首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During myelination, membrane-specialized domains are generated by complex interactions between axon and glial cells. The cell adhesion molecules caspr/paranodin and F3/contactin play a crucial role in the generation of functional septate-like junctions at paranodes. We have previously demonstrated that association with the glycosylphosphatidylinositol-linked F3/contactin is required for the recruitment of caspr/paranodin into the lipid rafts and its targeting to the cell surface. When transfected alone in neuroblastoma N2a cells, caspr/paranodin is retained in the endoplasmic reticulum (ER). Using chimerical constructs, we show that the cytoplasmic region does not contain any ER retention signal, whereas the ectodomain plays a crucial role in caspr/paranodin trafficking. A series of truncations encompassing the extracellular region of caspr/paranodin was unable to abolish ER retention. We show that N-glycosylation and quality control by the lectin-chaperone calnexin are required for the cell surface delivery of caspr/paranodin. Cell surface transport of F3/contactin and caspr/paranodin is insensitive to brefeldin A and the two glycoproteins are endoglycosidase H-sensitive when associated in complex, recruited into the lipid rafts, and expressed on the cell surface. Our results indicate a Golgi-independent pathway for the paranodal cell adhesion complex that may be implicated in the segregation of axonal subdomains.  相似文献   

2.
A general feature of the cell adhesion molecules belonging to the immunoglobulin family (Ig-CAMs) is to display a modular structure that provides a framework for multiple binding sites for other recognition molecules. Among this family, F3/contactin is a glycan phosphatidyl-inositol (GPI)-anchored molecule expressed by neurons that displays the distinctiveness to exert heterophilic but no homophilic binding activities. The Ig domains of F3/contactin were shown to interact with the L1 family of Ig-CAMs, including L1, NrCAM, and neurofascin. Binding between F3/contactin and NrCAM is known to modulate axonal elongation of the cerebellar granule cells and to control sensory axon guidance. F3/contactin mediates neuron-glial contacts through its association with extracellular matrix components (tenascin-R, tenascin-C) and RPTPbeta/phosphacan, influencing axonal growth and fasciculation. Another major role of F3/contactin is to organize axonal subdomains at the node of Ranvier of myelinated fibers in interplay with other Ig-CAMs, through its binding with caspr/paranodin at paranodes and the voltage-gated sodium channels in the nodal region. The F3/contactin deficient mice display a severe ataxia correlated with defects in axonal and dendritic projections in the cerebellum. These mice also display defects in nerve influx conduction due to the disruption of the axo-glial contacts at paranodes. Finally, the recent identification of a Drosophila homologue of F3/contactin indicated that this family of GPI-anchored CAMs plays a conserved function in axonal insulation.  相似文献   

3.
Paranodin/contactin-associated protein (caspr) is a transmembrane glycoprotein of the neurexin superfamily that is highly enriched in the paranodal regions of myelinated axons. We have investigated the role of its association with F3/contactin, a glycosylphosphatidyl inositol (GPI)-anchored neuronal adhesion molecule of the Ig superfamily. Paranodin was not expressed at the cell surface when transfected alone in CHO or neuroblastoma cells. Cotransfection with F3 resulted in plasma membrane delivery of paranodin, as analyzed by confocal microscopy and cell surface biotinylation. The region that mediates association with paranodin was mapped to the Ig domains of F3 by coimmunoprecipitation experiments. The association of paranodin with F3 allowed its recruitment to Triton X-100-insoluble microdomains. The GPI anchor of F3 was necessary, but not sufficient for surface expression of paranodin. F3-Ig, a form of F3 deleted of the fibronectin type III (FNIII) repeats, although GPI-linked and expressed at the cell surface, was not recovered in the microdomain fraction and was unable to promote cell surface targeting of paranodin. Thus, a cooperative effect between the GPI anchor, the FNIII repeats, and the Ig regions of F3 is required for recruitment of paranodin into lipid rafts and its sorting to the plasma membrane.  相似文献   

