首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Babesia rodhaini parasites in murine blood containing 1.5 m DMSO were frozen at two rates, as judged by the duration of the “freezing plateau”, then cooled to ?196 °C and rewarmed at two rates to detect interactions between the duration of the plateau and rates of subsequent cooling and rewarming. Infectivity tests showed that fast and slow freezing (plateau times of about 1 sec and 30 sec, respectively) had similar effects on parasite survival when cooling was at 130 °C/min and warming was at 800 °C/min. However, when either the cooling rate was increased to 3500 °C/min or the warming rate was decreased to 2.3 °C/min, fast freezing decreased parasite survival more than did slow freezing. It is suggested that fast freezing accentuated the damaging effects of fast cooling and slow warming by increasing intracellular ice formation.  相似文献   

2.
Progressive changes to MRC-5 and CHA cells during the cooling process were measured by thawing samples of cells in 10% DMSO from various points in the cooling phase between +20 ° and ?196 °C. The results showed that the period of phase transition was not the part of the cooling process in which cells were most susceptible to freeze-thaw damage. Indications were that most cell damage, as measured by the release of radiochromate, occurred between ?30 ° and ?80 °C. The possibility that cell survival from freeze-thaw cycles could be improved by the use of different cooling rates at different stages of the cooling process was investigated.  相似文献   

3.
A cell line (UM-BGE-2) derived from embryos of the cockroach Blattella germanica was frozen to ?196 °C under a variety of conditions and cell viability was assayed after warming. It was found that cell viability was affected by the cooling rate, the warming rate, the controlled cooling endpoint temperature, and the type and concentration of cryoprotectant. The best survival for cells suspended in Grace's tissue culture medium containing 1 M Me2SO was obtained when cells were cooled at 1 °C/ min to at least ?90 °C before being placed in liquid nitrogen and warmed at more than 900 °C/min. Cultures initiated from these frozen cells produce typical growth curves and appear normal after several passages.  相似文献   

4.
Heavy concentrations of viable P. berghei in the natural milieu [20% (vv) parasitized red blood cells, or 20% (wv) homogenate of splenic tissue in which malarial cells sequestered wer suspended in a serum-free, protective medium. Various rates of cooling are designated as low (1.3 °C/min) and intermediate (4 °C/ min) on exposure in cold gas evolving from liquid nitrogen refrigerant to ?70 °C, and this followed by direct immersion in the low temperature refrigerant (?196 °C). Cooling designated high was accomplished by abrupt immersion of the sealed vials with the live malaria-bearing tissue in the liquid nitrogen refrigerant. Rates of warming and thawing were designated low (after slow rewarming of frozen tissue in air at 25.5 °C) and high (after rapid rewarming and thawing in a water bath at 40 °C). Strip chart recordings were made of the complete cooling and freezing wave patterns of the suspending medium to ?70 ° C. The functional survivals of the freeze-thaw P. berghei malaria were measured by a special infectivity titration method.None of the cooling and freezing treatments adversely influenced the parasite survivals. Our data showed the optimum cooling velocity that maximally protected this highly lethal P. berghei strain within the host erythrocyte matrix was 1.3 ° C/min to ?70 to ?196 ° C. The functional survivals of two RBC stabilates with P. berghei, after retrieval from 25 days storage in the liquid nitrogen refrigerant, excelled by more than 100-fold the infectivity titer found by viability assay in the pool of the 0-days nonfrozen infected RBC.The precise factors favoring the maximal survivals of the freeze-thaw P. berghei are unclear. Several factors, singly or in combination, may have played key roles in protecting the living P. berghei from the freeze-thaw damage. These factors are: The composition of the suspending medium fortified by additions of bicarbonate, glucose, lactalbumin hydrolysate and yeastolate; the presence of naturally occurring peptide-containing materials surrounding the parasites in the host red cell milieu; and the protective glycerol agent. Any of these constituents singly or combined possess potential for reducing freeze-thaw injury to the parasites to produce maximal survivals.  相似文献   

