首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We analyzed the protective mechanisms induced against respiratory syncytial virus subgroup A (RSV-A) infection in the lower and upper respiratory tracts (LRT and URT) of BALB/c mice after intraperitoneal immunization with a recombinant fusion protein incorporating residues 130 to 230 of RSV-A G protein (BBG2Na). Mother-to-offspring antibody (Ab) transfer and adoptive transfer of BBG2Na-primed B cells into SCID mice demonstrated that Abs are important for LRT protection but have no effect on URT infection. In contrast, RSV-A clearance in the URT was achieved in a dose-dependent fashion after adoptive transfer of BBG2Na-primed T cells, while it was abolished in BBG2Na-immunized mice upon in vivo depletion of CD4(+), but not CD8(+), T cells. Furthermore, the conserved RSV-A G protein cysteines and residues 193 and 194, overlapping the recently identified T helper cell epitope on the G protein (P. W. Tebbey et al., J. Exp. Med. 188:1967-1972, 1998), were found to be essential for URT but not LRT protection. Taken together, these results demonstrate for the first time that CD4(+) T cells induced upon parenteral immunization with an RSV G protein fragment play a critical role in URT protection of normal mice against RSV infection.  相似文献   

2.
BBG2Na is a recombinant protein, composed in part of carrier protein BB and of the central conserved domain of the attachment glycoprotein G of human respiratory syncytial virus (HRSV) subgroup A. This protein is a potent vaccine candidate against HRSV. G2Na contains several contiguous B-cell epitopes, occupying sequential positions in the linear sequence of the protein. One of the epitopes contains four cysteines that are completely conserved in known strains of HRSV and form a 'cysteine noose' motif. In this study, we analysed circular dichroism (CD) spectra of BBG2Na and its B-cell epitopes. We also used NMR and molecular dynamics simulations to determine the three-dimensional structure of the cysteine noose domain. We observed significant structural differences related to the length of peptides containing the cysteine noose. These differences show good correlation with the immunogenic activity of the peptides. It is shown that a single Val(171) addition induces a pronounced structure stabilization of the cysteine noose peptide G4a (1-4/2-3) (residues 172-187), which is associated with a 100-fold increase in its antigenicity vis-à-vis a G-protein specific monoclonal antibody.  相似文献   

3.
Teng MN  Collins PL 《Journal of virology》2002,76(12):6164-6171
The G glycoprotein of human respiratory syncytial virus (RSV) was identified previously as the viral attachment protein. Although we and others recently showed that G is not essential for replication in vitro, it does affect the efficiency of replication in a cell type-dependent fashion and is required for efficient replication in vivo. The ectodomain of G is composed of two heavily glycosylated domains with mucin-like characteristics that are separated by a short central region that is relatively devoid of glycosylation sites. This central region contains a 13-amino acid segment that is conserved in the same form among RSV isolates and is overlapped by a second segment containing four cysteine residues whose spacings are conserved in the same form and which create a cystine noose. The conserved nature of the cystine noose and flanking 13-amino acid segment suggested that this region likely was important for attachment activity. To test this hypothesis, we constructed recombinant RSVs from which the region containing the cysteine residues was deleted together with part or all of the conserved 13-amino acid segment. Surprisingly, each deletion had little or no effect on the intracellular synthesis and processing of the G protein, the kinetics or efficiency of virus replication in vitro, or sensitivity to neutralization by soluble heparin in vitro. In addition, neither deletion had any discernible effect on the ability of RSV to infect the upper respiratory tract of mice and both resulted in a 3- to 10-fold reduction in the lower respiratory tract. Thus, although the G protein is necessary for efficient virus replication in vivo, this activity does not require the central conserved cystine noose region.  相似文献   

