首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage‐specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co‐occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages.  相似文献   

2.
The evolution of a particular trait or combination of traits within lineages may affect subsequent evolutionary outcomes, leading closely related species to exhibit higher phenotypic similarity than expected under a simple Brownian‐motion evolutionary model. Niche theory postulates that phenotypes determine species distribution across environmental gradients, leading to a phylogenetic signature in the community assembly. Thus, the incorporation of species phylogeny in the analysis of community ecology structure allows one to link broader environmental, spatial and temporal factors to local, small‐scale ecological processes, thus enabling understanding of community assembly patterns in a broader context. We used the net relatedness index to assess phylogenetic structure within avian communities across a harshness gradient in coastal habitats in southern Brazil. We also evaluated phylogenetic beta diversity, to test whether closely related species exploit habitats with similar environmental conditions. In order to do so, we scaled up phylogenetic information from the species to site level using phylogenetic fuzzy weighting. We found a pattern of phylogenetic clustering in less‐vegetated habitats, namely sandy beach and dunes, which are subject to harsher conditions because of proximity to the ocean. Basal lineages were associated with the more structurally homogeneous sandy beach, while late‐divergence clades occurred in more complex habitats, which were positively related to vegetation cover and height. The observed pattern of phylogenetic clustering suggested the importance of harsh conditions in constraining the distribution of avian lineages. Furthermore, contrasting environmental features between habitats influenced phylogenetic variation, demonstrating the prevalence of phylogenetic habitat filtering. From an applied point of view, such as planning and management of biological reserves, we showed that the full array of habitat patches embedded within coastal ecological gradients must be included in order to preserve distinct evolutionary lineages.  相似文献   

3.
The relative importance of competition vs. environmental filtering in the assembly of communities is commonly inferred from their functional and phylogenetic structure, on the grounds that similar species compete most strongly for resources and are therefore less likely to coexist locally. This approach ignores the possibility that competitive effects can be determined by relative positions of species on a hierarchy of competitive ability. Using growth data, we estimated 275 interaction coefficients between tree species in the French mountains. We show that interaction strengths are mainly driven by trait hierarchy and not by functional or phylogenetic similarity. On the basis of this result, we thus propose that functional and phylogenetic convergence in local tree community might be due to competition-sorting species with different competitive abilities and not only environmental filtering as commonly assumed. We then show a functional and phylogenetic convergence of forest structure with increasing plot age, which supports this view.  相似文献   

4.
放牧干扰梯度下川西亚高山植物群落的组合机理   总被引:2,自引:1,他引:1       下载免费PDF全文
为了阐明放牧干扰对川西亚高山区域植物群落的组合过程以及群落结构的影响, 研究了放牧干扰梯度下的功能群均匀度和群落谱系结构的变化趋势。结果显示: 在干扰较轻的阔叶林与针叶林样地, 部分样方的功能群均匀度显著高于无效模型, 随着干扰梯度的增强, 功能群均匀度呈线性下降, 样方平均值从0.930降至0.840, 其高于无效模型的次数也逐渐降低, 干扰程度较大的草甸中出现部分样方的功能群均匀度显著低于无效模型。随着干扰程度的增强, 群落的谱系结构指数也呈逐渐上升趋势, 净关联指数平均值由-0.634逐渐增加至2.360, 邻近类群指数由-0.158上升至2.179。草甸与低矮灌丛受干扰较为严重, 其大部分样方的谱系结构指数显著高于随机群落, 表明干扰群落的谱系结构呈聚集分布。功能群均匀度与谱系结构的变化趋势一致, 表明生境筛滤效应与种间竞争作用的平衡决定着群落的组合过程。干扰降低了竞争作用, 促进了少数耐干扰功能群的优势地位, 造成功能群均匀度下降, 同时通过生境筛滤作用, 使群落的谱系结构呈现出聚集分布; 而未干扰的群落中由于竞争作用的效应, 功能群均匀度较高, 谱系结构也更加分散。研究区域植物群落的功能群均匀度与物种丰富度呈负相关, 表明物种间特别是相似物种间的竞争限制了群落的物种多样性。研究结果说明, 生态位分化和物种间的相互竞争在物种共存与群落组合中具有重要作用。  相似文献   

