首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The mechanisms underlying a new hybridocytochemical method, which is based on mercurated nucleic acid probes and their binding to sulfhydryl-hapten ligands, have been studied. Furthermore we developed a simple procedure for the preparation of mercurated probes at a microgram scale. Nucleic acids immobilized on Sephadex beads have been immunochemically detected after hybridization with mercurated probes and binding of the sulfhydryl-hapten ligand trinitrophenyl-glutathione. In this system, the method proved to be specific and sensitive. However, the same procedure, when applied in situ, failed to give a positive result. ELISA experiments showed that these results cannot be attributed to a suboptimal immunochemical detection of the ligand. Chromatographic analysis of mercurated polynucleotide-ligand complexes revealed, however, an unexpected lability of the mercury-sulfhydryl bond. Under non-equilibrium conditions, as present during a cytochemical washing procedure, the mercury-sulfhydryl b ond was found to dissociate rapidly. On basis of these results the hypothesis was forwarded that the bond between mercurated nucleic acids immobilized on Sephadex and the ligand was stabilized by the positive charge of the Sephadex matrix. This charge was introduced during the cyanogen bromide activation and inactivation necessary for the covalent coupling of nucleic acids to Sephadex. In situ, however, no such positive charges are present. By reversing the charge of the ligand we expected to stabilize the mercury-sulfhydryl bond. In a subsequent paper data are presented that confirm this hypothesis.  相似文献   

4.
In the preceding paper, a method to detect specific DNA sequences with mercurated nucleic acid probes and sulfhydryl-hapten ligands has been described. Due to the instability of the bond between mercury and a negatively charged sulfhydryl-hapten ligand (trinitrophenyl-glutathione), the in situ formed hybrid could not be detected. On basis of model system experiments it was suggested that this mercury-sulfhydryl bond could be stabilized by an extra polar interaction between ligand and nucleic acid. This was achieved by reversing the net charge of the ligand. Such ligands were synthesized by reacting aliphatic diamines to the carboxyl groups of Tnp-glutathione using a water soluble carbodiimide. Gel chromatographic analysis of mercurated polynucleotide-ligand complexes showed that the stability of the mercury-sulfhydryl bond is increased by the reversal of the net charge of the ligand. In situ hybridized mercurated mouse satellite DNA to mouse liver nuclei and mercurated kinetoplast cRNA hybridized to Crithidia fasciculata were immunocytochemically detected after the introduction of these positively charged ligands. The described method is applicable for RNA and DNA probes. It has a sensitivity comparable to other non-autoradiographic methods, is relatively simple to perform and can be carried out with ordinary laboratory chemicals.  相似文献   

5.
Evidence is presented for the specific interaction of 6-mercaptopurine with mercurated cellulose. Following from this, a new method is described for the affinity chromatography of thiol-containing molecules and of RNA containing incorporated 6-thioguanosine on columns of mercurated cellulose. This technique may find application in the study of RNA metabolism and gene expression.  相似文献   

6.
We describe an in vitro protocol for quickly generating overlapping terminal-labeled restriction fragments for DNA sequence analysis via the Maxam-Gilbert technique. The protocol involves introducing mercurated nucleotides into one end of a region to be sequenced, partial digestion with several restriction enzymes and terminal-labeling, separation of the mercurated restriction enzymes and terminal-labeling, separation of the mercurated restriction fragments from non-mercurated ones on a thiol column and resolution of the different mercurated fragments on one preparative agarose gel. The protocol was used to determine the nucleotide sequence of a 980 base pair cDNA that contains the coding region for a variable surface glycoprotein of Trypanosoma brucei. It could just as quickly and easily be used to obtain many terminal-labeled overlapping restriction fragments covering a region of several kilobases.  相似文献   