4.
A panel of murine monoclonal antibodies (MAbs) to the human immunodeficiency virus type 1 trans-activator tat protein were characterized. The anti-tat MAbs were mapped to the different domains of the tat protein by Western blot (immunoblot) and Pepscan analyses. One-half of the MAbs tested mapped to the amino-terminal proline-rich region, and one-third of the MAbs tested mapped to the lysine-arginine-rich region of tat. The individual MAbs were tested for inhibition of tat-mediated trans activation, using a cell-based in vitro assay system. MAbs which mapped to the amino-terminal region of the tat protein demonstrated the highest degree of inhibition, whereas MAbs reactive to other portions of the molecule exhibited a less pronounced effect on tat function.  相似文献   

5.
Respiratory syncytial virus (RSV) is an important cause of severe upper and lower respiratory disease in infants and in the elderly. There are 2 main RSV subtypes A and B. A recombinant vaccine was designed based on the central domain of the RSV-A attachment G protein which we had previously named G2Na (aa130-230). Here we evaluated immunogenicity, persistence of antibody (Ab) response and protective efficacy induced in rodents by: (i) G2Na fused to DT (Diphtheria toxin) fragments in cotton rats. DT fusion did not potentiate neutralizing Ab responses against RSV-A or cross-reactivity to RSV-B. (ii) G2Nb (aa130-230 of the RSV-B G protein) either fused to, or admixed with G2Na. G2Nb did not induce RSV-B-reactive Ab responses. (iii) G2Na at low doses. Two injections of 3 μg G2Na in Alum were sufficient to induce protective immune responses in mouse lungs, preventing RSV-A and greatly reducing RSV-B infections. In cotton rats, G2Na-induced RSV-reactive Ab and protective immunity against RSV-A challenge that persisted for at least 24 weeks. (iv) injecting RSV primed mice with a single dose of G2Na/Alum or G2Na/PLGA [poly(D,L-lactide-co-glycolide]. Despite the presence of pre-existing RSV-specific Abs, these formulations effectively boosted anti-RSV Ab titres and increased Ab titres persisted for at least 21 weeks. Affinity maturation of these Abs increased from day 28 to day 148. These data indicate that G2Na has potential as a component of an RSV vaccine formulation.  相似文献   

6.
The Eastern equine encephalitis virus (EEEV) E2 protein is one of the main targets of the protective immune response against EEEV. Although some efforts have done to elaborate the structure and immune molecular basis of Alphaviruses E2 protein, the published data of EEEV E2 are limited. Preparation of EEEV E2 protein-specific antibodies and define MAbs-binding epitopes on E2 protein will be conductive to the antibody-based prophylactic and therapeutic and to the study on structure and function of EEEV E2 protein. In this study, 51 EEEV E2 protein-reactive monoclonal antibodies (MAbs) and antisera (polyclonal antibodies, PAbs) were prepared and characterized. By pepscan with MAbs and PAbs using enzyme-linked immunosorbent assay, we defined 18 murine linear B-cell epitopes. Seven peptide epitopes were recognized by both MAbs and PAbs, nine epitopes were only recognized by PAbs, and two epitopes were only recognized by MAbs. Among the epitopes recognized by MAbs, seven epitopes were found only in EEEV and two epitopes were found both in EEEV and Venezuelan equine encephalitis virus (VEEV). Four of the EEEV antigenic complex-specific epitopes were commonly held by EEEV subtypes I/II/III/IV (1-16aa, 248-259aa, 271-286aa, 321-336aa probably located in E2 domain A, domain B, domain C, domain C, respectively). The remaining three epitopes were EEEV type-specific epitopes: a subtype I-specific epitope at amino acids 108–119 (domain A), a subtype I/IV-specific epitope at amino acids 211–226 (domain B) and a subtype I/II/III-specific epitope at amino acids 231–246 (domain B). The two common epitopes of EEEV and VEEV were located at amino acids 131–146 and 241–256 (domain B). The generation of EEEV E2-specific MAbs with defined specificities and binding epitopes will inform the development of differential diagnostic approaches and structure study for EEEV and associated alphaviruses.  相似文献   