4.
An axonal complex of cell adhesion molecules consisting of Caspr and contactin has been found to be essential for the generation of the paranodal axo-glial junctions flanking the nodes of Ranvier. Here we report that although the extracellular region of Caspr was sufficient for directing it to the paranodes in transgenic mice, retention of the Caspr-contactin complex at the junction depended on the presence of an intact cytoplasmic domain of Caspr. Using immunoelectron microscopy, we found that a Caspr mutant lacking its intracellular domain was often found within the axon instead of the junctional axolemma. We further show that a short sequence in the cytoplasmic domain of Caspr mediated its binding to the cytoskeleton-associated protein 4.1B. Clustering of contactin on the cell surface induced coclustering of Caspr and immobilized protein 4.1B at the plasma membrane. Furthermore, deletion of the protein 4.1B binding site accelerated the internalization of a Caspr-contactin chimera from the cell surface. These results suggest that Caspr serves as a "transmembrane scaffold" that stabilizes the Caspr/contactin adhesion complex at the paranodal junction by connecting it to cytoskeletal components within the axon.  相似文献   

5.
The axoglial paranodal junctions, flanking the Ranvier nodes, are specialized adhesion sites between the axolemma and myelinating glial cells. Unraveling the molecular composition of paranodal junctions is crucial for understanding the mechanisms involved in the regulation of myelination, and positioning and segregation of the voltage-gated Na+ and K+ channels, essential for the generation and conduction of action potentials. Paranodin/Caspr was the first neuronal transmembrane glycoprotein identified at the paranodal junctions. Paranodin/Caspr is associated on the axonal membrane with contactin/F3, a glycosylphosphatidylinositol-anchored protein, essential for its correct targeting. The extra and intracellular regions of paranodin encompass multiple domains which can be involved in protein-protein interactions with other axonal proteins and glial proteins. Thus, paranodin plays a central role in the assembly of multiprotein complexes necessary for the formation and maintenance of paranodal junctions.  相似文献   

6.
Caspr/paranodin is an essential neuronal component of paranodal axoglial junctions, associated with contactin/F3. Its short intracellular domain contains a conserved motif (GNP motif) capable of binding protein 4.1 domains [FERM domains (four point one, ezrin, radixin, moesin)]. Schwannomin/merlin is a tumour suppressor expressed in many cell types, including in neurons, the function and partners of which are still poorly characterized. We show that the FERM domain of schwannomin binds to the paranodin GNP motif in glutathione S-transferase (GST)-pull down assays and in transfected COS-7 cells. The two proteins co-immunoprecipitated in brain extracts. In addition, paranodin and schwannomin were associated with integrin beta1 in transfected cells and in brain homogenates. The presence of paranodin increased the association between integrin beta1 and schwannomin or its N-terminal domain, suggesting that the interactions between these proteins are interdependent. In jimpy mutant mice, which display a severe dysmyelination with deficient paranodal junctions, the interactions between paranodin, schwannomin and integrin beta1 were profoundly altered. Our results show that schwannomin and integrin beta1 can be associated with paranodin in the central nervous system. Since integrin beta1 and schwannomin do not appear to be enriched in paranodes they may be quantitatively minor partners of paranodin in these regions and/or be associated with paranodin at other locations.  相似文献   

7.
Molecular domains of myelinated axons   总被引:7,自引:0,他引:7  
Myelinated axons are organized into specific domains as the result of interactions with glial cells. Recently, distinct protein complexes of cell adhesion molecules, Na(+) channels and ankyrin G at the nodes, Caspr and contactin in the paranodes, and K(+) channels and Caspr2 in the juxtaparanodal region have been identified, and new insights into the role of the paranodal junctions in the organization of these domains have emerged.  相似文献   

8.
In myelinated fibers of the vertebrate nervous system, glial-ensheathing cells interact with axons at specialized adhesive junctions, the paranodal septate-like junctions. The axonal proteins paranodin/Caspr and contactin form a cis complex in the axolemma at the axoglial adhesion zone, and both are required to stabilize the junction. There has been intense speculation that an oligodendroglial isoform of the cell adhesion molecule neurofascin, NF155, expressed at the paranodal loop might be the glial receptor for the paranodin/Caspr-contactin complex, particularly since paranodin/Caspr and NF155 colocalize to ectopic sites in the CNS of the dysmyelinated mouse Shiverer mutant. We report that the extracellular domain of NF155 binds specifically to transfected cells expressing the paranodin/Caspr-contactin complex at the cell surface. This region of NF155 also binds the paranodin/Caspr-contactin complex from brain lysates in vitro. In support of the functional significance of this interaction, NF155 antibodies and the extracellular domain of NF155 inhibit myelination in myelinating cocultures, presumably by blocking the adhesive relationship between the axon and glial cell. These results demonstrate that the paranodin/Caspr-contactin complex interacts biochemically with NF155 and that this interaction is likely to be biologically relevant at the axoglial junction.  相似文献   

