首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The N-methyl-D-aspartate (NMDA) receptor is a cation channel highly permeable to calcium and plays critical roles in governing normal and pathologic functions in neurons. Calcium entry through NMDA receptors (NMDARs) can lead to the activation of the Ca2+-dependent protease, calpain. Here we investigated the involvement of calpain in regulation of NMDAR channel function. After prolonged (5-min) treatment with NMDA or glutamate, the whole-cell NMDAR-mediated current was significantly reduced in both acutely dissociated and cultured cortical pyramidal neurons. The down-regulation of NMDAR current was blocked by bath application of selective calpain inhibitors. Intracellular injection of a specific calpain inhibitory peptide also eliminated the down-regulation of NMDAR current induced by prolonged NMDA treatment. In contrast, dynamin inhibitory peptide had no effect on the depression of NMDAR current, suggesting the lack of involvement of dynamin/clathrin-mediated NMDAR internalization in this process. Immunoblotting analysis showed that the NR2A and NR2B subunits of NMDARs were markedly degraded in cultured cortical neurons treated with glutamate, and the degradation of NR2 subunits was prevented by calpain inhibitors. Taken together, our results suggest that prolonged activation of NMDARs in neurons activates calpain, and activated calpain in turn down-regulates the function of NMDARs, which provides a neuroprotective mechanism against NMDAR overstimulation accompanying ischemia and stroke.  相似文献   

2.
In the presence of glutamate and co-agonists, e.g., glycine, the N-methyl-D-aspartate receptor (NMDAR) plays an important role in physiological and pathophysiological brain processes. Previous studies indicate glycine could inhibit NMDAR responses induced by high concentration of NMDA in hippocampal neurons. The mechanism underlying this inhibitory impact, however, has been unclear. In this study, the whole-cell patch-clamp recording and Ca2+ imaging with Fluo-3/AM under laser scanning confocal microscope were used to analyze the possible involvement of NMDAR subunits in this effect. We found that the peak current of NMDARs and Ca2+ influx induced by high concentration of NMDA were reduced by treatment of glycine (0.03?C10 ??mol L?1) in a dose-dependent manner, and that the glycine-dependent inhibition of NMDAR responses, which were induced at 300 ??mol L?1 NMDA, was reversed by ZnCl2 through the blocking of the NR2A subunit of NMDARs, but was less influenced by ifenprodil, a NR2B inhibitor. Our results suggest that the glycine-dependent inactivation of NMDARs is potentially modulated by the regulatory subunit NR2A.  相似文献   

3.
The N-methyl-d-Aspartate type of glutamate receptor (NMDAR) plays a major role in the vertebrate retina. Expression of NR1 splice-variants and NR2 subunits in the retina differs from that in the brain, suggesting a tissue-specific heteromeric assembly of NMDARs. We previously demonstrated that serum alters retinal glutamate receptor properties. In order to relate this effect to NMDAR subunit composition, we here studied the effect of serum on the expression of NMDAR subunits and splice-variants in chick retinal neurons in primary culture. Our results show that mRNA and protein expression of NR1 alternative splice-variants and NR2 subunits are differentially modified by glutamate contained in serum. Such alteration suggests that NMDAR structure is reversed to embryonic heteromeric composition, through the control of subunit availability. The present findings could be relevant for the understanding of the lack of effect in the retina, of drugs which have been shown to protect cortical neurons from glutamate-induced excitotoxicity in those pathological or clinical conditions in which the retina is exposed to serum. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

