首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neisseria meningitidis uses hemoglobin (Hb) as an iron source via two TonB-dependent outer membrane receptors, HmbR and HpuB. Analysis of 25 epidemiologically unrelated clinical isolates from serogroups A, B, C, and Y revealed that 64% strains possessed both Hb receptor genes. Examination of the hmbR expression pattern in strains in which the hpuB gene was genetically inactivated revealed two distinct Hb utilization phenotypes. Five strains retained the ability to grow as a confluent lawn, while seven grew only as single colonies around Hb discs. The single-colony phenotype observed for some hpuB mutants is suggestive of phase variation of hmbR. The length of the poly(G) tract starting at position +1164 of hmbR absolutely correlated with the two Hb utilization phenotypes. All five strains that grew as confluent lawns around Hb discs possessed either 9 or 12 consecutive G residues. All seven strains that grew as single colonies around Hb discs had poly(G) tracts of a length other than 9 or 12. These single-colony variants that arose around the Hb discs had poly(G) tracts with either 9 or 12 consecutive G residues restoring the hmbR reading frame. Inactivation of hmbR in these strains resulted in a loss of Hb utilization, demonstrating that the change in the hmbR gene was responsible for the phenotypic switch. The switching rates from hmbR phase off to phase on were approximately 5 x 10(-4) in four serogroup C strains, 2 x 10(-2) in the serogroup A isolate, and 7 x 10(-6) in the serogroup B isolate.  相似文献   

2.
We have characterized the interaction of the Neisseria meningitidis TonB-dependent receptor HpuAB with haemoglobin (Hb). Protease accessibility assays indicated that HpuA and HpuB are surface exposed, HpuB interacts physically with HpuA, and TonB energization affects the conformation of HpuAB. Binding assays using [125I]-Hb revealed that the bipartite receptor has a single binding site for Hb (Kd 150 nM). Competitive binding assays using heterologous Hbs revealed that HpuAB Hb recognition was not species specific. The binding kinetics of Hb to HpuAB were dramatically altered in a TonB- mutant and in wild-type meningococci treated with the protonophore carbonylcyanide m-chlorophenylhydrazone (CCCP), indicating that TonB and an intact proton motive force are required for normal Hb binding and release from HpuAB. Our results support a model in which both HpuA and HpuB are required to form a receptor complex in the outer membrane with a single binding site, whose structure and ligand interactions are significantly affected by the TonB-mediated energy state of the receptor.  相似文献   

3.
Neisseria gonorrhoeae ordinarily requires both HpuA and HpuB to use hemoglobin (Hb) as a source of iron for growth. Deletion of HpuA resulted in reduced Hb binding and failure of growth on Hb. We identified rare Hb-utilizing colonies (Hb(+)) from an hpuA deletion mutant of FA1090, which fell into two phenotypic classes. One class of the Hb(+) revertants required expression of both TonB and HpuB for growth on Hb, while the other class required neither TonB nor HpuB. All TonB/HpuB-dependent mutants had single amino acid alterations in HpuB, which occurred in clusters, particularly near the C terminus. The point mutations in HpuB did not restore normal Hb binding. Human serum albumin inhibited Hb-dependent growth of HpuB point mutants lacking HpuA but did not inhibit growth when expression of HpuA was restored. Thus, HpuB point mutants internalized heme in the absence of HpuA despite reduced binding of Hb. HpuA facilitated Hb binding and was important in allowing use of heme from Hb for growth.  相似文献   

4.
5.
6.
Redundant TonB systems which function in iron transport from TonB-dependent ligands have recently been identified in several gram-negative bacteria. We demonstrate here that in addition to the previously described tonB locus, an alternative system exists for the utilization of iron from hemoglobin, transferrin, or lactoferrin in Neisseria meningitidis and Neisseria gonorrhoeae. Following incubation on media containing hemoglobin, N. meningitidis IR3436 (tonB exbB exbD deletion mutant) and N. gonorrhoeae PD3401 (tonB insertional mutant) give rise to colonies which can grow with hemoglobin. Transfer of Hb(+) variants (PD3437 or PD3402) to media containing hemoglobin, transferrin, and/or lactoferrin as sole iron sources resulted in growth comparable to that observed for the wild-type strains. Transformation of N. meningitidis IR3436 or N. gonorrhoeae PD3401 with chromosomal DNA from the Hb(+) variants yielded transformants capable of growth with hemoglobin. When we inactivated the TonB-dependent outer membrane hemoglobin receptors (HmbR or HpuB) in the Neisseria Hb(+) variants, these strains could not grow with hemoglobin; however, growth was observed with transferrin and/or lactoferrin. These results demonstrate that accumulation of iron from hemoglobin, transferrin, and lactoferrin in the pathogenic neisseriae can occur via a system that is independent of the previously described tonB locus.  相似文献   