9.
The function of myelinated fibers depends on the clustering of sodium channels at nodes of Ranvier, the integrity of the myelin sheath, and the existence of tight axoglial junctions at paranodes, on either sides of the nodes. While the ultrastructure of these regions has been known for several decades, recent progress has been accomplished in the identification of proteins essential for their organization, which depends on the interplay between axons and myelinating glial cells. Evolutionary conserved intercellular multimolecular complexes comprising proteins of the Neurexin IV/Caspr/paranodin (NCP) family and of the immunoglobulin-like cell adhesion molecules superfamily, are essential components for the axoglial contacts at the level of paranodes and juxtaparanodes. These complexes are able to interact with cytoplasmic proteins of the band 4.1 family, providing possible links to the axonal cytoskeleton. While the identification of these proteins represents a significant progress for understanding axoglial contacts, they also raise exciting questions concerning the molecular organization of these contacts and the mechanisms of their local enrichment.  相似文献   

10.
We have investigated the potential role of contactin and contactin-associated protein (Caspr) in the axonal–glial interactions of myelination. In the nervous system, contactin is expressed by neurons, oligodendrocytes, and their progenitors, but not by Schwann cells. Expression of Caspr, a homologue of Neurexin IV, is restricted to neurons. Both contactin and Caspr are uniformly expressed at high levels on the surface of unensheathed neurites and are downregulated during myelination in vitro and in vivo. Contactin is downregulated along the entire myelinated nerve fiber. In contrast, Caspr expression initially remains elevated along segments of neurites associated with nascent myelin sheaths. With further maturation, Caspr is downregulated in the internode and becomes strikingly concentrated in the paranodal regions of the axon, suggesting that it redistributes from the internode to these sites. Caspr expression is similarly restricted to the paranodes of mature myelinated axons in the peripheral and central nervous systems; it is more diffusely and persistently expressed in gray matter and on unmyelinated axons. Immunoelectron microscopy demonstrated that Caspr is localized to the septate-like junctions that form between axons and the paranodal loops of myelinating cells. Caspr is poorly extracted by nonionic detergents, suggesting that it is associated with the axon cytoskeleton at these junctions. These results indicate that contactin and Caspr function independently during myelination and that their expression is regulated by glial ensheathment. They strongly implicate Caspr as a major transmembrane component of the paranodal junctions, whose molecular composition has previously been unknown, and suggest its role in the reciprocal signaling between axons and glia.  相似文献   

11.
Three cell adhesion molecules are present at the axoglial junctions that form between the axon and myelinating glia on either side of nodes of Ranvier. These include an axonal complex of contacin-associated protein (Caspr) and contactin, which was proposed to bind NF155, an isoform of neurofascin located on the glial paranodal loops. Here, we show that NF155 binds directly to contactin and that surprisingly, coexpression of Caspr inhibits this interaction. This inhibition reflects the association of Caspr with contactin during biosynthesis and the resulting expression of a low molecular weight (LMw), endoglycosidase H-sensitive isoform of contactin at the cell membrane, which remains associated with Caspr but is unable to bind NF155. Accordingly, deletion of Caspr in mice by gene targeting results in a shift from the LMw- to a HMw-contactin glycoform. These results demonstrate that Caspr regulates the intracellular processing and transport of contactin to the cell surface, thereby affecting its ability to interact with other cell adhesion molecules.  相似文献   