7.
Eighteen neutralizing monoclonal antibodies (MAbs) specific for the fusion glycoprotein of the A2 strain of respiratory syncytial virus (RSV) were used to construct a detailed topological and operational map of epitopes involved in neutralization and fusion. Competitive binding assays identified three nonoverlapping antigenic sites (A, B, and C) and one bridge site (AB). Thirteen MAb-resistant mutants (MARMs) were selected, and the neutralization patterns of the MAbs with either MARMs or RSV clinical strains identified a minimum of 16 epitopes. MARMs selected with antibodies to six of the site A and AB epitopes displayed a small-plaque phenotype, which is consistent with an alteration in a biologically active region of the F molecule. Analysis of MARMs also indicated that these neutralization epitopes occupy topographically distinct but conformationally interdependent regions with unique biological and immunological properties. Antigenic variation in F epitopes was examined by using 23 clinical isolates (18 subgroup A and 5 subgroup B) in cross-neutralization assays with the 18 anti-F MAbs. This analysis identified constant, variable, and hypervariable regions on the molecule and indicated that antigenic variation in the neutralization epitopes of the RSV F glycoprotein is the result of a noncumulative genetic heterogeneity. Of the 16 eptiopes, 8 were conserved on all or all but 1 of 23 subgroup A or subgroup B clinical isolates.  相似文献   

8.
Evidence from clinical and experimental studies of human and chimpanzees suggests that hepatitis C virus (HCV) envelope glycoprotein E2 is a key antigen for developing a vaccine against HCV infection. To identify B-cell epitopes in HCV E2, six murine monoclonal antibodies (MAbs), CET-1 to -6, specific for HCV E2 protein were generated by using recombinant proteins containing E2t (a C-terminally truncated domain of HCV E2 [amino acids 386 to 693] fused to human growth hormone and glycoprotein D). We tested whether HCV-infected sera were able to inhibit the binding of CET MAbs to the former fusion protein. Inhibitory activity was observed in most sera tested, which indicated that CET-1 to -6 were similar to anti-E2 antibodies in human sera with respect to the epitope specificity. The spacial relationship of epitopes on E2 recognized by CET MAbs was determined by surface plasmon resonance analysis and competitive enzyme-linked immunosorbent assay. The data indicated that three overlapping epitopes were recognized by CET-1 to -6. For mapping the epitopes recognized by CET MAbs, we analyzed the reactivities of CET MAbs to six truncated forms and two chimeric forms of recombinant E2 proteins. The data suggest that the epitopes recognized by CET-1 to -6 are located in a small domain of E2 spanning amino acid residues 528 to 546.  相似文献   

9.
Hepadnavirus polymerases are multifunctional enzymes that play critical roles during the viral life cycle but have been difficult to study due to a lack of a well-defined panel of monoclonal antibodies (MAbs). We have used recombinant human hepatitis B virus (HBV) polymerase (Pol) expressed in and purified from baculovirus-infected insect cells to generate a panel of six MAbs directed against HBV Pol protein. Such MAbs were subsequently characterized with respect to their isotypes and functions in analytical and preparative assays. Using these MAbs as probes together with various deletion mutants of Pol expressed in insect cells, we mapped the B-cell epitopes of Pol recognized by these MAbs to amino acids (aa) 8 to 20 and 20 to 30 in the terminal protein (TP) region of Pol, to aa 225 to 250 in the spacer region, and to aa 800 to 832 in the RNase H domain. Confocal microscopy and immunocytochemical studies using various Pol-specific MAbs revealed that the protein itself appears to be exclusively localized to the cytoplasm. Finally, MAbs specific for the TP domain, but not MAbs specific for the spacer or RNase H regions of Pol, appeared to inhibit Pol function in the in vitro priming assay, suggesting that antibody-mediated interference with TP may now be assessed in the context of HBV replication.  相似文献   

