首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the influence of the internal oxygen concentration in seeds of wheat (Triticum aestivum) on storage metabolism and its relation to phloem import of nutrients. Wheat seeds that were developing at ambient oxygen (21%) were found to be hypoxic (2.1%). Altering the oxygen supply by decreasing or increasing the external oxygen concentration induced parallel changes in the internal oxygen tension. However, the decrease in internal concentration was proportionally less than the reduction in external oxygen. This indicates that decreasing the oxygen supply induces short-term adaptive responses to reduce oxygen consumption of the seeds. When external oxygen was decreased to 8%, internal oxygen decreased to approximately 0.5% leading to a decrease in energy production via respiration. Conversely, increasing the external oxygen concentration above ambient levels increased the oxygen content as well as the energy status of the seeds, indicating that under normal conditions the oxygen supply is strongly limiting for energy metabolism in developing wheat seeds. The intermediate metabolites of seed storage metabolism were not substantially affected when oxygen was either increased or decreased. However, at subambient external oxygen concentrations (8%) the metabolic flux of carbon into starch and protein, measured by injecting (14)C-Suc into the seeds, was reduced by 17% and 32%, respectively, whereas no significant effect was observed at superambient (40%) oxygen. The observed decrease in biosynthetic fluxes to storage compounds is suggested to be part of an adaptive response to reduce energy consumption preventing excessive oxygen consumption when oxygen supply is limited. Phloem transport toward ears exposed to low (8%) oxygen was significantly reduced within 1 h, whereas exposing ears to elevated oxygen (40%) had no significant effect. This contrasts with the situation where the distribution of assimilates has been modified by removing the lower source leaves from the plant, resulting in less assimilates transported to the ear in favor of transport to the lower parts of the plant. Under these conditions, with two strongly competing sinks, elevated oxygen (40%) did lead to a strong increase in phloem transport to the ear. The results show that sink metabolism is affected by the prevailing low oxygen concentrations in developing wheat seeds, determining the import rate of assimilates via the phloem.  相似文献   

2.
Vigeolas H  Geigenberger P 《Planta》2004,219(5):827-835
Glycerol-3-phosphate (glycerol-3P) is a primary substrate for triacylglycerol synthesis. In the present study, changes in the levels of glycerol-3P during rape (Brassica napus L.) seed development and the influence of manipulating glycerol-3P levels on triacylglycerol synthesis were investigated. (i) Glycerol-3P levels were high in young seeds and decreased during seed development at 30 and 40 days after flowering (DAF), when lipid accumulation was maximal. (ii) To manipulate glycerol-3P levels in planta, various concentrations of glycerol were injected directly into 30-DAF seeds, which remained otherwise intact within their siliques and attached to the plant. Injection of 0–10 nmol glycerol led to a progressive increase in seed glycerol-3P levels within 28 h. (iii). Increased levels of glycerol-3P were accompanied by an increase in the flux of injected [14C]sucrose into total lipids and triacylglycerol, whereas fluxes to organic acids, amino acids, starch, protein and cell walls were not affected. (iv) When [14C]acetate was injected into seeds, label incorporation into total lipids and triacylglycerol increased progressively with increasing glycerol-3P levels. (v) There was a strong correlation between the level of glycerol-3P and the incorporation of injected [14C]acetate and [14C]sucrose into triacylglycerol. (v) The results provide evidence that the prevailing levels of glycerol-3P co-limit triacylglycerol synthesis in developing rape seeds.Abbreviations DAF Days after flowering - DAG Diacylglycerol - G3PAT Glycerol-3-phosphate acyltransferase - Glycerol-3P Glycerol-3-phosphate - PA Phosphatidic acid - PC Phosphatidylcholine - TAG Triacylglycerol,  相似文献   

