or practically for therapy or prophylaxis. Considering these results, phiEF24C may be a potential candidate therapeutic phage against Enterococcus faecalis infections.  相似文献   

8.
In recent years, antimicrobial-resistant Pseudomonas aeruginosa strains have increased in the veterinary field. Therefore, phage therapy has received significant attention as an approach for overcoming antimicrobial resistance. In this context, we isolated and characterized four Pseudomonas bacteriophages. Phylogenetic analysis showed that the isolated phages are novel Myoviridae Pbunavirus PB1-like phages with ØR12 belonging to a different clade compared with the other three. These phages had distinct lytic activity against 22 P. aeruginosa veterinary isolates. The phage cocktail composed from the PB1-like phages clearly inhibited the occurrence of the phage-resistant variant, suggesting that these phages could be useful in phage therapy.  相似文献   

9.
Bacteriophages of the C3 morphotype, characterized by very long heads that exceed their width several times, are extremely rare among the Podoviridae family members and constitute only 0.5% of over 5,500 phages that have been examined by the electron microscope (H. W. Ackermann, Arch. Virol. 152:227-243, 2007; H. W. Ackermann, Arch. Virol. 146:843-857, 2001). To date, among those phages proven to be C3, only coliphage phiEco32, Lactococcus phage KSY1, Vibrio phage 71A-6, and Salmonella enterica phage 7-11, but no avian pathogenic Escherichia coli (APEC) bacteriophages, have been completely sequenced (A. Chopin, H. Deveau, S. D. Ehrlich, S. Moineau, and M. C. Chopin, Virology 365:1-9, 2007; S. A. Khan, et al., Mol. Cell Probes 15:61-69, 2001; A. M. Kropinski, E. J. Lingohr, H. W. Ackermann, Arch. Virol. 156:149-151, 2011; D. Savalia, et al., J. Mol. Biol. 377:774-789, 2008) and are available in public databases. We isolated a bacteriophage from a scale duck market in Nanjing, Jiangsu province, named NJ01, that infects APEC. Sequence and morphological analyses revealed that phage NJ01 is a C3-like bacteriophage and belongs to the Podoviridae family. Here, we announce the complete genome sequence of phage NJ01 and submit the results of our analysis.  相似文献   

10.
Vancomycin-resistant Enterococcus faecalis (VRE) has become a significant threat in nosocomial settings. Bacteriophage (phage) therapy is frequently proposed as a potential alternative therapy for infections caused by this bacterium. To search for candidate therapeutic phages against Enterococcus faecalis infections, 30 Enterococcus faecalis phages were isolated from the environment. One of these, virulent phage φEF24C, which has a broad host range, was selected for analysis. The plaque-forming ability of φEF24C was virtually unaffected by differences in the clinical host strains. Furthermore, the phage had a shorter latent period and a larger burst size than ordinary tailed phages, indicating that φEF24C has effective lytic activity against many Enterococcus faecalis strains, including VRE. Morphological and genomic analyses revealed that φEF24C is a large myovirus (classified as family Myoviridae morphotype A1) with a linear double-stranded DNA genome of c . 143 kbp. Analyses of the N-terminal amino acid sequences of the virion proteins, together with the morphology and the genome size, speculated that φEF24C is closely related to other myoviruses of Gram-positive bacteria that have been used experimentally or practically for therapy or prophylaxis. Considering these results, φEF24C may be a potential candidate therapeutic phage against Enterococcus faecalis infections.  相似文献   

11.
一株强裂解性大肠杆菌T1样噬菌体新成员的分离与鉴定   总被引:2,自引:0,他引:2  
【目的】自然界中噬菌体种类繁多,其裂菌功能在针对细菌耐药方面具有潜在应用价值。不同噬菌体也呈现出显著的基因多样性及宿主特异性。从上海某猪场仔猪肠内容物样品中分离、纯化大肠杆菌的裂解性噬菌体,分析其生物学特性和病毒学特征,为探索应用噬菌体治疗细菌性感染提供研究材料。【方法】采用双层琼脂平板法分离、纯化噬菌体,观察噬菌斑特征,通过电镜观察噬菌体形态特征,测定其裂菌谱、最佳感染复数、一步生长曲线和生物学特性,进行噬菌体全基因组测序和遗传进化分析。【结果】分离、纯化获得一株能高效裂解大肠杆菌K-12菌株的噬菌体,命名为v B_Eco S_SH2(SH2),噬菌斑呈圆形、大而透明、边缘整齐。电镜观察SH2的头部呈二十面体立体对称,尾部较长。噬菌体的潜伏期为10 min,暴发期为60 min,裂解量高达121 PFU/感染细胞,其最佳感染复数为0.1。基因组测序和比对结果表明,SH2的核酸类型为ds DNA,基因组全长为49 088 bp,G+C%含量为45%,Gen Bank登录号为KY985004,结合电镜观察及BLASTp分析,确定其属于有尾噬菌体目长尾噬菌体科成员。同源性及进化分析表明,该噬菌体为大肠杆菌T1样噬菌体的新成员。【结论】分离鉴定了一株裂解效率极高的大肠杆菌T1样噬菌体,并确认其为T1样噬菌体新成员,为研究大肠杆菌噬菌体及其抗菌应用提供了新的实验材料。  相似文献   

