首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature transitions of spectrin in solution and in human erythrocyte membranes are recorded in the region t greater than 40 degrees C by irreversible changes in protein fluorescence spectra. Structural changes are completed 20 min after the sample incubation at an increased temperature. Both for isolated spectrin and for erythrocyte ghosts the temperature of half-transition is 46 +/- 1 degree C. There is no transition in the membranes after the removal of spectrin. Transitions in erythrocyte ghosts and in spectrin solution disappear at pH 5 when spectrin is in an aggregated state. Spectrin is suggested to be responsible for the transitions at 50 degrees C; its state in the cells areas more thermostable than in isolated membranes.  相似文献   

2.
The temperature dependence of ATPase activities and stearic acid spin label motion in red blood cells of normal and MH-susceptible pigs have been examined. Arrhenius plots of red blood cell ghost Ca-ATPase and calmodulin-stimulable Ca-ATPase activities were identical for both normal and MH erythrocyte ghosts. Arrhenius plots of Mg-ATPase activity exhibited a break (defined as a change in slope) at 24 degrees C in both MH and normal erythrocyte ghosts. However, below 24 degrees C the apparent activation energy for this activity was less in MH than normal ghosts. To determine whether breaks in ATPase Arrhenius plots could be correlated with changes in the physical state of the red blood cell membrane, the spin label 16-doxyl-stearate was introduced into the bilayer of both erythrocyte ghosts and red blood cells. With both ghosts and intact cells, at each temperature examined, the mobility of the probe in the lipid bilayer, as measured by electron paramagnetic resonance, was greater in normal than in MH membranes. While there were no breaks in Arrhenius plots for probe motion in the erythrocyte ghosts, the apparent activation energy for probe motion was significantly greater in normal than in MH ghost membranes. While there was no break in the Arrhenius plot of probe motion in normal intact red blood cell membranes, there were breaks in the Arrhenius plot of probe motion at both 24 and 33 degrees C in intact MH red blood cell membranes. Based on the altered temperature dependence of Mg-ATPase activity and spin probe motion in membranes derived from MH red blood cells, we conclude that there may be a generalized membrane defect in MH pigs which is reflected in the red blood cell as an altered membrane composition or organization.  相似文献   

3.
The molar ratio of cholesterol to phospholipid (C/P) in human erythrocyte membrane is modified by incubating the cells with liposomes of various C/P ratios. The observed increase in cell surface area may be accounted for by the addition of cholesterol molecules. Fusion between liposomes and cells or attachment of liposomes to cells is not a significant factor in the alteration of C/P ratio. Onset temperatures for lipid phase separation in modified membranes are measured by electron diffraction. The onset temperature increases with decreasing C/P ration from 2 degrees C at C/P = 0.95 to 20 degrees C at C/P = 0.5. Redistribution of intramembrane particles is observed in membranes freeze-quenched from temperatures below the onset temperature. The heterogeneous distribution of intramembrane particles below the onset temperature suggests phase separation of lipid, with concomitant segregation of intramembrane protein into domains, even in the presence of an intact spectrin network.  相似文献   

4.
In prefixed by 1 mmol/l OsO4 human erythrocytes, the discocyte shape was preserved upon heating to temperatures which include the denaturation temperature of the main peripheral protein spectrin. Nevertheless, the suspension of fixed cells displayed threshold decrease in its capacitance and resistance at the temperature range where spectrin denaturates. The same changes were established using intact cells and their resealed ghosts. For packed cells (ghosts), the capacitance and resistance decreased about 17% (31%) and 30% (19%). These data indicate a decrease in the beta dispersion of erythrocyte membrane associated, according to a previous study (Ivanov 1997), with the heat denaturation of spectrin at 49.5 degrees C. The amplitude of the 49.5 degrees C decrease in beta dispersion was reversibly reduced in intact erythrocytes and white ghosts following reversible decrease in the phosphorylation of their membrane proteins. It was fully eliminated in ghosts following their resealing with alkaline phosphatase (0.1 mg/ml) which dephosphorylated membrane proteins. These findings are discussed in relation to similar changes found in normal and tumour tissues and cells during hyperthermia.  相似文献   