3.
In oil-storing Brassica napus (rape) seeds, starch deposition occurs only transiently in the early stages of development, and starch is absent from mature seeds. This work investigates the influence of a reduction of ADP-Glc pyrophosphorylase (AGPase) on storage metabolism in these seeds. To manipulate the activity of AGPase in a seed-specific manner, a cDNA encoding the small subunit of AGPase was expressed in the sense or antisense orientation under the control of an embryo-specific thioesterase promoter. Lines were selected showing an embryo-specific decrease in AGPase due to antisense and cosuppression at different stages of development. At early developmental stages (25 days after flowering), a 50% decrease in AGPase activity was accompanied by similar decreases in starch content and the rate of starch synthesis measured by injecting (14)C-Suc into seeds in planta. In parallel to inhibition of starch synthesis, the level of ADP-Glc decreased, whereas Glc 1-phosphate levels increased, providing biochemical evidence that inhibition of starch synthesis was due to repression of AGPase. At 25 days after flowering, repression of starch synthesis also led to a decrease in the rate of (14)C-Suc degradation and its further metabolism via other metabolic pathways. This was not accompanied by an increase in the levels of soluble sugars, indicating that Suc import was inhibited in parallel. Flux through glycolysis, the activities of hexokinase, and inorganic pyrophosphate-dependent phosphofructokinase, and the adenylate energy state (ATP to ADP ratio) of the transgenic seeds decreased, indicating inhibition of glycolysis and respiration compared to wild type. This was accompanied by a marked decrease in the rate of storage lipid (triacylglycerol) synthesis and in the fatty acid content of seeds. In mature seeds, glycolytic enzyme activities, metabolite levels, and ATP levels remained unchanged, and the fatty acid content was only marginally lower compared to wild type, indicating that the influence of AGPase on carbon metabolism and oil accumulation was largely compensated for in the later stages of seed development. Results indicate that AGPase exerts high control over starch synthesis at early stages of seed development where it is involved in establishing the sink activity of the embryo and the onset of oil accumulation.  相似文献   

4.
Plants possess two alternative biochemical pathways for sucrose (Suc) degradation. One involves hydrolysis by invertase followed by phosphorylation via hexokinase and fructokinase, and the other route-which is unique to plants-involves a UDP-dependent cleavage of Suc that is catalyzed by Suc synthase (SuSy). In the present work, we tested directly whether a bypass of the endogenous SuSy route by ectopic overexpression of invertase or Suc phosphorylase affects internal oxygen levels in growing tubers and whether this is responsible for their decreased starch content. (a) Oxygen tensions were lower within transgenic tubers than in wild-type tubers. Oxygen tensions decreased within the first 10 mm of tuber tissue, and this gradient was steeper in transgenic tubers. (b) Invertase-overexpressing tubers had higher activities of glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase, and alcohol dehydrogenase, and (c) higher levels of lactate. (d) Expression of a low-oxygen-sensitive Adh1-beta-glucuronidase reporter gene construct was more strongly induced in the invertase-overexpressing background compared with wild-type background. (e) Intact transgenic tubers had lower ATP to ADP ratios than the wild type. ATP to ADP ratio was restored to wild type, when discs of transgenic tubers were incubated at 21% (v/v) oxygen. (f) Starch decreased from the periphery to the center of the tuber. This decrease was much steeper in the transgenic lines, leading to lower starch content especially near the center of the tuber. (g) Metabolic fluxes (based on redistribution of (14)C-glucose) and ATP to ADP ratios were analyzed in more detail, comparing discs incubated at various external oxygen tensions (0%, 1%, 4%, 8%, 12%, and 21% [v/v]) with intact tubers. Discs of Suc phosphorylase-expressing lines had similar ATP to ADP ratios and made starch as fast as wild type in high oxygen but had lower ATP to ADP ratios and lower rates of starch synthesis than wild type at low-oxygen tensions typical to those found inside an intact tuber. (h) In discs of wild-type tubers, subambient oxygen concentrations led to a selective increase in the mRNA levels of specific SuSy genes, whereas the mRNA levels of genes encoding vacuolar and apoplastic invertases decreased. (i) These results imply that repression of invertase and mobilization of Suc via the energetically less costly route provided by SuSy is important in growing tubers because it conserves oxygen and allows higher internal oxygen tensions to be maintained than would otherwise be possible.  相似文献   