5.
Similarity between species plays a key role in the processes governing community assembly. The co‐occurrence of highly similar species may be unlikely if their similar needs lead to intense competition (limiting similarity). On the other hand, persistence in a particular habitat may require certain traits, such that communities end up consisting of species sharing the same traits (environmental filtering). Relatively little information exists on the relative importance of these processes in structuring parasite communities. Assuming that phylogenetic relatedness reflects ecological similarity, we tested whether the co‐occurrence of pairs of flea species (Siphonaptera) on the same host individuals was explained by the phylogenetic distance between them, among 40 different samples of mammalian hosts (rodents and shrews) from different species, areas or seasons. Our results indicate that frequency of co‐occurrence between flea species increased with decreasing phylogenetic distance between them in 37 out of 40 community samples, with 14 of these correlations being statistically significant. A meta‐analysis across all samples confirmed the overall trend for closely related species to co‐occur more frequently on the same individual hosts than expected by chance, independently of the identity of the host species or of environmental conditions. These findings suggest that competition between closely related, and therefore presumably ecologically similar, species is not important in shaping flea communities. Instead, if only fleas with certain behavioural, ecological and physiological properties can encounter and exploit a given host, and if phylogenetic relationships determine trait similarity among flea species, then a process akin to environmental filtering, or host filtering, could favour the co‐occurrence of related species on the same host.  相似文献   

6.
7.
That competition is stronger among closely related species and leads to phylogenetic overdispersion is a common assumption in community ecology. However, tests of this assumption are rare and field‐based experiments lacking. We tested the relationship between competition, the degree of relatedness, and overdispersion among plants experimentally and using a field survey in a native grassland. Relatedness did not affect competition, nor was competition associated with phylogenetic overdispersion. Further, there was only weak evidence for increased overdispersion at spatial scales where plants are likely to compete. These results challenge traditional theory, but are consistent with recent theories regarding the mechanisms of plant competition and its potential effect on phylogenetic structure. We suggest that specific conditions related to the form of competition and trait conservatism must be met for competition to cause phylogenetic overdispersion. Consequently, overdispersion as a result of competition is likely to be rare in natural communities.  相似文献   

8.
Aims While using phylogenetic and functional approaches to test the mechanisms of community assembly, functional traits often act as the proxy of niches. However, there is little detailed knowledge regarding the correlation between functional traits of tree species and their niches in local communities. We suggest that the co-varying correlation between functional traits and niches should be the premise for using phylogenetic and functional approaches to test mechanisms of community assembly. Using functional traits, phylogenetic and environmental data, this study aims to answer the questions: (i) within local communities, do functional traits of co-occurring species co-vary with their environmental niches at the species level? and (ii) what is the key ecological process underlying community assembly in Xishuangbanna and Ailaoshan forest dynamic plots (FDPs)?Methods We measured seven functional traits of 229 and 36 common species in Xishuangbanna and Ailaoshan FDPs in tropical and subtropical China, respectively. We also quantified the environmental niches for these species based on conditional probability. We then analyzed the correlations between functional traits and environmental niches using phylogenetic independent contrasts. After examining phylogenetic signals of functional traits using Pagel's λ, we quantified the phylogenetic and functional dispersion along environmental gradients within local tree communities.Important findings For target species, functional traits do co-vary with environmental niches at the species level in both of the FDPs, supporting that functional traits can be used as a proxy for local-scale environmental niches. Functional traits show significant phylogenetic signals in both of the FDPs. We found that the phylogenetic and functional dispersion were significantly clustered along topographical gradients in the Ailaoshan FDP but overdispersion in the Xishuangbanna FDP. These patterns of phylogenetic and functional dispersion suggest that environmental filtering plays a key role in structuring local tree assemblages in Ailaoshan FDP, while competition exclusion plays a key role in Xishuangbanna FDP.  相似文献   

9.
Next-generation sequencing technologies with markers covering the full Glomeromycota phylum were used to uncover phylogenetic community structure of arbuscular mycorrhizal fungi (AMF) associated with Festuca brevipila. The study system was a semi-arid grassland with high plant diversity and a steep environmental gradient in pH, C, N, P and soil water content. The AMF community in roots and rhizosphere soil were analyzed separately and consisted of 74 distinct operational taxonomic units (OTUs) in total. Community-level variance partitioning showed that the role of environmental factors in determining AM species composition was marginal when controlling for spatial autocorrelation at multiple scales. Instead, phylogenetic distance and spatial distance were major correlates of AMF communities: OTUs that were more closely related (and which therefore may have similar traits) were more likely to co-occur. This pattern was insensitive to phylogenetic sampling breadth. Given the minor effects of the environment, we propose that at small scales closely related AMF positively associate through biotic factors such as plant-AMF filtering and interactions within the soil biota.  相似文献   