5.
Two-dimensional solid-state 31P NMR has been used to investigate the orientational exchange of phospholipids in gel and liquid-crystalline aqueous multilamellar dispersions and oriented multibilayers, and in biological membranes. In liquid-crystalline L alpha multilamellar dispersions, orientational exchange originates from the lateral diffusion of phospholipid molecules over the curved surface of the liposomes and is manifest by an increase in off-diagonal intensity, which correlates the 90 and 0 degrees orientations of the membrane normal with respect to the magnetic field when the system is fully exchanged. Spectral simulations of the time evolution of exchange allowed determination of the correlation times tau d for lateral diffusion. For DMPC and DPPC at comparable reduced temperatures, tau d values of 44 and 8 ms were obtained, respectively. The nature and rate of exchange observed for POPE at 30 degrees C is similar to that of DMPC at the same temperature. The measured correlation times are consistent with diffusion rates obtained by FRAP for liposomes with radii in the 1 micron range. In the gel phase of DPPC (30 degrees C), little orientational exchange is observed at mixing times up to 200 ms, demonstrating that the lateral diffusion is very slow. The correlation time for orientational exchange obtained from spectral simulations was approximately 900 ms; thus, exchange in the gel state is at least two orders of magnitude slower than in the liquid-crystalline state. In the P beta (ripple) phase, at temperatures between 34 and 39 degrees C, significant exchange is observed for mixing times between 50 and 200 ms. Exchange is also observed in oriented samples of DPPC in the P beta phase for mixing times of 50 ms, but not for oriented liquid-crystalline samples for mixing times up to 100 ms. The exchange observed in the ripple phase could originate from rapid lateral diffusion of "fast" diffusing phospholipid within defect structures, and/or from "slow" lateral diffusion of ordered phospholipid over the ripples. 2D experiments were also performed on pig erythrocyte ghosts and on intact pig spinal cord. Significant orientational exchange was observed with the erythrocyte ghosts at a mixing time of 200 ms, but almost no exchange was observed with the spinal cord at the same mixing time. Spectral simulations suggest tau d values of approximately 400 ms and 1.3 s for the erythrocyte ghosts and spinal cord at 30 degrees C.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
We have studied the plasma membranes of an SV40-transformed 3T3 cell line temperature sensitive for the transformed growth phenotype (ts H6-15 cells), and have found that they vary little as a function of temperature of cultivation. Analysis by polyacrylamide gel electrophoresis was performed on plasma membranes prepared from ts H6-15 cells cultured at the permissive (32 degrees C) and non-permissive (39 degrees C) temperatures and radioactively-labelled in several ways. No significant differences were seen when the electrophoretic patterns of polypeptides of the plasma membranes of ts H6-15 cells, grown through 3-4 generations in medium containing radioactive leucine (32 degrees C and 39 degrees C temperatures) were compared. Plasma membranes derived from cells similarly grown in medium with radioactive glucosamine indicated that extensive alterations in the intrinsic glycopeptides occurred in association with alteration in growth phenotype. A shift towards decreased synthesis of large molecular weight (congruent to 100 000-160 000) glycopeptides occurred in cells grown at the temperature of non-transformed growth (39 degrees C). A decrease in amount of a 120 000 molecular weight glycopeptide at 39 degrees C was the most prominent of these alterations. We have studied the surface exposure of polypeptides and glycopeptides of intact cells grown at 32 and 39 degrees C, using lactoperoxidase-catalyzed iodination, NaBH4 reduction of galactose oxidase-treated cells, and metabolic-labelling with glucosamine of trypsin-sensitive molecules. We found no major qualitative differences between whole cell extracts or between plasma membrane preparations of cells cultivated at the permissive and non-permissive temperatures. Of special interest was the observation that the formation and surface exposure of a trypsin-sensitive, 240 000 molecular weight polypeptide appeared not to be ts in ts H6-15 cells. The significance of these observations will be discussed.  相似文献   

7.
A Amar  I Kahane  S Rottem  S Razin 《Microbios》1979,24(96):93-102
The binding of iodinated concanavalin A (Con A) and Ricinus communis agglutinin (RCA) to intact cells and isolated membranes of Acholeplasma laidlawii, Mycoplasma hominis and Mycoplasma capricolum decreased with the progression of the culture from the mid- to the late-logarithmic phase of growth. The binding of the lectins to Acholeplasma laidlawii membranes had no significant effect on membrane fluidity, as assessed by electron-paramagnetic resonance spectroscopy of spin-labelled fatty acids, and had no effect on several membrane-associated enzymic activities. Temperature affected the binding of Con A and RCA in an opposite manner: the binding of Con A increased, whereas that of RCA decreased, on raising the temperature from 4 degrees C to 37 degrees C. No significant difference in lectin binding was found between oleate- and elaidate-enriched membranes at low temperatures where the former was in the liquid-crystalline state and the latter in the gel state, suggesting that membranes fluidity does not influence the binding of Con A and RCA to Acholeplasma laidlawii membranes.  相似文献   