7.
The meningococcal hemA gene was cloned and used to construct a porphyrin biosynthesis mutant. An analysis of the hemA mutant indicated that meningococci can transport intact porphyrin from heme (Hm), hemoglobin (Hb), and Hb-haptoglobin (Hp). By constructing a HemA HpuAB double mutant, we demonstrated that HpuAB is required for the transport of porphyrin from Hb and Hb-Hp.  相似文献   

8.
I Stojiljkovic  J Larson  V Hwa  S Anic    M So 《Journal of bacteriology》1996,178(15):4670-4678
We have recently cloned and characterized the hemoglobin receptor gene from Neisseria meningitidis serogroup C. N. meningitidis cells expressing HmbR protein were able to bind biotinylated hemoglobin, and the binding was specifically inhibited by unlabeled hemoglobin and not heme. The HmbR-mediated hemoglobin binding activity of N. meningitidis cells was shown to be iron regulated. The presence of hemoglobin but not heme in the growth medium stimulated HmbR-mediated hemoglobin binding activity. The efficiency of utilization of different hemoglobins by the HmbR-expressing N. meningitidis cells was shown to be species specific; human hemoglobin was the best source of iron, followed by horse, rat, turkey, dog, mouse, and sheep hemoglobins, The phenotypic characterization of HmbR mutants of some clinical strains of N. meningitidis suggested the existence of two unrelated hemoglobin receptors. The HmbR-unrelated hemoglobin receptor was shown to be identical to Hpu, the hemoglobin-haptoglobin receptor of N. meningitidis. The Hpu-dependent hemoglobin utilization system was not able to distinguish between different sources of hemoglobin; all animal hemoglobins were utilized equally well. HmbR-like genes are also present in N. meningitidis serogroups A and B, Neisseria gonorrhoeae MS11 and FA19, Neisseria perflava, and Neisseria polysaccharea. The hemoglobin receptor genes from N. meningitidis serogroups A and B and N. gonorrhoeae MS11 were cloned, and their nucleotide sequences were determined. The nucleotide sequence identity ranged between 86.5% (for N. meningitidis serogroup B hmbR and MS11 hmbR) and 93.4% (for N. meningitidis serogroup B hmbR and N. meningitidis serogroup C hmbR). The deduced amino acid sequences of these neisserial hemoglobin receptors were also highly related, with overall 84.7% conserved amino acid residues. A stop codon was found in the hmbR gene of N. gonorrhoeae MS11. This strain was still able to use hemoglobin and hemoglobin-haptoglobin complexes as iron sources, indicating that some gonococci may express only the HmbR-independent hemoglobin utilization system.  相似文献   

9.
We compared oxygenation and anaerobic oxidation reactions of a purified complex of human hemoglobin (Hb) and haptoglobin (Hb-Hp) to those of uncomplexed Hb. Under equilibrium conditions, Hb-Hp exhibited active-site heterogeneity and noncooperative, high-affinity O(2) binding (n(1/2)=0.88, P(1/2)=0.33mm Hg in inorganic phosphate buffer at pH 7 and 25°C). Rapid-reaction kinetics also exhibited active-site heterogeneity, with a slower process of O(2) dissociation and a faster process of CO binding relative to uncomplexed Hb. Deoxygenated Hb-Hp had significantly reduced absorption at the λ(max) of 430nm relative to uncomplexed Hb, as occurs for isolated Hb subunits that lack T-state stabilization. Under comparable experimental conditions, the redox potential (E(1/2)) of Hb-Hp was found to be +54mV, showing that it is much more easily oxidized than uncomplexed Hb (E(1/2)=+125mV). The Nernst plots for Hb-Hp oxidation showed no cooperativity and slopes less than unity indicated active-site heterogeneity. The redox potential of Hb-Hp was unchanged by pH over the range of 6.4-8.3. Exposure of Hb-Hp to excess hydrogen peroxide (H(2)O(2)) produced ferryl heme, which was found to be more kinetically inert in the Hb-Hp complex than in uncomplexed Hb. The negative shift in the redox potential of Hb-Hp and its stabilized ferryl state may be central elements in the protection against Hb-induced oxidative damage afforded by formation of the Hb-Hp complex.  相似文献   