12.
Cell adhesion molecules (CAMs) play a crucial role in the formation of the nodes of Ranvier and in the rapid propagation of the nerve impulses along myelinated axons. These CAMs are the targets of autoimmunity in inflammatory neuropathies. We recently showed that a subgroup of patients with aggressive chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) shows autoantibodies to contactin (1). The complex of contactin·Caspr·neurofascin-155 (NF155) enables the formation of paranodal junctions, suggesting that antibody attack against paranodes may participate in the severity of CIDP. In the present study, we mapped the molecular determinants of contactin targeted by the autoantibodies. In three patients, immunoreactivity was directed against the Ig domains of contactin and was dependent on N-glycans. The serum of one patient was selectively directed against contactin bearing mannose-rich N-glycans. Strikingly, the oligomannose type sugars of contactin are required for association with its glial partner NF155 (2). To investigate precisely the role of contactin N-glycans, we have mutated each of the nine consensus N-glycosylation sites independently. We found that the mutation of three sites (N467Q/N473Q/N494Q) in Ig domain 5 of contactin prevented soluble NF155-Fc binding. In contrast, these mutations did not abolish cis-association with Caspr. Next, we showed that the cluster of N-glycosylation sites (Asn-467, Asn-473, and Asn-494) was required for immunoreactivity in one patient. Using cell aggregation assays, we showed that the IgGs from the four CIDP patients prevented adhesive interaction between contactin·Caspr and NF155. Importantly, we showed that the anti-contactin autoantibodies induced alteration of paranodal junctions in myelinated neuronal culture. These results strongly suggest that antibodies to CAMs may be pathogenic and induce demyelination via functional blocking activity.  相似文献   

13.
Marilyne Labasque 《FEBS letters》2010,584(9):1787-42434
Contactin and TAG-1 are glycan phosphatidyl inositol (GPI)-anchored cell adhesion molecules that play a crucial role in the organization of axonal subdomains at the node of Ranvier of myelinating fibers. Contactin and TAG-1 mediate axo-glial selective interactions in association with Caspr-family molecules at paranodes and juxtaparanodes, respectively. How membrane proteins can be confined in these neighbouring domains along the axon has been the subject of intense investigations. This review will specifically examine the properties conferred by the lipid microenvironment to regulate trafficking and selective association of these axo-glial complexes. Increasing evidences from genetic and neuropathological models point to a role of lipid rafts in the formation or stabilization of the paranodal junctions.  相似文献   

14.
Rapid nerve impulse conduction depends on specialized membrane domains in myelinated nerve, the node of Ranvier, the paranode, and the myelinated internodal region. We report that GPI-linked contactin enables the formation of the paranodal septate-like axo-glial junctions in myelinated peripheral nerve. Contactin clusters at the paranodal axolemma during Schwann cell myelination. Ablation of contactin in mutant mice disrupts junctional attachment at the paranode and reduces nerve conduction velocity 3-fold. The mutation impedes intracellular transport and surface expression of Caspr and leaves NF155 on apposing paranodal myelin disengaged. The contactin mutation does not affect sodium channel clustering at the nodes of Ranvier but alters the location of the Shaker-type Kv1.1 and Kv1.2 potassium channels. Thus, contactin is a crucial part in the machinery that controls junctional attachment at the paranode and ultimately the physiology of myelinated nerve.  相似文献   

15.
16.
Myelination results in a highly segregated distribution of axonal membrane proteins at nodes of Ranvier. Here, we show the role in this process of TAG-1, a glycosyl-phosphatidyl-inositol-anchored cell adhesion molecule. In the absence of TAG-1, axonal Caspr2 did not accumulate at juxtaparanodes, and the normal enrichment of shaker-type K+ channels in these regions was severely disrupted, in the central and peripheral nervous systems. In contrast, the localization of protein 4.1B, an axoplasmic partner of Caspr2, was only moderately altered. TAG-1, which is expressed in both neurons and glia, was able to associate in cis with Caspr2 and in trans with itself. Thus, a tripartite intercellular protein complex, comprised of these two proteins, appears critical for axo-glial contacts at juxtaparanodes. This complex is analogous to that described previously at paranodes, suggesting that similar molecules are crucial for different types of axo-glial interactions.  相似文献   