8.
Mitochondrial, microsomal and pellicular membranes were isolated from Tetrahymena cells grown at 39 degrees C or 15 degrees C, and phospholipids, in turn, were separated from total lipids extracted from these membranes. The effect of growth temperature on their solid-to-fluid phase transition temperature was examined by wide-angle X-ray diffraction. The transition temperatures of phospholipids from mitochondria, microsomes and pellicles were 21, 19 and 26 degrees C for cells grown at 39 degrees C and -8, -3 and 6 degrees C for cells grown at 15 degrees C, respectively. All phospholipids were found in a completely fluid state at these growth temperatures. From a comparison between the phospholipids and total lipids from pellicles of cells grown at 39 degrees C, a triterpenoid alcohol, tetrahymanol, caused the transition temperature to increase. The alignment of tetrahymanol in membranes was examined with pellicle'a total lipid oriented in a sample holder.  相似文献   

9.
Chick embryo fibroblasts were transformed by the Bryan high-titer strain of Rous sarcoma virus (RSV-BH), or a mutant (RSV-BH-Ta) inducing temperature-dependent transformation. Surface membranes from normal and transformed cells were isolated as membrane vesicles by differential centrifugation, and as cell ghosts after ZnCl2 treatment and separation in an aqueous two-phase system. These preparations were analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate or phenol/urea/acetic acid. In general a greater resolution of individual bands was found in gels containing phenol/urea/acetic acid, which separates polypeptides on the bases of size and charge. Electrophoresis of preparations from nontransformed cells showed that two polypeptides (molecular weights 200 000 and 250 000) found in cell ghosts were missing in membrane vesicles. In cell ghosts, transformation by RSV-BH resulted in a significant decrease of the 250 000 molecular weight complex. Also a polypeptide (molecular weight 73 000) prominent in membrane vesicles from nontransformed cells was decreased in transformed cells. Surfaces from cells transformed by RSV-BH-Ta at 37 degrees C presented patterns similar to those for RSV-BH infected cells. Shifting these cells to 41 degrees C resulted in an increase in the 250 000 molecular weight complex, although the amount of this protein(s) never reached that found in noninfected cells. Inhibitors of RNA and protein synthesis failed to block the morphological changes occurring in RSV-BH-Ta cells after temperature shifts from 41 degrees C to 37 degrees C or vice-versa. The same inhibitors caused a reduction in the levels of the 250 000 molecular weight complex at both temperatures. These data indicate that these large membrane-associated polypeptides play little or no role in the morphological changes associated with transformation and its reversal.  相似文献   

10.
It is not known whether the activation of Na/H exchange by shrinkage in dog red cells is due to the packing of cell contents or a change in cell configuration. To make this distinction we prepared resealed ghosts that resembled intact cells in hemoglobin concentration and surface area, but had one-third their volume. A shrinkage-induced, amiloride-sensitive Na flux in the ghosts was activated at a much smaller volume in the ghosts than in the intact cells, but at the same concentration (by weight) of dry solids in both preparations. Na/H exchange in ghosts containing a mixture of 40% albumin and 60% hemoglobin (weight/weight) was activated by osmotic shrinkage at a dry solid concentration similar to that of intact cells or of ghosts containing only hemoglobin. We conclude that the process of Na/H exchange activation by cell shrinkage originates with an increase in the concentration of intracellular protein and not with a change in membrane configuration or tension. The macromolecular crowding that accompanies the reduction in cell volume probably alters the activities of key enzymes that in turn modulate the Na/H exchanger.  相似文献   