4.
5.
Excitatory synaptic transmission and plasticity are critically modulated by N-methyl-D-aspartate receptors (NMDARs). Activation of NMDARs elevates intracellular Ca(2+) affecting several downstream signaling pathways that involve Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Importantly, NMDAR activation triggers CaMKII translocation to synaptic sites. NMDAR activation failed to induce Ca(2+) responses in hippocampal neurons lacking the mandatory NMDAR subunit NR1, and no EGFP-CaMKIIalpha translocation was observed. In cells solely expressing Ca(2+)-impermeable NMDARs containing NR1(N598R)-mutant subunits, prolonged NMDA application elevated internal Ca(2+) to the same degree as in wild-type controls, yet failed to translocate CaMKIIalpha. Brief local NMDA application evoked smaller Ca(2+) transients in dendritic spines of mutant compared to wild-type cells. CaMKIIalpha mutants that increase binding to synaptic sites, namely CaMKII-T286D and CaMKII-TT305/306VA, rescued the translocation in NR1(N598R) cells in a glutamate receptor-subtype-specific manner. We conclude that CaMKII translocation requires Ca(2+) entry directly through NMDARs, rather than other Ca(2+) sources activated by NMDARs. Together with the requirement for activated, possibly ligand-bound, NMDARs as CaMKII binding partners, this suggests that synaptic CaMKII accumulation is an input-specific signaling event.  相似文献   

6.
The effects of 30 s to 10 min hypoxia (PO2-10 mmHg) on glutamate receptor activity were studied in murine cortical neurons. Receptor activity was assessed as a rise in intracellular calcium concentration ([Ca2+]i) following a 10 s application of 1 mm glutamate or 100 micro mN-methy-d-aspartate (NMDA) in the presence of 0.1 mm Mg2+ and 10 micro m glycine. Change in [Ca2+]i elicited by glutamate increased 26% (n = 192, p < 0.001) and that to NMDA by 74% (n = 9, p < 0.01) during a 100-s period of hypoxia. After 10 min hypoxia, responses to glutamate were 62% smaller than those in normoxia, with increased basal intracellular [Ca2+]i predicting reduced receptor activity. When neurons were exposed to NMDA after 10 min of hypoxia, [Ca2+]i increases were 12% smaller than after 100 s hypoxia, but still 53% larger than in oxygenated neurons (n = 9, p = 0.01). Neurons expressed relatively similar amounts of NR2A, -B, -C, and -D subunits. The phosphorylation of NMDA NR1 subunits increased during hypoxia. Pre-treatment of neurons with a protein kinase C (PKC) inhibitor (chelerythrine, 10 micro m) prevented increases in N-methy-d-aspartate receptor (NMDAR) activity during hypoxia and reduced the phosphorylation of NR1 subunits. These results suggest that enhancement of glutamate receptor activity during the first minutes of hypoxia is mediated by phosphorylation of NMDARs by PKC and that other mechanisms, possibly involving intracellular calcium, limit glutamate receptor-mediated calcium influx during longer periods of hypoxia.  相似文献   

7.
In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in?vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in?vivo.  相似文献   

8.
9.
Characterisation of the expression of NMDA receptors in human astrocytes   总被引:1,自引:0,他引:1  
Lee MC  Ting KK  Adams S  Brew BJ  Chung R  Guillemin GJ 《PloS one》2010,5(11):e14123
Astrocytes have long been perceived only as structural and supporting cells within the central nervous system (CNS). However, the discovery that these glial cells may potentially express receptors capable of responding to endogenous neurotransmitters has resulted in the need to reassess astrocytic physiology. The aim of the current study was to characterise the expression of NMDA receptors (NMDARs) in primary human astrocytes, and investigate their response to physiological and excitotoxic concentrations of the known endogenous NMDAR agonists, glutamate and quinolinic acid (QUIN). Primary cultures of human astrocytes were used to examine expression of these receptors at the mRNA level using RT-PCR and qPCR, and at the protein level using immunocytochemistry. The functionality role of the receptors was assessed using intracellular calcium influx experiments and measuring extracellular lactate dehydrogenase (LDH) activity in primary cultures of human astrocytes treated with glutamate and QUIN. We found that all seven currently known NMDAR subunits (NR1, NR2A, NR2B, NR2C, NR2D, NR3A and NR3B) are expressed in astrocytes, but at different levels. Calcium influx studies revealed that both glutamate and QUIN could activate astrocytic NMDARs, which stimulates Ca2+ influx into the cell and can result in dysfunction and death of astrocytes. Our data also show that the NMDAR ion channel blockers, MK801, and memantine can attenuate glutamate and QUIN mediated cell excitotoxicity. This suggests that the mechanism of glutamate and QUIN gliotoxicity is at least partially mediated by excessive stimulation of NMDARs. The present study is the first to provide definitive evidence for the existence of functional NMDAR expression in human primary astrocytes. This discovery has significant implications for redefining the cellular interaction between glia and neurons in both physiological processes and pathological conditions.  相似文献   