5.
Phloem metabolism and function have to cope with low internal oxygen   总被引:9,自引:0,他引:9  
We have investigated the consequences of endogenous limitations in oxygen delivery for phloem transport in Ricinus communis. In situ oxygen profiles were measured directly across stems of plants growing in air (21% [v/v] oxygen), using a microsensor with a tip diameter of approximately 30 microm. Oxygen levels decreased from 21% (v/v) at the surface to 7% (v/v) in the vascular region and increased again to 15% (v/v) toward the hollow center of the stem. Phloem sap exuding from small incisions in the bark of the stem was hypoxic, and the ATP to ADP ratio (4.1) and energy charge (0.78) were also low. When 5-cm stem segments of intact plants were exposed to zero external oxygen for 90 min, oxygen levels within the phloem decreased to approximately 2% (v/v), and ATP to ADP ratio and adenylate energy charge dropped further to 1.92 and 0.68, respectively. This was accompanied by a marked decrease in the phloem sucrose (Suc) concentration and Suc transport rate, which is likely to be explained by the inhibition of retrieval processes in the phloem. Germinating seedlings were used to analyze the effect of a stepwise decrease in oxygen tension on phloem transport and energy metabolism in more detail. Within the endosperm embedding the cotyledons-next to the phloem loading sites-oxygen decreased from approximately 14% (v/v) in 6-d-old seedlings down to approximately 6% (v/v) in 10-d-old seedlings. This was paralleled by a similar decrease of oxygen inside the hypocotyl. When the endosperm was removed and cotyledons incubated in a 100 mM Suc solution with 21%, 6%, 3%, or 0.5% (v/v) oxygen for 3 h before phloem sap was analyzed, decreasing oxygen tensions led to a progressive decrease in phloem energy state, indicating a partial inhibition of respiration. The estimated ratio of NADH to NAD(+) in the phloem exudate remained low (approximately 0.0014) when oxygen was decreased to 6% and 3% (v/v) but increased markedly (to approximately 0.008) at 0.5% (v/v) oxygen, paralleled by an increase in lactate and ethanol. Suc concentration and translocation decreased when oxygen was decreased to 3% and 0.5% (v/v). Falling oxygen led to a progressive increase in amino acids, especially of alanine, gamma-aminobutyrat, methionine, and isoleucine, a progressive decrease in the C to N ratio, and an increase in the succinate to malate ratio in the phloem. These results show that oxygen concentration is low inside the transport phloem in planta and that this results in adaptive changes in phloem metabolism and function.  相似文献   

6.
In this study, distribution of metal accumulation and their biological changes of Indian mustard plants (Brassica nigra L.) grown in soil irrigated with different concentration of rayon grade paper effluent (RGPE, 25%, 50%, 75%, 100%, v/v) were studied. A pronounced effect was recorded at 50% (v/v) RGPE on germination of seeds, amylase activity and other growth parameters in Indian mustard plants. An increase in the chlorophyll and protein contents was also recorded at <50% (v/v) RGPE followed by a decrease at higher concentrations of RGPE (>75%). A significant increase lipid peroxidation was recorded, which was evidenced by the increased malondialdehyde (MDA) content in shoot, leaves and seeds in tested plant at all the concentrations of RGPE. This Indian mustard plants (Brassica nigra L.) are well adapted for tolerance of significant amount of heavy metals due to increased level of antioxidants (cysteine and ascorbic acid) in root shoot and leaves of treated plants at all concentration of RGPE. Moreover, it is also important that RGPE should be treated to bring down the metal concentration well within the prescribed limit prior to use in agricultural soil for ferti-irrigation.  相似文献   