11.
Effect of pH and temperature on the binding of bilirubin to human erythrocyte membranes was studied by incubating the membranes at different pH and temperatures and determining the bound bilirubin. At all pH values, the amount of membrane-bound bilirubin increased with the increase in bilirubin-to-albumin molar ratios (B/As), being highest at lower pH values in all cases. Further, linear increase in bound bilirubin with the increase in bilirubin concentration in the incubate was observed at a constant B/A and at all pH values. However, the slope value increased with the decrease in pH suggesting more bilirubin binding to membranes at lower pH values. Increase in bilirubin binding at lower pH can be explained on the basis of increased free bilirubin concentration as well as more conversion of bilirubin dianion to monoanion. Temperature dependence of bilirubin binding to membranes was observed within the temperature range of 7 degrees -60 degrees C, showing minimum binding at 27 degrees C and 37 degrees C which increased on either side. Increase in bilirubin binding at temperatures lower than 20 degrees C and higher than 40 degrees C can be ascribed to the change in membrane topography as well as bilirubin-albumin interaction.  相似文献   

12.
The interaction of band 3 with cytoskeletal proteins was investigated in erythrocyte membranes by measuring the rotational mobility of band 3 using the method of transient dichroism. It was found that selective proteolysis of ankyrin, a protein known to link band 3 to the spectrin-actin network, had no significant effect on band 3 rotation. Incubating ghosts to 70 degrees C, at which temperature ankyrin is expected to be denatured, also had no effect. It thus appears probable that linkage of band 3 to the cytoskeleton via ankyrin does not act as a restraint on band 3 rotational motion. It is suggested that this is a consequence of flexibility in the cytoskeletal structure. In further investigations of the effect of heat treatment, a large enhancement of band 3 rotational mobility was found to result from incubation of intact cells for 1 h at 50 degrees C. This effect was not observed if ghosts were subjected to the same treatment, nor did it occur if the incubation of cells was performed at 47 degrees C. These findings, in combination with previous studies of band 3 rotational mobility, indicate that the interactions which restrain band 3 are likely to be more complex than commonly envisaged.  相似文献   

13.
We have studied the fusion activity of Sendai virus, a lipid-enveloped paramyxovirus, towards a line of adherent cells designated PC-12. Fusion was monitored by the dequenching of octadecyl-rhodamine, a fluorescent non-exchangeable probe. The results were analysed with a mass action kinetic model which could explain and predict the kinetics of virus-cell fusion. When the temperature was lowered from 37 degrees C to 25 degrees C, a sharp inhibition of the fusion process was observed, probably reflecting a constraint in the movement of viral glycoproteins at low temperatures. The rate constants of adhesion and fusion were reduced 3.5-fold and 7-fold, respectively, as the temperature was lowered from 37 degrees C to 25 degrees C. The fusion process seemed essentially pH-independent, unlike the case of liposomes and erythrocyte ghosts. Preincubation of the virus in the absence of target cell membranes at neutral and alkaline pH (37 degrees C, 30 min) did not affect the fusion process. However, a similar preincubation of the virus at pH = 5.0 resulted in marked, though slow, inhibition in fusion with the fusion rate constant being reduced 8-fold. Viral preincubation for 5 min in the same acidic conditions yielded a mild inhibition of fusogenic activity, while preincubation in the cold (4 degrees C, 30 min) did not alter viral fusion activity. These acid-induced inhibitory effects could not be fully reversed by further viral preincubation at pH = 7.4 (37 degrees C, 30 min). Changes in internal pH as well as endocytic activity of PC-12 cells had small effect on the fusion process, thus indicating that Sendai virus fuses primarily with the plasma membranes.  相似文献   

14.
The effects of systematic variations in the preparative procedures on the membrane viscoelastic properties of resealed human red blood cell ghosts have been investigated. Ghosts, prepared by hypotonic lysis at 0 degrees C and resealing at 37 degrees C, were subjected to: measurement of the time constant for extensional recovery (tc); measurement of the membrane shear elastic modulus (mu) via three separate techniques; determination of the membrane viscosity (eta m) via a cone-plate Rheoscope. Membrane viscosity was also determined as eta m = mu X tc. Compared to intact cells, ghosts had shorter tc, regardless of their residual hemoglobin concentration (up to 21.6 g/dl). However, prolonged exposure to hypotonic media did increase their recovery time toward the intact cell value. The shear elastic modulus, as judged by micropipette aspiration of membrane tongues (mu p), was similar for all ghosts and intact cells. This result, taken with the tc data, indicates that ghosts have reduced membrane viscosity. Rheoscopic analysis also showed that eta m was reduced for ghosts, with the degree of reduction (approx. 50%) agreeing well with that estimated by the product mu p X tc. However, flow channel and pipette elongation estimates indicated that the ghost membrane elastic modulus was somewhat elevated compared to intact cells. We conclude that: ghosts have reduced membrane viscosity; ghosts have membrane rigidities close to intact cells, except possibly when the membrane is subjected to very large strains; the reduction in eta m is not directly related to the loss of hemoglobin; prolonged exposure of ghosts to low-ionic strength media increases the membrane viscosity toward its initial cellular level. These data indicate that the mechanical characteristics of ghost membranes can be varied by changing the methods of preparation and thus have potential application to further studies of the structural determinants of red cell membrane viscoelasticity.  相似文献   