5.
L E McGann  J Farrant 《Cryobiology》1976,13(3):269-273
Chinese hamster tissue culture cells in dimethyl sulphoxide (5%) required a lower holding temperature (?35 °C) for optimal survival on slow warming from ?196 °C using a two-step cooling schedule, compared with that required (?25 °C) when warming was rapid. A lower concentration of dimethyl sulphoxide (1%) did not affect the “protection” against damage on cooling from the holding temperature to ?196 °C and thawing. The results suggest that protective agents allow cells to be cooled initially to the holding temperature and minimize damage at the holding temperature. Damage following subsequent cooling and thawing may thus occur mainly as dilution shock on rewarming. This can be minimized by allowing the cells to shrink at the holding temperature.  相似文献   

6.
In the present study we demonstrate that the ?80 °C freeze-thaw survival rate in the yeast, Saccharomyces cerevisiae, is dependent upon specific stages in the cell cycle. Samples removed from synchronous cultures at appropriate intervals during the first three consecutive synchronous cell cycles were subjected to a ?80 °C freeze-thaw protocol employing 10% glycerol as a cryoprotectant. Distinct cyclic changes in the percentage of viable cells in response to our freeze-thaw protocol were observed during each of the three consecutive synchronous cell generations examined. Maximum rates of survival occurred at the initiation of each new cell cycle and minimum rates of survival occurred approximately 30 min prior to each new cell cycle. These maximum and minimum rates of survival were shown to be correlated in time with maximum and minimum ratios of cellular phospholipid to membrane during each individual cell cycle.  相似文献   

7.
《Cryobiology》2008,56(3):236-248
Cryopreservation of ovarian tissue aims to assist young women who require treatments that may lead to sterility or infertility. Cryopreservation procedures should therefore be as simple and efficient as possible. This study investigates rapid cooling outcomes for whole sheep ovaries. Ovaries were perfused with VS4 via the ovarian artery, and cooled by quenching in liquid nitrogen in less than a minute (estimated cooling rate above 300 °C/min till the vitreous transition temperature). The ovaries were rewarmed in two stages: slow warming (12–16 °C/min from −196 to −133 °C) in liquid nitrogen vapour, followed by rapid thawing in a 45 °C water bath at about 200 °C/min. DSC measurements showed that under these cryopreservation conditions VS4 would vitrify, but that VS4 perfused ovarian cortex fragments did not vitrify, but formed ice (around 18.4%). Immediately following rewarming, a dye exclusion test indicated that 61.4 ± 2.2% of small follicles were viable while histological analysis showed that 48 ± 3.8% of the primordial follicles were normal. It remains to be clarified whether follicle survival rates will increase if conditions allowing complete tissue vitrification were used.  相似文献   

8.
Rat islets of Langerhans were frozen to ?196 °C using a two-step freezing procedure. Islets isolated from the pancreases of Long Evans hooded rats were exposed to CMRL 1066 media containing 1 M dimethyl sulfoxide for 6 min at 4 °C. They were transferred directly to subzero holding baths ranging from ?20 to ?43 °C for 5 to 20 min prior to transfer to and storage in liquid nitrogen. After warming at ~7 °C/min, the islets were diluted with Hanks' balanced salt solution containing 10% fetal calf serum, washed, and cultured overnight. In general, maximum protection of the islets from the stress of cooling to ?196 °C was obtained after holding the islets at ?35 or ?40 °C for between 5 and 15 min. After thawing, islets frozen using an “optimized” two-step protocol released insulin in response to a glucose challenge at a rate equivalent to that of control islets.  相似文献   

9.
Adult rat heart cells were exposed to two-step cooling to ?196 °C with different holding periods at different subzero temperatures between both steps. The highest survival based on the percentage of trypan blue-excluding cells was 25% with 10% DMSO and a holding period of 6 min, and 21% with 15% DMSO and a holding period of 30 min. The highest survival based on morphological intactness was about 10%; there was no difference in results after cooling with 10 and 15% DMSO, and after holding between 2 and 30 min. The optimal survival based on the percentage of contracting cells was 52%, with 15% DMSO and a holding period of 2 min.When the holding period was replaced by a programmed cooling stage, the results could be improved. With this threestep cooling method, the optimal values, based on the number of trypan blue-excluding, intact, and contracting cells, were 40, 32, and 60%, respectively. It appeared that in the presence of 10% DMSO, which provided better survival than 5 and 15%, no significantly different results were obtained when the starting temperatures of the second cooling step varied between ?10 and ?20 °C, when the end temperatures varied between ?30 and ?60 °C, or when the cooling rates of the second cooling step varied between 0.1 and 1 °C/min. Three-step cooling provided similar results as linear cooling from 0 to ?100 °C, followed by rapid cooling to ?196 °C.  相似文献   