7.
C Wicker  G A Scheele  A Puigserver 《Biochimie》1988,70(9):1277-1283
Lipase activity, rates of biosynthesis of lipase (triacylglycerol acylhydrolase, EC 3.1.1.3) and amylase (1,4-alpha-D-glucan glucanohydrolase, EC 3.2.1.1) as well as concentrations of their corresponding mRNAs were measured in the pancreatic tissue of rats fed isocaloric and isoprotein diets with inverse changes in the amounts of lipids and carbohydrates. A control diet (3% sunflower oil--62% starch) and three lipid-rich diets (10% sunflower oil--46.2% starch, 25% sunflower oil--12.5% starch and 30% sunflower oil--1.25% starch) were fed to rats for 10 days. Ingestion of the 10% lipid diet already resulted in a 1.4-fold increase in lipase activity while a 2.4-fold increase was observed with the other 2 high-lipid low-carbohydrate diets. Similarly, 1.3- and 3.1-fold increases in the total rate of protein synthesis were measured in pancreatic lobules of rats fed 10 and 25% or 30% lipid diets, respectively, as compared with control animals. While absolute lipase synthesis showed an important increase during the dietary manipulation (1.7- and 5.9-fold, respectively), amylase synthesis was significantly lower (1.1- and 1.5-fold, respectively). The level of lipase mRNA, as measured by dot-blot hybridization with the corresponding specific cDNA, showed a 2.2-fold increase (10% lipid diet) and a 3.9-fold increase (25% lipid diet), whereas the level of amylase mRNA showed only 1.1- and 1.3-fold increases under the same experimental conditions. These data demonstrated that protein-specific synthesis rates more accurately reflected pancreatic adaptive states than tissue levels of enzymes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Microalgae are capable of accumulating high levels of lipids and starch as carbon storage compounds. Investigation into the metabolic activities involved in the synthesis of these compounds has escalated since these compounds can be used as precursors for food and fuel. Here, we detail the results of a comprehensive analysis of Chlamydomonas reinhardtii using high or low inorganic carbon concentrations and speciation between carbon dioxide and bicarbonate, and the effects these have on inducing lipid and starch accumulation during nitrogen depletion. High concentrations of CO2 (5%; v/v) produced the highest amount of biofuel precursors, transesterified to fatty acid methyl esters, but exhibited rapid accumulation and degradation characteristics. Low CO2 (0.04%; v/v) caused carbon limitation and minimized triacylglycerol (TAG) and starch accumulation. High bicarbonate caused a cessation of cell cycling and accumulation of both TAG and starch that was more stable than the other experimental conditions. Starch accumulated prior to TAG and then degraded as maximum TAG was reached. This suggests carbon reallocation from starch‐based to TAG‐based carbon storage. Biotechnol. Bioeng. 2013; 110: 87–96. © 2012 Wiley Periodicals, Inc.  相似文献   

9.
Plants lack specialised organs and circulatory systems, and oxygen can fall to low concentrations in metabolically active, dense or bulky tissues. In animals that tolerate hypoxia or anoxia, low oxygen triggers an adaptive inhibition of respiration and metabolic activity. Growing potato tubers were used to investigate whether an analogous response exists in plants. Oxygen concentrations fall below 5% in the centre of growing potato tubers. This is accompanied by a decrease of the adenylate energy status, and alterations of metabolites that are indicative of a decreased rate of glycolysis. The response to low oxygen was investigated in more detail by incubating tissue discs from growing tubers for 2 hours at a range of oxygen concentrations. When oxygen was decreased in the range between 21% and 4% there was a partial inhibition of sucrose breakdown, glycolysis and respiration. The energy status of the adenine, guanine and uridine nucleotides decreased, but pyrophosphate levels remained high. The inhibition of sucrose breakdown and glycolysis was accompanied by a small increase of sucrose, fructose, glycerate-3-phosphate, phosphenolpyruvate, and pyruvate, a decrease of the acetyl-coenzymeA:coenzymeA ratio, and a small increase of isocitrate and 2-oxoglutarate. These results indicate that carbon fluxes are inhibited at several sites, but the primary site of action of low oxygen is probably in mitochondrial electron transport. Decreasing the oxygen concentration from 21% to 4% also resulted in a partial inhibition of sucrose uptake, a strong inhibition of amino acid synthesis, a decrease of the levels of cofactors including the adenine, guanine and uridine nucleotides and coenzymeA, and attenuated the wounding-induced increase of respiration and invertase and phenylalanine lyase activity in tissue discs. Starch synthesis was maintained at high rates in low oxygen. Anoxia led to a diametrically opposed response, in which glycolysis rose 2-fold to support fermentation, starch synthesis was strongly inhibited, and the level of lactate and the lactate:pyruvate ratio and the triose-phosphate:glycerate-3-phosphate ratio increased dramatically. It is concluded that low oxygen triggers (i) a partial inhibition of respiration leading to a decrease of the cellular energy status and (ii) a parallel inhibition of a wide range of energy-consuming metabolic processes. These results have general implications for understanding the regulation of glycolysis, starch synthesis and other biosynthetic pathways in plants, and reveal a potential role for pyrophosphate in conserving energy and decreasing oxygen consumption.  相似文献   