10.
Phylogenetic information provides insight into the ecological and evolutionary processes that organize species assemblages. We compared patterns of phylogenetic diversity among macromycete and woody plant communities along a steep elevational gradient in eastern Mexico to better understand the evolutionary processes that structure their communities. Macrofungi and trees were counted and identified in eight sites from 100 to 3500 m asl, and sequence data retrieved from GenBank for the same or closely related species were used to reconstruct their phylogenies. Patterns of species richness and phylogenetic diversity were similar for both macrofungi and trees, but macromycete richness and diversity peaked at mid‐elevations, whereas woody plant richness and diversity did not show significant trends with elevation. Phylogenetic similarity among sites was low for both groups and decreased as elevational distance between sites increased. Macromycete communities displayed phylogenetic overdispersion at low elevations and phylogenetic clustering at high elevations; the latter is consistent with environmental filtering at high elevation sites. Woody plants generally exhibited phylogenetic clustering, consistent with the potential importance of environmental filtering throughout the elevational gradient.  相似文献   

11.
The intensity of competitive interactions between fishes is partly determined by prey use and ontogenetic niche shifts. In a wetland where distinct habitat shifts are missing we compared prey use of three generalist benthivorous sunfishes to look for evidence of ontogenetic, interspecific, and “seasonal” variation in prey composition. Diet analysis revealed evidence of diet ontogeny in warmouth (Lepomis gulosus, 30–152 mm standard length, SL), but not in bluespotted sunfish (Enneacanthus gloriosus, 30–47 mm SL) or dollar sunfish (Lepomis marginatus, 30–60 mm SL). Bluespotted and dollar sunfishes consumed small dipteran and amphipod prey and had similar diets in both seasons suggesting a potential for strong interspecific competition. In the dry season, warmouth shifted from using smaller insect prey to larger decapod and fish prey with increasing size. This shift to prey types that were little used by the other species reduced dietary niche overlap with the other sunfishes. After drought and re-flooding (in the wet season), decapods and small fish were less abundant in the wetland and the warmouth ontogenetic shift was less distinct. When matched for gape width, prey composition differed between warmouth and both dollar and bluespotted sunfishes in the wet season, suggesting differences in sunfish foraging modes, but prey use differences were less clear in the dry season when prey were abundant. Both warmouth ontogenetic diet shifts and seasonal variation in prey use (probably mediated by prey abundance) had strong influences on diet overlap and therefore the potential for intra- and interspecific competition between sunfishes in this wetland ecosystem.  相似文献   

12.
Both competition and environmental filtering are expected to influence the community structure of microbes, but there are few tests of the relative importance of these processes because trait data on these organisms is often difficult to obtain. Using phylogenetic and functional trait information, we tested whether arbuscular mycorrhizal (AM) fungal community composition in an old field was influenced by competitive exclusion and/or environmental filtering. Communities at the site were dominated by species from the most speciose family of AM fungi, the Glomeraceae, though species from two other lineages, the Acaulosporaceae and Gigasporaceae were also found. Despite the dominance of species from a single family, AM fungal species most frequently co-existed when they were distantly related and when they differed in the ability to colonize root space on host plants. The ability of AM fungal species to colonize soil did not influence co-existence. These results suggest that competition between closely related and functionally similar species for space on plant roots influences community assembly. Nevertheless, in a substantial minority of cases communities were phylogenetically clustered, indicating that closely related species could also co-occur, as would be expected if i) the environment restricted community membership to single functional type or ii) competition among functionally similar species was weak. Our results therefore also suggest that competition for niche space between closely related fungi is not the sole influence of mycorrhizal community structure in field situations, but may be of greater relative importance than other ecological mechanisms.  相似文献   