10.
Hemoglobin (Hb) plays a critical role in human physiological function by transporting O2. Hb is safe and inert within the confinement of the red blood cell but becomes reactive and toxic upon hemolysis. Haptoglobin (Hp) is an acute-phase serum protein that scavenges Hb and the resulting Hb-Hp complex is subjected to CD163-mediated endocytosis by macrophages. The interaction between Hb and Hp is extraordinarily strong and largely irreversible. As the structural details of the human Hb-Hp complex are not yet available, this study reports for the first time on insights of the binding modalities and molecular details of the human Hb-Hp interaction by means of protein-protein docking. Furthermore, residues that are pertinent for complex formation were identified by computational alanine scanning mutagenesis. Results revealed that the surface of the binding interface of Hb-Hp is not flat and protrudes into each binding partner. It was also observed that the secondary structures at the Hb-Hp interface are oriented as coils and α-helices. When dissecting the interface in more detail, it is obvious that several tyrosine residues of Hb, particularly β145Tyr, α42Tyr and α140Tyr, are buried in the complex and protected from further oxidative reactions. Such finding opens up new avenues for the design of Hp mimics which may be used as alternative clinical Hb scavengers.  相似文献   

11.
The presence of acellular hemoglobin (Hb) within the circulation is generally viewed as a pathological state that can result in toxic consequences. Haptoglobin (Hp), a globular protein found in the plasma, binds with high avidity the αβ dimers derived from the dissociation of Hb tetramer and thus helps clear free Hb. More recently there have been compelling indications that the redox properties of the Hp bound dimer (Hb-Hp) may play a more active role in controlling toxicity by limiting the potential tissue damage caused by propagation of the free-radicals generated within the heme containing globin chains. The present study further examines the potential protective effect of Hp through its impact on the production of nitric oxide (NO) from nitrite through nitrite reductase activity of the Hp bound αβ Hb dimer. The presented results show that the Hb dimer in the Hb-Hp complex has oxygen binding, CO recombination and spectroscopic properties consistent with an Hb species having properties similar to but not exactly the same as the R quaternary state of the Hb tetramer. Consistent with these observations is the finding that the initial nitrite reductase rate for Hb-Hp is approximately ten times that of HbA under the same conditions. These results in conjunction with the earlier redox properties of the Hb-Hp are discussed in terms of limiting the pathophysiological consequences of acellular Hb in the circulation.  相似文献   

12.
We have recently cloned and characterized the hemoglobin (Hb) receptor gene, hmbR, from Neisseria meningitidis. To identify additional proteins that are involved in Hb utilization, the N. meningitidis Hb utilization system was reconstituted in Escherichia coli. Five cosmids from N. meningitidis DNA library enabled a heme-requiring (hemA), HmbR-expressing mutant of E. coli to use Hb as both porphyrin and iron source. Nucleotide sequence analysis of DNA fragments subcloned from the Hb-complementing cosmids identified four open reading frames, three of them homologous to Pseudomonas putida, E. coli, and Haemophilus influenzae exbB, exbD, and tonB genes. The N. meningitidis TonB protein is 28.8 to 33.6% identical to other gram-negative TonB proteins, while the N. meningitidis ExbD protein shares between 23.3 and 34.3% identical amino acids with other ExbD and TolR proteins. The N. meningitidis ExbB protein was 24.7 to 36.1% homologous with other gram-negative ExbB and TolQ proteins. Complementation studies indicated that the neisserial Ton system cannot interact with the E. coli FhuA TonB-dependent outer membrane receptor. The N. meningitidis tonB mutant was unable to use Hb, Hb-haptoglobin complexes, transferrin, and lactoferrin as iron sources. Insertion of an antibiotic cassette in the 3' end of the exbD gene produced a leaky phenotype. Efficient usage of heme by N. meningitidis tonB and exbD mutants suggests the existence of a Ton-independent heme utilization mechanism. E. coli complementation studies and the analysis of N. meningitidis hmbR and hpu mutants suggested the existence of another Hb utilization mechanism in this organism.  相似文献   

13.
14.
In order to clarify the catabolism sites of Hb-Hp and free Hb, the organ distributions of [125I]-Hb-Hp and [125I]-Hb were studied, and the cell types in each organ incorporating them were determined by immunohistochemical methods. After administration of [125I]-Hb-Hp in very small amounts to rats, 84.5% was incorporated into the liver, but the renal uptake was only 0.6%. [125I]-Hb was incorporated into the kidneys rather than into the liver when a fivefold greater amount of [125I]-Hb than the binding capacity of plasma Hp was administered. Parenchymal cells, but not Kupffer cells, in the liver were stained with anti-Hb or anti-Hp IgG after administration of Hb in an amount corresponding to the Hb binding capacity of Hp. The proximal tubule cells, but not the distal tubule cells, in the kidney were stained with anti-Hb IgG after administration of a fivefold greater amount of Hb than the binding capacity of Hp. On the basis of these results, we suggest that Hb-Hp was incorporated mainly into liver parenchymal cells and did not traverse glomeruli in the kidney. In contrast to Hb-Hp, free Hb could pass through the glomeruli easily and was incorporated into the proximal tubule cells.  相似文献   