10.
The effect of starch composition and concentration on the rheological properties of starch in a mixed solvent, water–DMSO, was investigated in dynamic shear and extensional mode. High amylose corn starch containing 70% amylose and 30% amylopectin, common corn starch containing 25% amylose and 75% amylopectin, and waxy corn starch containing about 99% amylopectin were used in this study. Concentrations of 2, 4, 6, and 8% (w/v) in 10% water-90% DMSO (v/v) were used for each starch type. An increase in the amylopectin content of starch from 30 to 99% caused a change in behavior from semidilute solution to viscoelastic solid at a concentration of 8% (w/v). At a concentration of 2%, an increase in the amylopectin content of starch from 30 to 99% caused a change from Newtonian to incipient gel-like behavior. Behavior at intermediate concentrations of 4 and 6% (w/v) varied from semidilute to critical gel-like with increasing amylopectin content. A power-law relaxation was observed for all concentrations of common and waxy corn starches with the slope decreasing with increase in concentrations. A 2% waxy corn starch solution displayed extension thinning behavior, while a 2% high amylose corn starch solution displayed Newtonian behavior.  相似文献   

11.
This study tests the hypotheses that in vivo oxygen levels inside developing maize grains locally affect assimilate partitioning and ATP distribution within the kernel. These questions were addressed through combined topographical analysis (O2- and ATP-mapping), metabolite profiling, and isotope flux analysis. Internal and external oxygen levels were also experimentally altered. Under ambient conditions, mean O2 concentration immediately inside starchy endosperm dropped to only 1.4% of atmospheric saturation (approximately 3.8 microm), but was 10-fold higher in the oil-storing embryo. Increasing the O2 supply to intact kernels stimulated their O2 demand, shifted ATP localization within the kernel, and elevated their ATP/ADP ratio. Enhanced O2 availability also increased steady-state levels of glycolytic intermediates and those of the citric acid cycle, as well as some related pools of free amino acids. Subsequent analyses indicated that starch formation within endosperm, but not lipid biosynthesis within embryo, was adapted to the endogenous low oxygen. Increasing the O2 supply did not change ADP-glucose levels, activity of ADP-glucose pyrophosphorylase, 13C-labeling of ADP-glucose, or flux of 14C-sucrose into starch. In contrast, enhanced O2 availability increased 14C-label uptake into the embryo, 13C-labeling of acetyl-coenzyme A, and finally 14C-incorporation into lipids. Lipid accumulation in embryo appeared highest in regions with higher ATP. Consistent with labeling data, a decrease in O2 supply most strongly affected the embryo, whereas rising O2 levels expanded ATP-rich zones toward the starch-storing endosperm and the scutellar part of embryo. The latter might be responsible for higher 14C-label uptake into the embryo and flux toward lipid. Collectively, data indicate that the in vivo oxygen distribution in maize kernels markedly affects ATP gradients, metabolite levels, and favors assimilate partitioning toward starch within the O2-depleted endosperm. Clear advantages are thus evident for peripheral localization of the protein and lipid storing structures in maize kernels.  相似文献   