10.
The protective mechanisms induced in the mouse upper respiratory tract (URT) after intraperitoneal immunization with G2Na, a recombinant respiratory syncytial virus (RSV) G protein fragment (amino acid residues 130 to 230), were investigated. This protection was recently shown to be mediated by CD4(+) T cells and to be critically dependent on the cysteines and amino acids 193 and 194 (H. Plotnicky-Gilquin, A. Robert, L. Chevalet, J.-F. Haeuw, A. Beck, J.-Y. Bonnefoy, C. Brandt, C.-A. Siegrist, T. N. Nguyen, and U. F. Power, J. Virol. 74:3455-3463, 2000). On G2Na, we identified a domain (amino acid residues 182 to 198) responsible for the T-helper-cell activity. This region coincided with a peptide designed AICK (residues 184 to 198) which includes the previously identified murine and human T-helper-cell epitope on the native G protein (P. W. Tebbey, M. Hagen, and G. E. Hancock, J. Exp. Med. 188:1967-1972, 1998). Immunization with AICK, in alum or complete Freund's adjuvant, significantly reduced nasal RSV titers in normal BALB/c mice. However, although lung protection was induced, in contrast to the case with live RSV, neither AICK nor G2Na was able to prevent nasal infection in gamma interferon (IFN-gamma)-knockout mice. Anti-IFN-gamma neutralizing antibodies partially inhibited URT protection after administration to G2Na-immunized BALB/c mice. Furthermore, while purified CD4(+) T cells from BALB/c mice immunized with G2Na or AICK significantly reduced lung and nasal infection of naive recipient mice after adoptive transfer, the cells from IFN-gamma-knockout mice had no effect. Together, these results demonstrated for the first time that the T-helper-cell epitope of RSV G protein induces URT protection in mice after parenteral immunization through a Th1-type, IFN-gamma-dependent mechanism.  相似文献   

11.
The Escherichia coli H serogroup is determined by flagellin, which has both H-type-specific and cross-reactive epitopes. The cross-reactive epitopes are responsible for the cross-reaction found in agglutination. To identify the specific epitope in H33 flagellin, the H33 flagellin gene was sequenced and the encoded central variable region (CVR) was determined. Four overlapping fragments of the CVR were prepared and their specificity was verified using different H-type antisera. Short fragments carrying potential H-type-specific determinants were selected, and monoclonal antibodies (MAbs) against these fragments were prepared. A murine MAb of subtype IgG1 showing specificity to H33 flagellin was produced. The epitope of the MAb was mapped to amino acid residues 250-260.  相似文献   

12.
We identified several types of neutralization effected by F and G protein monoclonal antibodies (MAbs) reacted individually or as mixtures against respiratory syncytial virus (RSV). Neutralizing activity was identified by a microneutralization test in which virus replication was determined by enzyme immunoassay. Complete neutralization was seen only with MAbs against the F protein. Strain-specific neutralization, complete neutralization against some strains of RSV, and no neutralization against other strains were seen with an additional MAb against the F protein. Partial neutralization, virus replication significantly reduced but still present, and no neutralization were seen with MAbs against both the F and G proteins. Enhanced neutralization, enhanced efficacy of neutralization, or increased neutralizing titer with a mixture of two MAbs over that for the individual MAbs was seen with all MAbs against the F protein and all but three MAbs against the G protein. Most (10 of 13) of the MAbs that exhibited neutralizing activity reacted with some but not all strains of RSV in an enzyme immunoassay. The epitopes corresponding to these 10 MAbs probably contribute to the strain-specific component of the neutralizing antibody response to RSV. Our results suggest that interpretation of RSV neutralization with MAbs is complex and that studies of such neutralization should include mixtures of MAbs and multiple RSV strains.  相似文献   