15.
To differentiate whether the primary volume signal in dog red cells arises from a change in cell configuration or the concentration and dilution of cell contents, we prepared resealed ghosts that had the same surface area and hemoglobin concentration as intact cells but less than 1/3 their volume. Shrinkage of both intact cells and resealed ghosts triggered Na/H exchange. Activation of this transporter in the two preparations correlated closely with cytosolic protein concentration but not at all with volume. The Na/H exchanger was more sensitive to shrinkage in albumin-loaded resealed ghosts than in intact cells or ghosts containing only hemoglobin. Similar results were obtained for the swelling-induced [K-Cl] cotransporter. We believe perception of cell volume originates with changes in cytoplasmic protein concentration. We think the kinases and phosphatases that control the activation of membrane transporters in response to cell swelling or shrinkage are regulated by the mechanism of macromolecular crowding.  相似文献   

16.
Human plasma contains naturally occurring autoantibodies to the predominant components of the erythrocyte membrane: band 3 and spectrin bands 1 and 2 of the cytoskeleton. The titer of cytoskeletal plasma autoantibodies increases in various hemolytic conditions, suggesting that opsonization of the cytoskeleton may play an important role in the clearance of hemolyzed (not senescent) erythrocytes from the circulation. In this study, we use Alexa Fluor 488 goat anti-human IgG conjugate (Molecular Probes, Eugene, OR, USA), to characterize plasma immunoglobulin binding to erythrocyte membranes from osmotically hemolyzed cells ('ghosts'). The results show that exposure of ghosts to plasma results in 4-fold more immunoglobulin binding to the cytoskeleton than is bound to the proteins contained within the lipid bilayer. Preincubation of the ghosts at 37 degrees C causes 8-fold more immunoglobulin binding to the cytoskeleton compared to bilayer proteins. This temperature-induced change resulted from selective immunoglobulin binding to the cytoskeleton, with no change in immunoglobulin binding to bilayer proteins. However, the rate of increase in cytoskeletal antigenicity at 37 degrees C did correlate with the rate of a conformational change in band 3, a transmembrane protein which serves as a major membrane attachment site for the cytoskeleton. The results of this study suggest that the cytoskeleton is the primary target in the opsonization of hemolyzed erythrocyte membranes by naturally occurring plasma autoantibodies. The conformational changes which occur in ghosts at 37 degrees C are associated with selective exposure of new immunoglobulin binding sites on the cytoskeleton, and with a change in the structure of band 3. We propose a model suggesting that opsonization of the cytoskeleton occurs prior to the decomposition of hemolyzed erythrocytes at 37 degrees C.  相似文献   

17.
Lipid diffusibility in the intact erythrocyte membrane   总被引:12,自引:8,他引:4       下载免费PDF全文
The lateral diffusion of fluorescent lipid analogues in the plasma membrane of intact erythrocytes from man, mouse, rabbit, and frog has been measured by fluorescence photobleaching recovery (FPR). Intact cells from dystrophic, normoblastic, hemolytic, and spherocytotic mouse mutants; from hypercholesterolemic rabbits and humans; and from prenatal, neonatal, and juvenile mice have been compared with corresponding normals. The lateral diffusion coefficient (D) for 3,3'-dioctadecylindodicarbocyanine iodide (DiI[5]) in intact normal human erythrocytes is D = 8.2 +/- 1.2 X 10(-9) cm2/s at 25 degrees C and D = 2.1 +/- 0.4 X 10(-8) cm2/s at 37 degrees C, and varies approximately 50-fold between 1 degree and 42 degrees C. The diffusion constants of lipid analogue rhodamine-B phosphatidylethanolamine (RBPE) are about twice those of DiI[5]. The temperature dependence and magnitude of D vary by up to a factor of 3 between species and are only influenced by donor age in prenatals. DiI[5] diffusibility is not perturbed by the presence of calcium or local anesthetics or by spectrin depletion (via mutation). However, lipid-analogue diffusibility in erythrocyte ghosts may differ from intact cells. Dietary hypercholesterolemia in rabbits reduces the diffusion coefficient and eliminates the characteristic break in Arrhenius plots of D found in all other cells studied except frog.  相似文献   