12.
This study establishes a topographical framework for functional investigations on the regulation of lipid biosynthesis and its interaction with embryo photosynthesis in developing soybean seed. Structural observations, combined with molecular and functional parameters, revealed the gradual transformation of chloroplasts into storage organelles, starting from inner regions going outwards. This is evidenced by electron microscopy, confocal laser scanning microscopy, in situ hybridization and histochemical/biochemical data. As a consequence of plastid differentiation, photosynthesis becomes distributed along a gradient within the developing embryo. Electron transport rate, effective quantum yield and O2 production rate are maximal in the embryo periphery, as documented by imaging pulse-amplitude-modulated fluorescence and O2 release via microsensors. The gradual loss of photosynthetic capacity was accompanied by a similarly gradual accumulation of starch and lipids. Noninvasive nuclear magnetic resonance spectroscopy of mature seeds revealed steep gradients in lipid deposition, with the highest concentrations in inner regions. The inverse relationship between photosynthesis and lipid biosynthesis argues against a direct metabolic involvement of photosynthesis in lipid biosynthesis during the late storage stage, but points to a role for photosynthetic oxygen release. This hypothesis is verified in a companion paper.  相似文献   

13.
Metabolite assays are required to characterise how metabolism changes between genotypes during development and in response to environmental perturbations. They provide a springboard to identify important regulatory sites and investigate the underlying mechanisms. Due to their small size, Arabidopsis seeds pose a technical challenge for such measurements. A set of assays based on a novel enzymic cycling system between glycerol-3-phosphate dehydrogenase and glycerol-3-phosphate oxidase have been developed and optimised for use with growing Arabidopsis seeds. In combination with existing assays they provide a suite of high throughput, sensitive assays for the immediate precursors for starch (adenine diphosphate glucose) and lipid (acetyl coenzyme A, glycerol-3-phosphate) synthesis, as well as pyrophosphate, ATP, ADP and most of the glycolytic intermediates. A method is also presented to rapidly quench intact siliques, lyophilise them and then manually separate seeds for metabolite analysis. These techniques are used to investigate changes in overall seed metabolite levels during development and maturation, and in response to a stepwise decrease of the external oxygen concentration.  相似文献   

14.
Effects of oxygen and nitrate on fatty acid/lipid production from a highly CO(2)-tolerant microalgal species Chlorococcum littorale were examined under photoautotrophic conditions of 295 K, a light intensity of 170 μmol-photon m(-2) s(-1), a bubbling CO(2) concentration of 5% (v/v) and bubbling oxygen concentrations to be volumetrically adjusted by mixing oxygen gas with inert nitrogen gas at concentrations ranging from 0% to 95% (v/v). The results showed that maximum fatty acid content reached ca. 34 wt.% under oxygen-freely bubbling conditions and this value decreased to be ca. 20 wt.% when air-like oxygen concentration of 20% was chosen. This means that degree of the accumulation strongly depended on the level of bubbling oxygen concentrations, which can be a crucial factor after nitrogen depletion in the photoautotrophic culture system. TLC-FID/FPD analyses showed that triglycerides were found to be a dominant lipid class for this accumulation.  相似文献   