10.
In the present study, we have examined the effects of prolonged (up to 72 h) inhibition of high-affinity glutamate reuptake by L-trans-pyrrolidine-2,4-dicarboxylate (PDC; 100 microM) on glutamate receptor functions in primary cultures of rat cerebellar granule neurons. This was done by comparing the effects of various glutamate receptor agonists on neuronal 45Ca2+ uptake, free cytoplasmic Ca2+ concentration ([Ca2+]i), and cell viability. We also determined the parameters of[3H]MK-801 binding as well as the expression of the NMDAR1 subunit protein in control and PDC-exposed cultures. The blockade of glutamate reuptake by PDC led to a gradual increase of ambient glutamate to concentrations that are neurotoxic when applied acutely to control cells. In PDC-exposed cells, however, the acute glutamate-induced NMDA receptor-mediated calcium fluxes were strongly diminished and no toxicity was observed. The down-regulation of the functional effects of glutamate was dependent on the duration of PDC exposure and was accompanied by a reduced NMDAR1 subunit expression and decreased [3H]MK-801 binding, indicative of a pronounced structural rearrangement of NMDA receptors. The possibility that the decrease of NMDA glutamate receptor sensitivity can be explained on the basis of a reduced density or altered subunit composition of NMDA receptors is discussed.  相似文献   

11.
The biophysical properties of NMDA receptors are thought to be critical determinants involved in the regulation of long-term synaptic plasticity during neocortical development. NMDA receptor channel properties are strongly dependent on the subunit composition of heteromeric NMDA receptors. During neocortical development in vivo, the expression of the NMDA receptor 2A (NR2A) subunit is up-regulated at the mRNA and protein level correlating with changes in the kinetic and pharmacological properties of functional NMDA receptors. To investigate the developmental regulation of NMDA receptor subunit expression, we studied NR2 mRNA expression in cultured neocortical neurons. With increasing time in culture, they showed a similar up-regulation of NR2A mRNA expression as described in vivo. As demonstrated by chronic blockade of postsynaptic glutamate receptors in vitro, the regulation of NR2A mRNA was strongly dependent on synaptic activity. In contrast, NR2B mRNA expression was not influenced by activity blockade. Moreover, as shown pharmacologically, the regulation of NR2A mRNA expression was mediated by postsynaptic Ca(2+) influx through both NMDA receptors and L-type Ca(2+) channels. It is interesting that even relatively weak expression of NR2A mRNA was correlated with clearly reduced sensitivity of NMDA receptor-mediated whole-cell currents against the NR2B subunit-specific antagonist ifenprodil. Developmental changes in the expression of NR1 mRNA splice variants were also strongly dependent on synaptic activity and thus might, in addition to regulation of NR2 subunit expression, contribute to developmental changes in the properties of functional NMDA receptors. In summary, our results demonstrate that synaptic activity is a key factor in the regulation of NMDA receptor subunit expression during neocortical development.  相似文献   

12.
Mu Y  Otsuka T  Horton AC  Scott DB  Ehlers MD 《Neuron》2003,40(3):581-594
Activity-dependent targeting of NMDA receptors (NMDARs) is a key feature of synapse formation and plasticity. Although mechanisms for rapid trafficking of glutamate receptors have been identified, the molecular events underlying chronic accumulation or loss of synaptic NMDARs have remained unclear. Here we demonstrate that activity controls NMDAR synaptic accumulation by regulating forward trafficking at the endoplasmic reticulum (ER). ER export is accelerated by the alternatively spliced C2' domain of the NR1 subunit and slowed by the C2 splice cassette. This mRNA splicing event at the C2/C2' site is activity dependent, with C2' variants predominating upon activity blockade and C2 variants abundant with increased activity. The switch to C2' accelerates NMDAR forward trafficking by enhancing recruitment of nascent NMDARs to ER exit sites via binding of a divaline motif within C2' to COPII coats. These results define a novel pathway underlying activity-dependent targeting of glutamate receptors, providing an unexpected mechanistic link between activity, mRNA splicing, and membrane trafficking during excitatory synapse modification.  相似文献   