17.
The interaction between neurons and glial cells that results in myelin formation represents one of the most remarkable intercellular events in development. This is especially evident at the primary functional site within this structure, the node of Ranvier. Recent experiments have revealed a surprising level of complexity within this zone, with several components, including ion channels, sequestered with a very high degree of precision and sharply demarcated borders. We discuss the current state of knowledge of the cellular and molecular mechanisms responsible for the formation and maintenance of the node. In normal axons, Na+ channels are present at high density within the nodal gap, and voltage-dependent K+ channels are sequestered on the internodal side of the paranode—a region known as the juxtaparanode. Modifying the expression of certain surface adhesion molecules that have been recently identified, markedly alters this pattern. There is a special emphasis on contactin, a protein with multiple roles in the nervous system. In central nervous system (CNS) myelinated fibers, contactin is localized within both the nodal gap and paranodes, and appears to have unique functions in each zone. New experiments on contactin-null mutant mice help to define these mechanisms.  相似文献   

18.
Septate junctions (SJs) in epithelial and neuronal cells play an important role in the formation and maintenance of charge and size selective barriers. They form the basis for the ensheathment of nerve fibers in Drosophila and for the attachment of myelin loops to axonal surface in vertebrates. The cell-adhesion molecules NRX IV/Caspr/Paranodin (NCP1), contactin and Neurofascin-155 (NF-155) are all present at the vertebrate axo-glial SJs. Mutational analyses have shown that vertebrate NCP1 and its Drosophila homolog, Neurexin IV (NRX IV) are required for the formation of SJs. In this study, we report the genetic, molecular and biochemical characterization of the Drosophila homolog of vertebrate contactin, CONT. Ultrastructural and dye-exclusion analyses of Cont mutant embryos show that CONT is required for organization of SJs and paracellular barrier function. We show that CONT, Neuroglian (NRG) (Drosophila homolog of NF-155) and NRX IV are interdependent for their SJ localization and these proteins form a tripartite complex. Hence, our data provide evidence that the organization of SJs is dependent on the interactions between these highly conserved cell-adhesion molecules.  相似文献   

19.
The coordination of the vertebrate nervous system requires high velocity signal transmission between different brain areas. High speed nerve conduction is achieved in the myelinated fibers of both the central and the peripheral nervous system where the myelin sheath acts as an insulator of the axon. The interactions between the glial cell and the adjacent axon, namely axo-glial interactions, segregate the fiber in distinct molecular and functional domains that ensure the rapid propagation of action potentials. These domains are the node of Ranvier, the paranode, the juxtaparanode and the internode and are characterized by multiprotein complexes between voltage-gated ion channels, cell adhesion molecules, members of the Neurexin family and cytoskeletal proteins. In the present review, we outline recent evidence on the key players of axo-glial interactions, depicting their importance in myelinated fiber physiology and disease.  相似文献   

20.
Adhesive interactions between neurons and extracellular matrix (ECM) play a key role in neuronal pattern formation. The prominent role played by the extracellular matrix protein tenascin/cytotactin in the development of the nervous system, tied to its abundance, led us to speculate that brain may contain yet unidentified tenascin receptors. Here we show that the neuronal cell adhesion molecule contactin/F11, a member of the immunoglobulin(Ig)-superfamily, is a cell surface ligand for tenascin in the nervous system. Through affinity chromatography of membrane glycoproteins from chick brain on tenascin-Sepharose, we isolated a major cell surface ligand of 135 kD which we identified as contactin/F11 by NH2-terminal sequencing. The binding specificity between contactin/F11 and tenascin was demonstrated in solid-phase assays. Binding of immunopurified 125I-labeled contactin/F11 to immobilized tenascin is completely inhibited by the addition of soluble tenascin or contactin/F11, but not by fibronectin. When the fractionated isoforms of tenascin were used as substrates, contactin/F11 bound preferentially to the 190-kD isoform. This isoform differs in having no alternatively spliced fibronectin type III domains. Our results imply that the introduction of these additional domains in some way disrupts the contactin/F11 binding site on tenascin. To localize the binding site on contactin/F11, proteolytic fragments were generated and characterized by NH2-terminal sequencing. The smallest contactin/F11 fragment which binds tenascin is 45 kD and also begins with the contactin/F11 NH2-terminal sequence. This implies that contactin/F11 binds to tenascin through a site within the first three Ig-domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号