13.
The community structure and seasonal dynamics of 16 helminth species infecting green (Lepomis cyanellus) and bluegill (L. macrochirus) sunfishes in Charlie's Pond, North Carolina, was examined. One hundred and fifty-four fishes including 90 green sunfish and 64 bluegill sunfish were collected between March and November 2000 and examined for the presence of helminth parasites. Five of these species underwent significant changes in abundance in green sunfish infracommunities, 3 of which also displayed seasonal changes in prevalence. Three of the 16 species fluctuated seasonally in bluegill infrapopulations; 2 also underwent changes in prevalence. Species richness and diversity varied across the 9-mo period for both host species, whereas total helminth abundance remained constant. Analysis of component communities revealed differences in community structure for the 2 host species. Bluegills were found to harbor larger and more diverse communities. Bluegills also contained larger infrapopulations of 5 species, whereas green sunfish had greater abundance of 2 species. Interpretation of these data suggests that host species and size are strongly associated with the predictability of community structure.  相似文献   

14.
Closely related species that occur together in communities and experience similar environmental conditions are likely to share phenotypic traits because of the process of environmental filtering. At the same time, species that are too similar are unlikely to co-occur because of competitive exclusion. In an effort to explain the coexistence of 17 oak species within forest communities in North Central Florida, we examined correlations between the phylogenetic relatedness of oak species, their degree of co-occurrence within communities and niche overlap across environmental gradients, and their similarity in ecophysiological and life-history traits. We show that the oaks are phylogenetically overdispersed because co-occurring species are more distantly related than expected by chance, and oaks within the same clade show less niche overlap than expected. Hence, communities are more likely to include members of both the red oak and the white + live oak clades than only members of one clade. This pattern of phylogenetic overdispersion arises because traits important for habitat specialization show evolutionary convergence. We hypothesize further that certain conserved traits permit coexistence of distantly related congeners. These results provide an explanation for how oak diversity is maintained at the community level in North Central Florida.  相似文献   

15.
A central focus of ecology and biogeography is to determine the factors that govern spatial variation in biodiversity. Here, we examined patterns of ant diversity along climatic gradients in three temperate montane systems: Great Smoky Mountains National Park (USA), Chiricahua Mountains (USA), and Vorarlberg (Austria). To identify the factors which potentially shape these elevational diversity gradients, we analyzed patterns of community phylogenetic structure (i.e. the evolutionary relationships among species coexisting in local communities). We found that species at low‐elevation sites tended to be evenly dispersed across phylogeny, suggesting that these communities are structured by interspecific competition. In contrast, species occurring at high‐elevation sites tended to be more closely related than expected by chance, implying that these communities are structured primarily by environmental filtering caused by low temperatures. Taken together, the results of our study highlight the potential role of niche constraints, environmental temperature, and competition in shaping broad‐scale diversity gradients. We conclude that phylogenetic structure indeed accounts for some variation in species density, yet it does not entirely explain why temperature and species density are correlated.  相似文献   

16.
There is an increasing interest to combine phylogenetic data with distributional and ecological records to assess how natural communities arrange under an evolutionary perspective. In the microbial world, there is also a need to go beyond the problematic species definition to deeply explore ecological patterns using genetic data. We explored links between evolution/phylogeny and community ecology using bacterial 16S rRNA gene information from a high‐altitude lakes district data set. We described phylogenetic community composition, spatial distribution, and β‐diversity and biogeographical patterns applying evolutionary relatedness without relying on any particular operational taxonomic unit definition. High‐altitude lakes districts usually contain a large mosaic of highly diverse small water bodies and conform a fine biogeographical model of spatially close but environmentally heterogeneous ecosystems. We sampled 18 lakes in the Pyrenees with a selection criteria focused on capturing the maximum environmental variation within the smallest geographical area. The results showed highly diverse communities nonrandomly distributed with phylogenetic β‐diversity patterns mainly shaped by the environment and not by the spatial distance. Community similarity based on both bacterial taxonomic composition and phylogenetic β‐diversity shared similar patterns and was primarily structured by similar environmental drivers. We observed a positive relationship between lake area and phylogenetic diversity with a slope consistent with highly dispersive planktonic organisms. The phylogenetic approach incorporated patterns of common ancestry into bacterial community analysis and emerged as a very convenient analytical tool for direct inter‐ and intrabiome biodiversity comparisons and sorting out microbial habitats with potential application in conservation studies.  相似文献   