13.
Intranasal instillation techniques are used to deliver various substances to the upper and lower respiratory tract (URT and LRT) in mice. Here, we quantify the relative distribution achieved with intranasal delivery of a nonabsorbable tracer, (99m)Tc-labeled sulfide-colloid. Relative distribution was determined by killing mice after instillation and quantifying the radioactivity in dissected tissues using gamma scintigraphy. A significant effect of delivery volume on relative distribution was observed when animals were killed 5 min after instillation delivered under gas anesthesia. With a delivery volume of 5 microl, no radiation was detected in the LRT; this increased to a maximum of 55.7 +/- 2.5% distribution to the LRT when 50 microl were delivered. The majority of radiation not detected in the LRT was found in the URT. Over the course of the following 1 h, radiation in the LRT remained constant, while that in the URT decreased and appeared in the gastrointestinal tract. Instillation of 25 microl into anesthetized mice resulted in 30.1 +/- 6.9% distribution to the LRT, while only 5.3 +/- 1.5% (P < 0.05) of the same volume was detected in the LRT of awake mice. Varying the body position of mice did not affect relative distribution. When using intranasal instillation, the relative distribution between the URT and LRT and the gastrointestinal tract is heavily influenced by delivery volume and level of anesthesia.  相似文献   

14.
Immunogenic regions of the gp41 transmembrane protein of human immunodeficiency virus type 1 (HIV-1) were previously mapped by examining polyclonal sera from HIV-infected patients and rodent polyclonal and monoclonal antibodies (MAbs) to peptides of gp41. To define the epitopes within these regions to which infected humans respond during the course of infection, the specificity of human MAbs to these regions had to be studied. Using 10 human MAbs identified initially by their reactivity to whole gp41 in HIV-1 lysates, the epitopes within the immunodominant region of gp41 and within a second immunogenic region of gp41 have been mapped. Thus, five MAbs (from five different patients) to the immunodominant domain of gp41 in the vicinity of the cysteines at positions 598 and 604 (hereinafter designated cluster I) reacted with a stretch of 11 amino acids from positions 590 to 600. Four of these five MAbs were reactive with linear epitopes, while one MAb required the conformation conferred by the disulfide bridge between the aforementioned cysteines. Three MAbs to cluster I revealed dissociation constants ranging from 10(-6) to 10(-8) M, depending on the MAb tested and the size of the synthetic or recombinant peptide used in the assay. Five additional MAbs reacted with a second immunogenic region between positions 644 and 663 (designated cluster II). Four of these five MAbs were specific for conformational determinants. Titration of sera from HIV-infected patients showed that there was about 100-fold more antibody to cluster I than to cluster II in patients' sera, confirming the immunodominance of cluster I.  相似文献   

15.
Previous studies have demonstrated that monoclonal antibodies (MAbs) against an epitope on the lateral surface of domain III (DIII) of the West Nile virus (WNV) envelope (E) strongly protect against infection in animals. Herein, we observed significantly less efficient neutralization by 89 MAbs that recognized domain I (DI) or II (DII) of WNV E protein. Moreover, in cells expressing Fc gamma receptors, many of the DI- and DII-specific MAbs enhanced infection over a broad range of concentrations. Using yeast surface display of E protein variants, we identified 25 E protein residues to be critical for recognition by DI- or DII-specific neutralizing MAbs. These residues cluster into six novel and one previously characterized epitope located on the lateral ridge of DI, the linker region between DI and DIII, the hinge interface between DI and DII, and the lateral ridge, central interface, dimer interface, and fusion loop of DII. Approximately 45% of DI-DII-specific MAbs showed reduced binding with mutations in the highly conserved fusion loop in DII: 85% of these (34 of 40) cross-reacted with the distantly related dengue virus (DENV). In contrast, MAbs that bound the other neutralizing epitopes in DI and DII showed no apparent cross-reactivity with DENV E protein. Surprisingly, several of the neutralizing epitopes were located in solvent-inaccessible positions in the context of the available pseudoatomic model of WNV. Nonetheless, DI and DII MAbs protect against WNV infection in mice, albeit with lower efficiency than DIII-specific neutralizing MAbs.  相似文献   