15.
Legume seed development is closely related to metabolism and nutrient transport. To analyse this relationship, a combination of biochemical, histological and transgenic approaches was used. Sugars within tissue sections have been quantitatively measured by metabolic imaging. During cotyledon differentiation glucose gradients emerge related to a particular cell type, with higher concentrations in non-differentiated premature regions. Sucrose in creases at the beginning of maturation in a layer underneath the outer epidermis expressing a sucrose transporter. Sucrose distribution is initially controlled by uptake activity and the permeability within the parenchyma and, later on, also by differences in growth and starch accumulation. Increased sucrose levels are accompanied by increased levels of sucrose synthase and ADP-Glc pyrophosphorylase mRNAs, but carbon flux into starch is initially still low. Rates increase at a stage when hexose concentrations become low, allowing increased flux through the sucrose synthase pathway. Transfer cell formation represents a regional specification of the cotyledonary epidermis for embryo nutrition characterized by increased transport-active cell surfaces and up-regulated expression of transport-related genes. The E2748 pea seed mutation blocks epidermal differentiation into transfer cells and leads to the loss of epidermal cell identity. Embryos with impaired epidermis cannot tolerate elevated levels of sucrose and respond with disorganized growth. The E2748 gene product is required for transfer cell formation in developing cotyledons with no other function during plant growth. Seed coat permeability provides a hypoxic environment for embryo development. However, at maturity, seed energy supply is not limited indicating fundamental developmental and metabolic adaptations. Results from transgenic seeds show that altered expression of single genes induces complex and unexpected changes. In AGP-antisense seeds the block in starch synthesis leads to pleiotropic effects of water and nitrogen content and induces temporal changes in seed development.  相似文献   

16.
Legume seeds are heterotrophic and dependent on mitochondrial respiration. Due to the limited diffusional gas exchange, embryos grow in an environment of low oxygen. O(2) levels within embryo tissues were measured using microsensors and are lowest in early stages and during night, up to 0.4% of atmospheric O(2) concentration (1.1 micro M). Embryo respiration was more strongly inhibited by low O(2) during earlier than later stages. ATP content and adenylate energy charge were lowest in young embryos, whereas ethanol emission and alcohol dehydrogenase activity were high, indicating restricted ATP synthesis and fermentative metabolism. In vitro and in vivo experiments further revealed that embryo metabolism is O(2) limited. During maturation, ATP levels increased and fermentative metabolism disappeared. This indicates that embryos become adapted to the low O(2) and can adjust its energy state on a higher level. Embryos become green and photosynthetically active during differentiation. Photosynthetic O(2) production elevated the internal level up to approximately 50% of atmospheric O(2) concentration (135 micro M). Upon light conditions, embryos partitioned approximately 3-fold more [(14)C]sucrose into starch. The light-dependent increase of starch synthesis was developmentally regulated. However, steady-state levels of nucleotides, free amino acids, sugars, and glycolytic intermediates did not change upon light or dark conditions. Maturing embryos responded to low O(2) supply by adjusting metabolic fluxes rather than the steady-state levels of metabolites. We conclude that embryogenic photosynthesis increases biosynthetic fluxes probably by providing O(2) and energy that is readily used for biosynthesis and respiration.  相似文献   

17.
Compartmentation of metabolism in developing seeds is poorly understood due to the lack of data on metabolite distributions at the subcellular level. In this report, a non-aqueous fractionation method is described that allows subcellular concentrations of metabolites in developing barley endosperm to be calculated. (i) Analysis of subcellular volumes in developing endosperm using micrographs shows that plastids and cytosol occupy 50.5% and 49.9% of the total cell volume, respectively, while vacuoles and mitochondria can be neglected. (ii) By using non-aqueous fractionation, subcellular distribution between the cytosol and plastid of the levels of metabolites involved in sucrose degradation, starch synthesis, and respiration were determined. With the exception of ADP and AMP which were mainly located in the plastid, most other metabolites of carbon and energy metabolism were mainly located outside the plastid in the cytosolic compartment. (iii) In developing barley endosperm, the ultimate precursor of starch, ADPglucose (ADPGlc), was mainly located in the cytosol (80-90%), which was opposite to the situation in growing potato tubers where ADPGlc was almost exclusively located in the plastid (98%). This reflects the different subcellular distribution of ADPGlc pyrophosphorylase (AGPase) in these tissues. (iv) Cytosolic concentrations of ADPGlc were found to be close to the published K(m) values of AGPase and the ADPGlc/ADP transporter at the plastid envelope. Also the concentrations of the reaction partners glucose-1-phosphate, ATP, and inorganic pyrophosphate were close to the respective K(m) values of AGPase. (v) Knock-out of cytosolic AGPase in Riso16 mutants led to a strong decrease in ADPGlc level, in both the cytosol and plastid, whereas knock-down of the ADPGlc/ADP transporter led to a large shift in the intracellular distribution of ADPGlc. (v) The thermodynamic structure of the pathway of sucrose to starch was determined by calculating the mass-action ratios of all the steps in the pathway. The data show that AGPase is close to equilibrium, in both the cytosol and plastid, whereas the ADPGlc/ADP transporter is strongly displaced from equilibrium in vivo. This is in contrast to most other tissues, including leaves and potato tubers. (vi) Results indicate transport rather than synthesis of ADPGlc to be the major regulatory site of starch synthesis in barley endosperm. The reversibility of AGPase in the plastid has important implications for the regulation of carbon partitioning between different biosynthetic pathways.  相似文献   