17.
Losos JB 《Ecology letters》2008,11(10):995-1003
Ecologists are increasingly adopting an evolutionary perspective, and in recent years, the idea that closely related species are ecologically similar has become widespread. In this regard, phylogenetic signal must be distinguished from phylogenetic niche conservatism. Phylogenetic niche conservatism results when closely related species are more ecologically similar that would be expected based on their phylogenetic relationships; its occurrence suggests that some process is constraining divergence among closely related species. In contrast, phylogenetic signal refers to the situation in which ecological similarity between species is related to phylogenetic relatedness; this is the expected outcome of Brownian motion divergence and thus is necessary, but not sufficient, evidence for the existence of phylogenetic niche conservatism. Although many workers consider phylogenetic niche conservatism to be common, a review of case studies indicates that ecological and phylogenetic similarities often are not related. Consequently, ecologists should not assume that phylogenetic niche conservatism exists, but rather should empirically examine the extent to which it occurs.  相似文献   

18.
South Florida’s freshwaters are amongst the most invaded in the world with 34 naturalized fish species. How these non-natives affect the local native fish populations, however, is largely unknown. Native sunfish of the genus Lepomis are important as predators in structuring fish and invertebrate assemblages in the swamps and seasonal wet prairies of the Big Cypress Swamp and Florida Everglades. The spotted tilapia, Tilapia mariae, is a successful West African invader that exhibits territorial and spawning behavior that closely matches that of native Lepomis sunfishes. We tested the hypothesis that Lepomis sunfishes and T. mariae would compete when space was limiting. Additionally, we predicted that T. mariae, because of their aggressiveness, would be more successful in acquiring space. We collected juveniles of both groups from Big Cypress National Preserve, Everglades National Park, and the South Florida Water Management District canal system for laboratory trials in which likely competitive interactions were staged and observed. T. mariae were bolder and more aggressive than Lepomis sunfishes. T. mariae residents resisted all intruders whereas 30% of Lepomis sunfish residents were ejected. We surmise that these enhanced behaviors of T. mariae are an important component of their success in South Florida. The continued spread of T. mariae populations throughout South Florida into natural habitats suggests an increasing potential to affect the quality of spawning habitat available for Lepomis sunfishes and warrants a renewed focus on T. mariae as a non-native species of special concern.  相似文献   

19.
We derive a new metric of community similarity that takes into account the phylogenetic relatedness among species. This metric, phylogenetic community dissimilarity (PCD), can be partitioned into two components, a nonphylogenetic component that reflects shared species between communities (analogous to S?rensen' s similarity metric) and a phylogenetic component that reflects the evolutionary relationships among nonshared species. Therefore, even if a species is not shared between two communities, it will increase the similarity of the two communities if it is phylogenetically related to species in the other community. We illustrate PCD with data on fish and aquatic macrophyte communities from 59 temperate lakes. Dissimilarity between fish communities associated with environmental differences between lakes often has a phylogenetic component, whereas this is not the case for macrophyte communities. With simulations, we then compare PCD with two other metrics of phylogenetic community similarity, II(ST) and UniFrac. Of the three metrics, PCD was best at identifying environmental drivers of community dissimilarity, showing lower variability and greater statistical power. Thus, PCD is a statistically powerful metric that separates the effects of environmental drivers on compositional versus phylogenetic components of community structure.  相似文献   

20.
Functional traits determine the occurrence of species along environmental gradients and their coexistence with other species. Understanding how traits evolved among coexisting species helps to infer community assembly processes. We propose fatty acid composition in consumer tissue as a functional trait related to both food resources and physiological functions of species. We measured phylogenetic signal in fatty acid profiles of 13 field‐sampled Collembola (springtail) species and then combined the data with published fatty acid profiles of another 24 species. Collembola fatty acid profiles generally showed phylogenetic signal, with related species resembling each other. Long‐chain polyunsaturated fatty acids, related to physiological functions, demonstrated phylogenetic signal. In contrast, most food resource biomarker fatty acids and the ratios between bacterial, fungal, and plant biomarker fatty acids exhibited no phylogenetic signal. Presumably, fatty acids related to physiological functions have been constrained during Collembola evolutionary history: Species with close phylogenetic affinity experienced similar environments during divergence, while niche partitioning in food resources among closely related species favored species coexistence. Measuring phylogenetic signal in ecologically relevant traits of coexisting species provides an evolutionary perspective to contemporary assembly processes of ecological communities. Integrating phylogenetic comparative methods with community phylogenetic and trait‐based approaches may compensate for the limitations of each method when used alone and improve understanding of processes driving and maintaining assembly patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号