16.
Glycoprotein B (gB), along with gD, gH, and gL, is essential for herpes simplex virus (HSV) entry. The crystal structure of the gB ectodomain revealed it to be an elongated multidomain trimer. We generated and characterized a panel of 67 monoclonal antibodies (MAbs). Eleven of the MAbs had virus-neutralizing activity. To organize gB into functional regions within these domains, we localized the epitopes recognized by the entire panel of MAbs and mapped them onto the crystal structure of gB. Most of the MAbs were directed to continuous or discontinuous epitopes, but several recognized discontinuous epitopes that showed some resistance to denaturation, and we refer to them as pseudo-continuous. Each category contained some MAbs with neutralizing activity. To map continuous epitopes, we used overlapping peptides that spanned the gB ectodomain and measured binding by enzyme-linked immunosorbent assay. To identify discontinuous and pseudocontinuous epitopes, a purified form of the ectodomain of gB, gB(730t), was cleaved by alpha-chymotrypsin into two major fragments comprising amino acids 98 to 472 (domains I and II) and amino acids 473 to 730 (major parts of domains III, IV, and V). We also constructed a series of gB truncations to augment the other mapping strategies. Finally, we used biosensor analysis to assign the MAbs to competition groups. Together, our results identified four functional regions: (i) one formed by residues within domain I and amino acids 697 to 725 of domain V; (ii) a second formed by residues 391 to 410, residues 454 to 475, and a less-defined region within domain II; (iii) a region containing residues of domain IV that lie close to domain III; and (iv) the first 12 residues of the N terminus that were not resolved in the crystal structure. Our data suggest that multiple domains are critical for gB function.  相似文献   

17.
Y Xiang  C E Cameron  J W Wills    J Leis 《Journal of virology》1996,70(8):5695-5700
The p2 region of the Rous sarcoma virus (RSV) Gag polyprotein contains an assembly domain, which is required late in replication for efficient budding of virus-like particles from cells (J. W. Wills, C. E. Cameron, C. B. Wilson, Y. Xiang, R. P. Bennett, and J. Leis, J. Virol. 68:6605-6618, 1994). This domain, referred to as the L domain, was previously mapped to the 11 amino acids of p2b. Through the analysis of a series of deletion and substitution mutations, the L domain has now been fine mapped to a highly conserved amino acid sequence, PPPPYV of p2b. Sequences flanking PPPPYV motif can be deleted without any effect on budding. Defects caused by L-domain deletions can be rescued by placing a wild-type copy of the sequence at several other positions in RSV Gag. A proline-rich P(S/T)APP motif is found in many retroviral Gag polyproteins; the motif found in the p6 region of human immunodeficiency virus type 1 has been implicated in late functions of the virus. Substitution of the RSV L domain with this motif in a 10-amino-acid sequence derived from visna leukemia virus results in wild-type release of virus particles from cells. In contrast, the slightly different sequences from Gibbon ape leukemia virus, Moloney leukemia virus, PSAPP alone, or a proline-rich SH3 binding sequence do not efficiently rescue RSV L-domain mutations.  相似文献   

18.
The hepadnaviral polymerase (P) functions in a complex with viral nucleic acids and cellular chaperones. To begin to identify contacts between P and its partners, we assessed the exposure of the epitopes of six monoclonal antibodies (MAbs) to the terminal protein domain of the duck hepatitis B virus P protein in a partially denaturing buffer (RIPA) and a physiological buffer (IPP150). All MAbs immunoprecipitated in vitro translated P well in RIPA, but three immunoprecipitated P poorly in IPP150. Therefore, the epitopes for these MAbs were obscured in the native conformation of P but were exposed when P was in RIPA. Epitopes for MAbs that immunoprecipitated P poorly in IPP150 were between amino acids (aa) 138 and 202. Mutation of a highly conserved motif within this region (T3; aa 176 to 183) improved the immunoprecipitation of P by these MAbs and simultaneously inhibited DNA priming by P. Peptides containing the T3 motif inhibited DNA priming in a dose-dependent manner, whereas eight irrelevant peptides did not. T3 function appears to be conserved among the hepadnaviruses because mutating T3 ablated DNA synthesis in both duck hepatitis B virus and hepatitis B virus. These results indicate that (i) the conserved T3 motif is a molecular contact point whose ligand can be competed by soluble T3 peptides, (ii) the occupancy of T3 obscures the epitopes for three MAbs, and (iii) proper occupancy of T3 by its ligand is essential for DNA priming. Therefore, small-molecule ligands that compete for binding to T3 with its natural ligand could form a novel class of antiviral drugs.  相似文献   