10.
R.L. Ax  J.R. Lodge 《Cryobiology》1975,12(1):93-97
Rooster spermatozoa were stored at 25, 5, or ?196 °C in either TC199, a pyruvate-lactate mouse ova culture medium, or as undiluted semen. There was a linear decrease in percent of motile sperm during storage at 25 or 5 °C in all cases, and a curvilinear decrease with increasing storage times at ?196 °C. Percent of motile sperm present after increasing storage time suggested pyruvate-lactate is a better extender than TC199 at the three storage temperatures studied. Pullets inseminated with 1 × 108 motile sperm using fresh sperm diluted in TC199 or pyruvate-lactate, or stored 24 hr at 5 or ?196 °C produced 68.7, 74.1, 20.6, and 10.8% fertile eggs, respectively. The differences in fertility between controls or between samples stored at 5 and ?196 °C were not significant. However, fertility from sperm stored at 5 and ?196 °C was significantly lower (p < .05) than both control groups. Thus, it can be concluded that TC199 or pyruvate-lactate may be used to dilute fresh rooster semen collections prior to insemination. In contrast, fertility of rooster sperm is not satisfactorily maintained after 5 or ?196 °C storage for 24 hr in a pyruvate-lactate extender.  相似文献   

11.
Human red cells were equilibrated for 30 min at 20 °C in buffered saline containing 2 m glycerol and then frozen to ?196 °C at 0.27, 1.7, 59, 180, 480, 600, and 1300 °C/ min and warmed at 0.47, 1, 26, 160, and 550 °C/min. Cells frozen at 600 and 1300 °C/min responded in the classical fashion for cells containing intracellular ice; i.e., survivals were low when warming was slow (<10%), but increased progressively with increasing warming rate. The sensitivity to slow warming presumably reflects the recrystallization of intracellular ice. Cells frozen at 59 and 180 °C/ min yielded high survivals at all warming rates. This response is also consistent with the findings for other cells cooled just slowly enough to preclude intracellular ice. Cells frozen very slowly at 0.27 and 1.7 °C/ min, however, responded differently; survivals were considerably higher when warming was slow (0.47 or 1 °C/min) than when it was 26, 160, or 550 °C/min. This response is analogous to that observed recently by others in mouse embryos and in higher plant tissue-culture cells and to that observed for many years in higher plants. It also confirms previous observations of Meryman in human red cells. It may reflect osmotic shock from rapid dilution but, if so, the basis of the osmotic shock is uncertain.  相似文献   

12.
Harvey L. Bank 《Cryobiology》1980,17(3):262-272
Mature rat polymorphonuclear leukocytes (PMNs) were frozen to ?196 °C, thawed, and tested for functional viability using a variety of criteria. The assays for functional viability included: qualitative and quantitative nitroblue tetrazolium tests for phagocytic activity, fluorometric tests for membrane integrity, chemotaxis, and bactericidal activity. Maximal survival was obtained when mature PMNs were frozen in the presence of 10% dimethyl sulfoxide (Me2SO) and 5% hydroxyethyl-starch (HES) for cells cooled at ~10 °C per minute, followed by rapid warming. Maximal survival was obtained for granulocyte precursor cells (as measured by CFU-c) after freezing in the presence of 10% Me2SO and cooling at ~10 °C per minute. The principal new findings for mature PMNs were: (i) there was a synergistic effect between intra- and extracellular protective additives; (ii) the optimal cooling rate increases from approximately 0.3 to 10 °C per minute when an extracellular protective agent, such as HES is included in the freezing media; (iii) the zwitterion buffer Hepes has a small but consistently beneficial effect on survival; (iv) granulocytes obtained from peripheral blood consistently show a higher functional survival after freezing (95%) than do PMNs obtained from a glycogen-induced peritoneal exudate (70%); (v) neither serum, plasma, nor other macromolecules are needed in the postt-haw dilution media to obtain high survival; and (vi) cells frozen using an optimized two-step protocol survived as well as those frozen using a continuous cooling protocol.  相似文献   