15.
The formation of ethylene under different O(2) concentrations and upon addition of nitric oxide (NO) donor, sodium nitroprusside (SNP), was determined using maize (Zea mays L.) cell lines over-expressing (Hb+) or down-regulating (Hb-) hypoxically inducible (class-1) hemoglobin (Hb). Under all treatments, ethylene levels in the Hb- line were 5 to 6.5 times the levels in Hb+ and four to five times the levels in the wild type. Low oxygen partial pressures impaired ethylene formation in maize cell suspension cultures. 1-Amino-cyclopropane-1-carboxylic acid (ACC) oxidase (E.C. 1.14.17.4) mRNA levels did not vary, either between lines or between treatments. There was, however, significantly enhanced ACC oxidase (ACO) activity in the Hb- line relative to the wild type and the Hb+ line. ACO activity in the Hb- line increased under hypoxic conditions and significantly increased upon treatment with NO under normoxic conditions. The results suggest that limiting class-1 hemoglobin protein synthesis increases ethylene formation in maize suspension cells, possibly via the modulation of NO levels.  相似文献   

16.
The eel pathogen Vibrio vulnificus biotype 2 is able to use hemoglobin (Hb) and hemin (Hm) to reverse iron limitation. In this stud, the adjuvant effect of both compounds on eel pathogenicity has been evaluated and confirmed. Further, we have studied the heme-iron acquisition mechanism displayed by this bacterium. Whole cells were capable of binding Hb and Hm, independently of (i) iron levels in growth medium and (ii) the presence of polysaccharide capsules on bacterial surface. The Hb- and Hm-binding capacity was retained by the outer membrane protein (OMP) fraction and was abolished after proteolytic digestion of OMP samples. Western blotting (immunoblotting) of denatured OMPs revealed that two major protein bands of 36 and 32 kDa were involved in both Hm and Hb binding. The expression of these proteins was not affected by iron levels. In addition, V. vulnificus biotype 2 produced extracellular proteases, not regulated by iron, that were active against native Hb. In conclusion, the overall data suggest that the eel pathogen V. vulnificus biotype 2 can obtain iron by means of a mechanism which involves a direct interaction between the heme moiety and constitutive OMPs.  相似文献   

17.
The pathogen Staphylococcus aureus uses iron-regulated surface determinant (Isd) proteins to scavenge the essential nutrient iron from host hemoproteins. The IsdH protein (also known as HarA) is a receptor for hemoglobin (Hb), haptoglobin (Hp), and the Hb-Hp complex. It contains three NEAT (NEAr Transporter) domains: IsdH(N1), IsdH(N2), and IsdH(N3). Here we show that they have different functions; IsdH(N1) binds Hb and Hp, whereas IsdH(N3) captures heme that is released from Hb. The staphylococcal IsdB protein also functions as an Hb receptor. Primary sequence homology to IsdH indicates that it will also employ functionally distinct NEAT domains to bind heme and Hb. We have used site-directed mutagenesis and surface plasmon resonance methods to localize the Hp and Hb binding surface on IsdH(N1). High affinity binding to these structurally unrelated proteins requires residues located within a conserved aromatic motif that is positioned at the end of the beta-barrel structure. Interestingly, this site is quite malleable, as other NEAT domains use it to bind heme. We also demonstrate that the IsdC NEAT domain can capture heme directly from Hb, suggesting that there are multiple pathways for heme transfer across the cell wall.  相似文献   

18.
19.
20.
A poly G tract in tbpA of Histophilus ovis strain 3384Y was suspected of being responsible for the transferrin (Tf)-dependent expression of TbpA. The region encompassing the poly G tract was amplified using DNA from H. ovis strains 9L and 3384Y grown under iron-replete conditions and under iron-restricted conditions in the presence of bovine Tf. Sequence analysis of the amplification products revealed that regardless of the growth conditions, the poly G tract in strain 9L contained eight Gs, a situation that maintains the correct reading frame of the gene. Similarly, the poly G tract in strain 3384Y contained eight Gs when the organisms were grown under iron-restricted conditions in the presence of bovine Tf but when grown under iron-replete conditions, the poly G tract contained nine Gs resulting in a frame shift and the introduction of a premature stop codon. It is concluded that the Tf-dependent expression of TbpA in H. ovis strain 3384Y is due to a form of phase variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号