18.
The role of oxygen and energy state in development and storage activity of cereal grains is an important issue, but has remained largely uninvestigated due to the lack of appropriate analytical methods. Metabolic profiling, bioluminescence-based in situ imaging of ATP, and oxygen-sensitive microsensors were combined here to investigate barley seed development. For the first time temporal and spatial maps of O2 and ATP distribution in cereal grains were determined and related to the differentiation pattern. Steep O2 gradients were demonstrated and strongly hypoxic regions were detected within the caryopsis (<0.1% of atmospheric saturation). Growing lateral and peripheral regions of endosperm remained well-supplied with O2 due to pericarp photosynthesis. ATP distribution in the developing grain was coupled to endosperm differentiation. High ATP concentrations were associated with the local onset of starch storage within endosperm, while low ATP overlapped with the hypoxic regions. Temporally, the building of steep gradients in ATP coincided with overall elevating metabolite levels, specific changes in the metabolite profiles (glycolysis and citrate cycle), and channelling of metabolic fluxes towards storage (increase of starch accumulation rate). These findings implicate an inhomogenous spatial arrangement of metabolic activity within the caryopsis. It is suggested that the local onset of starch storage is coupled with the accumulation of ATP and elevated metabolic activity. Thus, the ATP level reflects the metabolic state of storage tissue. On the basis of these findings, a hypothetical model for the regulation of starch storage in barley seeds is proposed.  相似文献   

19.
Nonsymbiotic hemoglobins are ubiquitously expressed in plants and divided into two different classes based on gene expression pattern and oxygen-binding properties. Most of the published research has been on the function of class 1 hemoglobins. To investigate the role of class 2 hemoglobins, transgenic Arabidopsis (Arabidopsis thaliana) plants were generated overexpressing Arabidopsis hemoglobin-2 (AHb2) under the control of a seed-specific promoter. Overexpression of AHb2 led to a 40% increase in the total fatty acid content of developing and mature seeds in three subsequent generations. This was mainly due to an increase in the polyunsaturated C18:2 (ω-6) linoleic and C18:3 (ω-3) α-linolenic acids. Moreover, AHb2 overexpression led to an increase in the C18:2/C18:1 and C18:3/C18:2 ratios as well as in the C18:3 content in mol % of total fatty acids and in the unsaturation/saturation index of total seed lipids. The increase in fatty acid content was mainly due to a stimulation of the rate of triacylglycerol synthesis, which was attributable to a 3-fold higher energy state and a 2-fold higher sucrose content of the seeds. Under low external oxygen, AHb2 overexpression maintained an up to 5-fold higher energy state and prevented fermentation. This is consistent with AHb2 overexpression results in improved oxygen availability within developing seeds. In contrast to this, overexpression of class 1 hemoglobin did not lead to any significant increase in the metabolic performance of the seeds. These results provide evidence for a specific function of class 2 hemoglobin in seed oil production and in promoting the accumulation of polyunsaturated fatty acids by facilitating oxygen supply in developing seeds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号