13.
The two-step cooling procedure has been used to investigate factors involved in cell injury. Chinese hamster fibroblasts frozen in dimethylsulphoxide (5%, vv) were studied. Survival was measured using a cell colony assay and simultaneous observations of cellular shrinkage and the localization of intracellular ice were done by an ultrastructural examination of freeze-substituted samples.Correlations were obtained between survival and shrinkage at the holding temperature. However, cells shrunken at ?25 °C for 10 min (the optimal conditions for survival on rapid thawing from ?196 °C) contain intracellular ice nuclei at ?196 °C detectable by recrystallization. These ice nuclei only form below ?80 °C and prevent recovery on slow or interrupted thawing but not on rapid thawing. Cells shrunken at ?35 °C for 10 min (just above the temperature at which intracellular ice forms in the majority of rapidly cooled cells) can tolerate even slow thawing from ?196 °C, suggesting that they contain very few or no ice nuclei even in liquid nitrogen. Damage may correlate with the total amount of ice formed per cell rather than the size of individual crystals, and we suggest that injury occurs during rewarming and is osmotic in nature.  相似文献   

14.
Behavioural development was compared between two flatfish species (Japanese flounder and spotted halibut) from hatching to settlement (juvenile stage) in order to speculate on the ecology of their early life stages and to provide fundamental knowledge for improving seedling production techniques for stock enhancement. Fish were cultured under identical rearing conditions (500‐L tank maintained at 17.8 ± 0.4°C, 34 ppt, 10L : 14D light regime and an initial stocking density of 20 larvae L?1). Behavioural observations were conducted at about 4‐day intervals from hatching to the juvenile stage. Fish were sampled randomly from the rearing tank, and one fish was transferred into a 250‐ml observation container. Behaviour was video‐recorded for 5 min without food and for an additional 5 min with live feed (rotifer or Artemia). All behavioural data were sorted according to eight developmental stages and compared among developmental stages and between species. The average standard length of the spotted halibut was significantly greater than that of the Japanese flounder in all developmental stages, while the development of Japanese flounder was faster than that of the spotted halibut. For Japanese flounder, feeding, swimming and Ohm‐posture (typical shivering behaviour observed during early life stages in flatfishes) frequency were highest before metamorphosis (mean ± SD; 1.0 ± 2.0 attacks min?1, 24.0 ± 9.6 actions min?1, 1.1 ± 1.1 counts min?1, respectively). Spotted halibut expressed feeding behaviour frequently from the beginning of metamorphosis (3.6 ± 5.2 attacks min?1), had relatively low swimming activity during all developmental stages, and showed a peak of Ohm‐posture frequency during the flexion stage (2.6 ± 1.0 counts min?1).  相似文献   

15.
Intact adult rat hearts were cooled in the presence of 10% DMSO according to an external cooling program which approximated the optimal external three-step cooling program for the isolated adult heart cells: 20 min at ?20 °C, 0.2 °C/min from ?20 to ?25, ?30, or ?50 °C, and rapid cooling to ?196 °C. Following rapid thawing, cells were isolated after perfusion with a 0.1% collagenase solution. Only cells which originated from the free wall of the right ventricle could be isolated, even after cooling to ?20 °C. Most cells from hearts cooled to ?196 °C did not survive. When the third cooling step was omitted and the end temperature of the second cooling step was ?30 °C, 38% of the cells excluded trypan blue, 29% were morphologically intact, and 30% showed spontaneous contractions after thawing, expressed as percentages of the control, A much lower survival was found after cooling to ?50 °C.Histological and electron microscopical study of the heart immediately after thawing revealed no differences between hearts cooled to ?20, ?30, or ?196 °C. Also no marked differences were observed between the morphological integrity after freezing and thawing of the atrium, the left and right ventricle walls, and the ventricular septum. The survival data suggest the presence of nonmorphologically detectable alterations in cells frozen to ?196 °C, compared to cells frozen to ?30 °C. The morphological investigations indicate no essential differences in resistance of atrial and ventricular cells to the freezing process.Experiments involving neonatal rat hearts cooled to ?196 °C, according to the method which gave optimal preservation of the isolated cells, revealed that after thawing cells are present from which growing and contracting cultures can be derived. It appears that cells in the neonatal rat heart are more resistant to freezing to ?196 °C than cells in the adult rat heart.  相似文献   