13.
NMDA receptors (NMDARs) play a pivotal role in the regulation of neuronal communication and synaptic function in the central nervous system. The subunit composition and compartmental localization of NMDARs in neurons affect channel activity and downstream signaling. This review discusses the distinct NMDAR subtypes and their function at synaptic, perisynaptic, and extrasynaptic sites of excitatory and inhibitory neurons. Many neurons express more than one of the modulatory NR2 subunits that participate in the formation of di- and/or triheteromeric channel assemblies (e.g., NR1/NR2A, NR1/NR2B, and/or NR1/NR2A/NR2B). Depending on the subunit composition and presence or absence of intracellular binding partners along the postsynaptic membrane, these NMDAR subtypes are allocated to distinct synaptic inputs converging onto a neuron or are distributed differentially among synaptic or extrasynaptic sites. These sites can carry NR2A and NR2B subunits, supporting the hypothesis that the spatial distribution of scaffolding and signaling complexes critically determines the full spectrum of NMDAR signaling.The author thanks the Deutsche Forschungsgemeinschaft for financial support (Ko 1064/5).  相似文献   

14.
Kim MJ  Dunah AW  Wang YT  Sheng M 《Neuron》2005,46(5):745-760
NMDA receptors (NMDARs) control bidirectional synaptic plasticity by regulating postsynaptic AMPA receptors (AMPARs). Here we show that NMDAR activation can have differential effects on AMPAR trafficking, depending on the subunit composition of NMDARs. In mature cultured neurons, NR2A-NMDARs promote, whereas NR2B-NMDARs inhibit, the surface expression of GluR1, primarily by regulating its surface insertion. In mature neurons, NR2B is coupled to inhibition rather than activation of the Ras-ERK pathway, which drives surface delivery of GluR1. Moreover, the synaptic Ras GTPase activating protein (GAP) SynGAP is selectively associated with NR2B-NMDARs in brain and is required for inhibition of NMDAR-dependent ERK activation. Preferential coupling of NR2B to SynGAP could explain the subtype-specific function of NR2B-NMDARs in inhibition of Ras-ERK, removal of synaptic AMPARs, and weakening of synaptic transmission.  相似文献   

15.
16.
ATP-binding cassette transporter A1 (ABCA1) is an essential regulator of intracellular cholesterol efflux. Secreted cholesterol binds to lipid-free apolipoprotein A-I (apoA-I) in peripheral blood to constitute high-density lipoprotein cholesterol (HDL) complexes. ABCA1 protein on the surface of macrophages acts as a crucial controller in preventing cholesterol accumulation. Importantly, ABCA1 is unstable and easily degraded via a series of biochemical activities, including but not limited to calpain-mediated and ubiquitin-proteasome system-mediated processes. How accelerated ABCA1 degradation impacts disordered lipid metabolism in macrophages and foam cell formation is unclear. N-methyl d-aspartate receptors (NMDARs) are ionotropic glutamate receptors with high calcium permeability. Calcium influx via NMDARs activates downstream signaling pathways. Over-activation of NMDARs stimulated by NMDA contributes to dysfunctional lipid metabolism in macrophages and foam cell formation via promotion of calpain-mediated ABCA1 proteolysis. However, increased NMDAR activity does not affect liver X receptor expression or ABCA1 mRNA levels. Following NMDA receptor silencing or calpain inhibition, NMDA treatment did not reduce ABCA1 protein levels, nor caused lipid accumulation in macrophages. In addition, NMDAR over-activation activates NF-κB signaling to promote IL-1β and IL-6 macrophage marker expression. However, NMDAR silencing and calpain inhibition reduce inflammatory macrophage responses. In summary, our study suggests that NMDAR activation reduces surface ABCA1 protein, promotes lipid accumulation, and induces the production and secretion of many inflammatory mediators in macrophages, possibly through enhanced calpain-mediated ABCA1 protein degradation. Thus, the NMDAR receptor may be a novel pharmacologic target for atherosclerosis therapy.  相似文献   