7.
Direct covalent mercuration of nucleotides and polynucleotides.   总被引:11,自引:0,他引:11  
Nucleotides of cytosine and uracil are readily mercurated by heating at 37-50 degrees in buffered aqueous solutions (pH 5.0-8.0) containing mercuric acetate. Proton magnetic resonance, elemental, electrophoretic, and chromatographic analyses have shown the products to be 5-mercuricytosine and 5-mercuriuracil derivatives, where the mercury atom is covalently bonded. Polynucleotides can be mercurated under similar conditions. Cytosine and uracil bases are modified in RNA while only cytosine residues in DNA are substituted. There is little, if any, reaction with adenine, thymine, or guanine bases. The rate of polymer mercuration is, unlike that of mononucleotides, markedly influenced by the ionic strength of the reaction mixture: the lower the ionic strength the faster the reaction rate. Pyrimidine residues in single- and double-stranded polymers react at essentially the same rate. Although most polynucleotides can be extensively mercurated at pH 7.0 in sodium or Trisacetate buffers, tRNA undergoes only limited substitution in Tris buffers. The mild reaction conditions give minimal single-strand breakage and, unlike direct iodination procedures, do not produce pyrimidine hydrates. Mercurated polynucleotides can be exploited in a variety of ways, particularly by crystallographic and electron microscopic techniques, as tools for studying polynucleotide structure.  相似文献   

8.
9.
In the presence of thiols, 5-mercuripyrimidine nucleotides are quantitatively converted to 5-thiomercuri derivatives, but these compounds are unstable and decompose at a rate dependent on the nature of the thiol. The decomposition involves three different reactions and proceeds via a symmetrical mercury derivative of the nucleotide. The end product is the unmodified nucleotide. Similar reactions occur in the presence of hydrogen sulfide. Since mercurated nucleoside triphosphates are substrates for RNA- and DNA polymerase only in the form of thiomercuri derivatives, this implies that when DNA is replicated or transcribed in vitro with a mercurated substrate, the latter is rapidly demercurated to the unmodified substrate which is incorporated as well. Hence the product of the in vitro synthesis can only be partially mercurated in any one pyrimidine. Also, formation of cross-links in the resulting polymer is possible.  相似文献   

10.
Summary In the preceding paper, a method to detect specific DNA sequences with mercurated nucleic acid probes and sulfhydryl-hapten ligands has been described. Due to the instability of the bond between mercury and a negatively charged sulfhydryl-hapten ligand (trinitrophenyl-glutathione), the in situ formed hybrid could not be detected. On basis of model system experiments it was suggested that this mercury-sulfhydryl bond could be stabilized by an extra polar interaction between ligand and nucleic acid. This was achreved by reversing the net charge of the ligand. Such ligands were synthesized by reacting aliphatic diamines to the carboxyl groups of Tnp-glutathione using a water soluble carbodiimide. Gel chromatographic analysis of mercurated polynucleotide-ligand complexes showed that the stability of the mercury-sulfhydryl bond is increased by the reversal of the net charge of the ligand.In situ hybridized mercurated mouse satellite DNA to mouse liver nuclei and mercurated kinetoplast cRNA hybridized to Crithidia fasciculata were immunocytochemically detected after the introduction of these positively charged ligands.The described method is applicable for RNA and DNA probes. It has a sensitivity comparable to other non-autoradiographic methods, is relatively simple to perform and can be carried out with ordinary laboratory chemicals.This investigation was supported by the Netherlands Foundation for Medical Research Fungo (grant nr 13-54-21)  相似文献   

11.
12.
Thiol-containing bases such as 6-mercaptopurine bind to mercurated cellulose under conditions where non-thiol bases do not bind. Both RNA and thiol-containing RNA bind to mercurated cellulose, but the affinity for thiol-containing RNA is considerably greater. Ligands such as CN? and S2O32? inhibit this binding to mercurated cellulose, and conditions can be found which permit almost complete retention, of thiol-containing RNA with low retention of non-thiol-containing RNA. A simple method is described for separating newly synthesised RNA containing thiol groups from older RNA which does not contain thiol groups.  相似文献   