12.
Two different bacteriophages, FE5-B1 and Z63-B1, active against strains of Lactobacillus fermentum were isolated from a sample of sour dough of a regional wheat bread. They showed different host specificities when tested against 58 strains of obligately heterofermentative lactic acid bacteria, as well as differences in adsorption and one-step growth kinetics. The burst size of FE5-B1 was about 100 pfu cell−1. This phage belonged to the A1 morphotype of Myoviridae family, having an icosahedral head (83 nm diam.) and a sheathed contractile tail (170 nm in length). The phage consisted of five major structural proteins and had a genome of 86 kbp. Z63-B1 showed a burst size of 10 pfu cell−1 and belonged to the B1 morphotype or Siphoviridae family. Z63-B1 had an isometric head (60 nm diam.) and a non-contractile tail (160 nm in length), with eight major different structural proteins and a genome of 32 kbp.  相似文献   

13.
Bacteriophages (phages) belonging to the family Podoviridae genus N4‐like viruses have been used as therapeutic agent in phage therapy against Pseudomonas aeruginosa infections. P. aeruginosa phage KPP21 was isolated in Japan, and phylogenetically investigated the phages belonging to this viral genus. Morphological and genetic analyses confirmed that phage KPP21 belongs to the family Podoviridae genus N4‐like viruses. Moreover, phylogenetic analyses based on putative DNA polymerase and major virion protein showed that P. aeruginosa phages belonging to the genus N4‐like viruses are separated into two lineages and that phage KPP21 is in the same clade as phage LUZ7.  相似文献   

14.
Unconstrained consumption of antibiotics throughout the expanse of the 21st century has resulted in increased antimicrobial resistance (AMR) among bacterial pathogens, a transpiring predicament affecting the public healthcare sector. The upsurge of multidrug-resistant pathogens, including Staphylococcus aureus, synchronously with the breakdown of the conventional antibiotic pipeline has led to the exploration of alternate strategies. Phage therapy applications have thus gained immense prominence among the scientific community to conquer this notorious pathogen associated with wide-ranging clinical manifestations, especially in immunosuppressed individuals. In this direction, a plethora of phage formulations like topical solutions, medicated dressings impregnated with phages, liposomal entrapments, etc., have been considered as an effective and upcoming strategy. Owing to the synergistic effect of phages with other antibacterial agents, they can be easily exploited for biomedical application. This review primarily focuses on the therapeutic implications of S. aureus phages in the biotechnological and medical arena. Through this review article, we have also discussed the current status and the incurring challenges in phage therapy.  相似文献   

15.
The application of bacteriophages (phages) in therapy urgently requires the production of wide-host-range recombinant phages that possess strong lytic activity. The wide-host-range IP008 phage was classified by transmission electron microscopy analysis as an A2 morphotype member of the Myoviridae family of the order Caudovirales . IP008 showed a high homology (99.4% similarity in the amino acid alignment of the major capsid protein Gp 23) with KEP10, another wide-host-range phage. The long tail fiber genes (genes 37 and 38 ) from the genome of T2 were replaced with those of the IP008 phage by homologous recombination. The host range of the recombinant phages was identical to that of IP008. Furthermore, the recombinant phage bacterial lytic activity was restored. Future analyses of host-range mutants of the closely related phages T2 and IP008 could lead to a more precise localization of the genetic factors responsible for receptor specificity.  相似文献   