19.
Glycoprotein D (gD) is an envelope component of herpes simplex virus types 1 (gD-1) and 2 (gD-2). The gD-1 polypeptide contains seven cysteine residues among its 369 amino acids; six are located on the N-terminal or luminal portion of the glycoprotein, and a seventh is located in the transmembrane region. Previous studies used a panel of monoclonal antibodies (MAbs) to define gD epitopes as continuous or discontinuous. Purified gD, denatured by reduction and alkylation, loses discontinuous epitopes, whereas continuous epitopes are retained. The contribution of disulfide bonds to maintenance of discontinuous epitopes is, therefore, significant. In the present study, our objective was to determine the contribution of individual cysteine residues to folding of gD-1 into its native conformation. Site-directed oligonucleotide mutagenesis was used to create seven mutants, each with a serine residue replacing a cysteine. The mutated genes were cloned into a eucaryotic expression vector and transfected into COS-1 cells, and the proteins were separated by nondenaturing polyacrylamide gel electrophoresis, followed by immunoblotting. Replacement of cysteine 7 (residue 333) had only a minimal effect on the antigenic properties of gD-1. In contrast, replacement of any one of the other six cysteine residues resulted in either a major reduction or a complete loss of binding of those MAbs that recognize discontinuous epitopes, with no effect on the binding of MAbs which recognize continuous epitopes. These mutations also had profound effects on the extent of oligosaccharide processing of gD-1. This was determined by digestion of the expressed proteins with various endoglycosidases, followed by electrophoresis and Western blotting (immunoblotting) to observe any mobility changes. Three mutant gD proteins which did not express discontinuous epitopes contained only high-mannose-type oligosaccharides, suggesting that processing had not proceeded beyond the precursor stage. Two mutant forms of gD exhibited reduced binding of MAbs to discontinuous epitopes. A small proportion of the molecules which accumulated at 48 h posttransfection contained complex oligosaccharides. One mutant exhibited reduced binding of MAbs to discontinuous epitopes, but was present at 48 h posttransfection only in the precursor form. The cysteine 7 mutant was processed to the same extent as wild-type gD. We conclude that the first six cysteine residues are critical to the correct folding, antigenic structure, and processing of gD-1, and we speculate that they form three disulfide-bonded pairs.  相似文献   

20.
Deussing J  Tisljar K  Papazoglou A  Peters C 《Gene》2000,251(2):165-173
A murine cysteine protease of the papain family was identified by dbEST-database search. A 1.87kb full-length cDNA encoding a predicted polypeptide of 462 amino acids was sequenced. Since the encoded polypeptide shows more than 80% sequence identity with human cathepsin F, it is most likely that this cDNA represents the murine homologue of cathepsin F, and it was therefore named accordingly. Murine cathepsin F exhibits a domain structure typical for papain-like cysteine proteases, a 20 amino acid N-terminal hydrophobic signal sequence followed by an extraordinarily long propeptide of 228 amino acids and the domain of the mature protease comprising 214 amino acids. The mature region contains all features characteristic of a papain-like cysteine protease, including the highly conserved cysteine, histidine and asparagine residues of the 'catalytic triad'. Genomic clones covering the murine cathepsin F gene were isolated. The mouse cathepsin F gene consists of 14 exons and 13 introns and spans 5.8kb. Murine cathepsin F was mapped to chromosome 19, a region with synteny homology to a region of human chromosome 11 to which human cathepsin F has been mapped previously. Northern blot analysis of RNA from multiple tissues revealed a ubiquitous expression of cathepsin F in mouse and man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号