17.
N-methyl-D-aspartate receptors (NMDARs) represent a subclass of glutamate receptors that play a critical role in neuronal development and physiology. We report here the generation of mice expressing only 5% of normal levels of the essential NMDAR1 (NR1) subunit. Unlike NR1 null mice, these mice survive to adulthood and display behavioral abnormalities, including increased motor activity and stereotypy and deficits in social and sexual interactions. These behavioral alterations are similar to those observed in pharmacologically induced animal models of schizophrenia and can be ameliorated by treatment with haloperidol or clozapine, antipsychotic drugs that antagonize dopaminergic and serotonergic receptors. These findings support a model in which reduced NMDA receptor activity results in schizophrenic-like behavior and reveals how pharmacological manipulation of monoaminergic pathways can affect this phenotype.  相似文献   

18.
The N-methyl-D-aspartate receptor (NMDAR) plays a critical role in synaptic plasticity. Post-translational modifications of NMDARs, such as phosphorylation, alter both the activity and trafficking properties of NMDARs. Ubiquitination is increasingly being recognized as another post-translational modification that can alter synaptic protein composition and function. We identified Mind bomb-2 as an E3 ubiquitin ligase that interacts with and ubiquitinates the NR2B subunit of the NMDAR in mammalian cells. The protein-protein interaction and the ubiquitination of the NR2B subunit were found to be enhanced in a Fyn phosphorylation-dependent manner. Immunocytochemical studies reveal that Mind bomb-2 is localized to postsynaptic sites and colocalizes with the NMDAR in apical dendrites of hippocampal neurons. Furthermore, we show that NMDAR activity is down-regulated by Mind bomb-2. These results identify a specific E3 ubiquitin ligase as a novel interactant with the NR2B subunit and suggest a possible mechanism for the regulation of NMDAR function involving both phosphorylation and ubiquitination.  相似文献   

19.
We describe the synthesis and pharmacological characterization of a first generation of ifenprodil conjugates 4-7 as fluorescent probes for the confocal microscopy imaging of the NR2B-containing NMDA receptor. The fluorescein conjugate 6 displayed a moderate affinity for NMDAR but a high selectivity for the NR2B subunit and its NTD. Fluorescence imaging of DS-red labeled cortical neurons showed an exact colocalization of the probe 6 with small protrusions along the dendrites related to a specific binding on NR2B-containing NMDARs.  相似文献   

20.
Abnormally high concentrations of extracellular glutamate in the brain may cause neuronal damage via excitotoxicity. Thus, tight regulation of glutamate release is critical to neuronal function and survival. Excitotoxicity is caused mainly by overactivation of the extrasynaptic NMDA receptor (NMDAR) and results in specific cellular changes, including calcium-induced activation of calpain proteases. Here, we report that presenilin-1 (PS1) null mouse cortical neuronal cultures have increased amounts of calpain-dependent spectrin breakdown products (SBDPs) compared with WT cultures. NMDAR antagonists blocked accumulation of SBDPs, suggesting abnormal activation of this receptor in PS1 null cultures. Importantly, an increase in SBDPs was detected in cultures of at least 7 days in vitro but not in younger cultures. Conditioned medium from PS1 null neuronal cultures at 8 days in vitro contained higher levels of glutamate than medium from WT cultures and stimulated production of SBDPs when added to WT cultures. Use of glutamate reuptake inhibitors indicated that accumulation of this neurotransmitter in the media of PS1 null cultures was due to increased rates of release. PS1 null neurons showed decreased cell surface expression and phosphorylation of the GluN2B subunit of NMDAR, indicating decreased amounts of extrasynaptic NMDAR in the absence of PS1. Inhibition of γ-secretase activity in WT neurons caused changes similar to those observed in PS1 null neurons. Together, these data indicate that the PS1/γ-secretase system regulates release of glutamate, tyrosine phosphorylation, and surface expression of GluN2B-containing NMDARs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号