16.
Bacteriophages T2 and T4 are closely related T-even phages. However, T4 genetic markers predominate in the progeny of mixed infections, a phenomenon termed marker exclusion. One region previously mapped where the frequency of T2 markers in the progeny is extremely low is located around gene 32. Here, we describe SegG, a GIY-YIG family endonuclease adjacent to gene 32 of phage T4 that is absent from phage T2. In co-infections with T2 and T4, cleavage in T2 gene 32 by T4-encoded SegG initiates a gene conversion event that results in replacement of T2 gene 32 markers with the corresponding T4 sequence. Interestingly, segG inheritance is limited, apparently because of the physical separation of its cleavage and insertion sites, which are 332 base-pairs apart. This contrasts with efficient inheritance of the phage T4 td group I intron and its endonuclease, I-TevI, for which the distance separating the I-TevI cleavage site and td insertion site is 23 base-pairs. Furthermore, we show that co-conversion tracts generated by repair of SegG and I-TevI double-strand breaks contribute to the localized exclusion of T2 markers. Our results demonstrate that the endonuclease activities of SegG and I-TevI promote the spread of these two endonucleases to progeny phage, consistent with their role as selfish genetic elements, and also provide a mechanism by which the genetic contribution of T2 markers to progeny phage is reduced.  相似文献   

17.
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages.  相似文献   

18.
噬菌体展示技术系统发展进展   总被引:3,自引:0,他引:3  
Meng FM  Zhang CH  Ai YC 《遗传》2011,33(10):1113-1120
噬菌体展示技术(Phage display technology,PDT)是一种特殊的基因工程重组表达技术,噬菌体展示技术系统(Phage display system,PDS)是指包括经过遗传改造后的系列噬菌体、辅助噬菌体、宿主细菌等集成平台(含试剂盒)。文章从噬菌体分子遗传学及其基因(基因组)遗传工程改良角度,基于噬菌体M13、λ、T4和T7等4大类典型噬菌体展示技术系统的发展进展进行了综述。重点强调不同展示系统中的核心部件及其基因工程改造的分子遗传学原理、不同展示锚定位点的技术特征、相关试剂盒的研制状况及选择依据。  相似文献   

19.
AIMS: To investigate the basic properties of six temperate and three virulent phages, active on Lactobacillus fermentum, on the basis of morphology, host ranges, protein composition and genome characterization. METHODS AND RESULTS: All phages belonged to the Siphoviridae family; two of them showed prolate heads. The host ranges of seven phages contained a common group of strains. SDS-PAGE protein profiles, restriction analysis of DNA and Southern blot hybridization revealed a high degree of homology between four temperate phages; partial homologies were also detected among virulent and temperate phages. Clustering derived from host range analysis was not related to the results of the DNA hybridizations. CONCLUSION: The phages investigated have common characteristics with other known phages active on the genus Lactobacillus. Sensitivity to viral infection is apparently enhanced by the presence of a resident prophage. SIGNIFICANCE AND IMPACT OF THE STUDY: These relationships contribute to the explanation for the origin of phage infection in food processes where Lact. fermentum is involved, such as sourdough fermentation.  相似文献   

20.
目的从医院污水中分离粘质沙雷菌噬菌体,并分析其生物学特性,为进一步研究针对耐药性粘质沙雷菌的噬菌体制剂提供依据。方法采用双层琼脂平板法分离纯化针对粘质沙雷菌的裂解性噬菌体,观察噬菌体对宿主菌的裂解特异性,通过负染法电镜观察噬菌体的形态结构,提取噬菌体核酸进行酶切电泳,测定噬菌体的最佳感染复数和一步生长曲线,SDS-PAGE电泳初步分析噬菌体的结构蛋白和非结构蛋白。结果从医院污水分离出7株可裂解粘质沙雷菌的噬菌体,对其中一株噬菌体(命名为ФSM9-3Y)的生物学特征进行了初步研究。电镜显示噬菌体呈蝌蚪状,头部为20面体立体对称、直径约70 nm;尾部长约50 nm。ФSM9-3Y的最佳感染复数为1。一步生长曲线表明;ФSM9-3Y的潜伏期约30 min,暴发时间70 min,暴发量为629 PFU/cell。凝胶电泳显示噬菌体基因组为双链DNA、大小约54 kb。SDS-PAGE呈现至少包括13种蛋白,相对分子质量范围在25~130 kD,其中主要蛋白的相对分子质量约为48 kD。结论此次分离的噬菌体ФSM9-3Y为裂解性噬菌体,根据形态和结构特征,粘质沙雷菌噬菌体ФSM9-3Y属于有尾病毒目,肌尾噬菌体科。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号