13.
The stability of covalently mercurated DNAs during DNA:DNA reassociation, heteroduplex recovery on sulfhydryl-Sepharose, and S1 nuclease digestion under a variety of solvent and temperature conditions is described. The nonspecific loss of203Hg from mercurated DNA can be minimized by use of aqueous formamide solvents in reassociation experiments and by minimizing exposure to sulfhydryl reagents and temperatures above 35°C. Single-stranded DNA is shown to be more sensitive to demercuration than is native, duplex DNA.  相似文献   

14.
15.
16.
17.
Mercurated nucleic acid probes can be used for non-radioactive in situ hybridization. The principle of the method is based on the reaction of the mercurated pyrimidine residues of the in situ hybridized probe with the sulfhydryl group of a ligand which contains a hapten. Next, the hapten is immunocytochemically detected. Previous experiments showed that stable coupling of the sulfhydryl ligands could only be obtained when positively charged amino groups are present in the ligand. On basis of this finding, ligands were synthesized containing a sulfhydryl group, two lysyl residues and hapten groups such as trinitrophenyl, fluorescyl and biotinyl. The ligands, free or bound to mercurated nucleic acids, were immunochemically characterized in ELISAs. The method was shown to be specific and sensitive in the detection of target DNA in situ on microscopic preparations and in dot-blot hybridization reactions on nitrocellulose.  相似文献   

18.
S Fabijanski  M Pellegrini 《Biochemistry》1979,18(25):5674-5679
An affinity label has been prepared that is specific for the P site of a eucaryotic peptidyl transferase, that of Drosophila melanogaster. It has the sequence C-A-C-C-A-(Ac[3H]Leu) with a mercury atom added at the C-5 position of all three cytosine residues (referred to as the mercurated fragment). This label is an analogue of the 3' terminus of N-acetylleucyl-tRNA. The mercurated fragment binds specifically to the P site of peptidyl transferase. It participates fully in peptide bond formation as judged by its ability to transfer N-acetylleucine to puromycin with at least the same efficiency as a nonmercurated fragment. Once bound to the P site, the mercurated fragment reacts covalently with a ribosomal protein(s). This affinity-labeling process can be effectively competed by nonmercurated fragment, which indicates a site-specific reaction. The covalent attachment of the affinity label to a ribosomal protein(s) occurs through the formation of a mercury-sulfur bond, as judged by its lability in the presence of thiol reducing agents. The major ribosomal protein labeled at the P site of D. melanogaster was found to be a small, basic protein. The electrophoretic behavior of this protein parallels that of major P site proteins found in Escherichia coli ribosomes and in other eucaryotes. These results suggest conservation of some of the overall properties of the P site proteins from these organisms.  相似文献   

19.
20.
A method for isolating picomole quantities of nascent mercurated DNA from a mixture of cellular nucleic acids using affinity chromatography on thiol-agarose is described. Analysis of mercurated DNA (HgDNA) isolated in the presence of in vivo-labeled cellular RNA or in vitro-synthesized RNA showed a low level of RNA contamination, about 0.04-0.16%, in the HgDNA. Comparative binding studies on different thiol matrices showed that the efficiency of binding of HgDNA was related to the nature but not to the SH content of the matrix used. Another important parameter for binding was the structure of HgDNA. The recovery was 98% with large nascent HgDNA sedimenting at about 30 S, whereas for short pulse-labeled single-stranded HgDNA (20-50 nucleotides long), the maximum recovery was 60%. The effect of the structure of HgDNA on the binding to the thiol matrix was probed using a variety of well-defined mercurated structures obtained from phage DNA and their restriction fragments. For DNA containing one 5-mercuricytidine 5'-triphosphate (HgdCMP) residue at each 3'-end, short fragments (size range, 230-510 bp) were bound quantitatively. With larger fragments (size range, 490-1100 bp), the binding decreased progressively with increasing size. DNA fragments larger than 1060 bp did not bind to the matrix. Single-stranded DNA containing only one HgdCMP at one end did not bind to the matrix even in the size range 200-1100 nucleotides. In contrast, continuous stretches of HgdCMP residues in one strand or short stretches of HgdCMP residues at random in both strands permit quantitative binding irrespective of size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号