18.
A shift of the growth temperature from 40 degrees C to 18 degrees C promoted an increase in the degree of fatty acids unsaturation and a decrease, from 26 degrees C to 0 degrees C, of the phase transition temperature of thylakoid membranes in Anabaena siamensis. The pattern of photoinhibition of photosynthesis at distinct temperatures varied as a function of the phase transition temperature. In the absence of streptomycin, a pronounced photoinhibition at temperatures near the phase transition (26 degrees C) was observed in cells grown at 40 degrees C, while protection from photodamage was observed at chilling temperatures (15 degrees C to 5 degrees C). In this same range of temperature, such a protection was not verified if cells were grown at 18 degrees C. In both types of cells, however, the rate of photoinactivation in the presence of streptomycin was progressively decreased by lowering the temperature of photoinhibition. When recovery from photoinhibition was followed at the respective temperature in which cells were grown, the restoration profile of the photosynthetic O(2) evolution to initial levels was essentially the same in both types of cells. The protective effect of low temperatures against photoinhibition was attributed to a decreased solubility and diffusion of oxygen in the thylakoid membranes due to an increase of the membrane viscosity that would avoid the photogeneration of reactive oxygen species around PS II.  相似文献   

19.
Acanthocytic red blood cells in patients with abetalipoproteinemia have a decrease membrane fluidity that is associated with increased sphingomyelin/phosphatidylcholine (SM/PC) ratios. Here we describe studies designed to gain better insight into (i) the interrelationship between the composition of lipoprotein and red blood cell membrane in abetalipoproteinemia patients and normal controls; and (ii) how the differences in lipid composition of the red blood cell membrane affect its fluidity. The increased SM/PC ratio found in abetalipoproteinemia plasma high density lipoproteins (HDL) (3 times greater than controls) was paralleled by an increase in this ratio in acanthocytic red cells, but to a lesser degree (almost twice greater than control red cells). Cholesterol/phospholipid mole ratios (C/P) were increased 3-fold in abetalipoproteinemia HDL, but only slightly increased in red cells compared to controls values. As in the controls, 80-85% of abetalipoproteinemia red cell sphingomyelin was found to be in the outer half of the erythrocyte membrane. Membrane fluidity was defined in terms of microviscosity (eta) between 5 and 42 degrees C by the fluorescent polarization of 1,6-diphenylhexatriene (DPH) present in erythrocyte ghost membranes. At all temperatures, membrane microviscosity was higher in abetalipoproteinemia ghosts than controls, but these differences decreased at higher temperatures (12.34 vs 9.79 poise, respectively at 10 degrees C; 4.63 vs 4.04 poise at 37 degrees C). These differences were eliminated after oxidation of all membrane cholesterol to cholest-4-en-3-one by incubation with cholesterol oxidase. Following cholesterol oxidation, the membrane microviscosity decreased in patient ghosts more than in normal red blood cells so that at all temperatures no significant differences were present relative to control ghosts, in which the apparent microviscosity was also diminished but to a lesser degree. Therefore, although increased SM/PC ratios in abetalipoproteinemia may be responsible for decreased erythrocyte membrane fluidity, these effects are dependent upon normal interactions of cholesterol with red cell phospholipid.  相似文献   

20.
The Erythrocyte Ghost Is a Perfect Osmometer   总被引:3,自引:0,他引:3  
The osmotic swelling of intact erythrocytes in hypotonic solutions was measured using microhematocrit tubes, Van Allen tubes, and a calibrated Coulter counter. In agreement with earlier workers the intact cells did not behave as perfect osmometers, the cells swelling less than predicted by the Boyle-van't Hoff law. Erythrocyte ghosts were prepared from fresh intact erythrocytes by one-step hemolysis in 0.25% NaCl at an extremely dilute concentration of cells and the membranes were sealed at 37°. The ghosts were mixed with NaCl solutions of different osmolarities and the MCV (mean cell volume) of the shrunken cells immediately monitored by a calibrated Coulter counter. It was found that the MCV values of the shrunken ghosts were accurately predicted by the Boyle-van't Hoff law. These results indicate that these erythrocyte ghosts behaved as perfect osmometers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号