16.
The Patagonian blennie Eleginops maclovinus is a coastal and estuarine species, important in recreational and commercial fisheries, and with aquaculture potential. This study assessed the effect of temperature on feeding and the allocation of energy in growth and swimming in a sub-Antarctic population. For growth experiments, two groups of 8 juveniles were reared at 4 and 10?°C (corresponding to winter and summer habitat temperatures, respectively) for 3?months. Swimming experiments were conducted at 5 and 10?°C, measuring the oxygen consumption before and after forced swimming for 1?min at a speed of 10 total lengths (TL)/s. Temperature affects growth. TL increased 0.09?cm at 4?°C versus 0.30?cm at 10?°C. Body mass grew 0.49?g at 4?°C versus 1.65?g at 10?°C, whereas the Fulton’s condition factor increased 0.021 at 4?°C versus 0.080 at 10?°C. The ingested food was more than twofold higher at 10 than at 4?°C, while the feces produced at 4?°C was about twofold higher. The scope between baseline and peak oxygen consumption after forced swimming was affected by temperature, being 4.51 at 5?°C and 3.03 at 10?°C. The percentage energy expenditure until the return of baseline oxygen consumption values showed a marked temperature effect, being higher at 5?°C. We propose the existence of a trade-off in the allocation of energy between swimming activity and growth, with proportionally more energy being consumed at low temperatures for swimming than for other physiological functions like growth.  相似文献   

17.
This article reviews the literature on freezing mammalian oocytes and embryos, with emphasis on embryos of domestic animals. Mammalian embryos must be stored in a quiescent state to retain viability for long periods. This has been accomplished by freezing and storing the embryos at ?196°C. To freeze embryos, a cryoprotectant like dimethyl sulfoxide (DMSO) or glycerol was required, slow cooling (0.1 to 2.0°C/min) and warming (1 to 50°C/min) rates were used, enucleation or seeding the freezing medium was a necessity, and stepwise addition and removal of the cryoprotectant at room temperature seemed to be beneficial. Using the above parameters embryos have been frozen and stored at ?196°C for several years and upon thawing and transfer to a suitable recipient, viable offspring have developed. Initially embryo viability was low after freezing-thawing, but with refinement of freezing-thawing techniques has increased sufficiently so that freezing embryos is no longer a laboratory technique, but is applicable to field use.  相似文献   

18.
Survival of frozen rabbit embryos   总被引:4,自引:0,他引:4  
Preimplantation stage rabbit embryos were successfully frozen to ?196 °C. The effects of various cooling rates, warming rates, thawing procedures, dimethyl sulfoxide concentrations and developmental stages were examined to determine their effects on the survival of Dutch-Belted rabbit embryos. When these factors were optimized, 65 % of the frozen embryos developed to the blastocyst stage in vitro. Some of these embryos developed into fetuses upon reimplantation to a foster mother.  相似文献   

19.
Eight-cell mouse embryos in 1.5 M DMSO were preserved in LN2 by a two-step procedure. Fifteen minutes exposure at ?20 °C protected the embryos against damage during rapid cooling to -196 °C and during rapid warming and rapid dilution. Since survival was poor on slow warming it is suggested that the method permits the formation of some intracellular ice.  相似文献   

20.
E Asahina  T Takahashi 《Cryobiology》1978,15(1):122-127
Late embryos of the sea urchin survive freezing, at least for a short period of time, at ?196 °C in the presence of a cryoprotectant. The freezing tolerance in glycolated embryos is greater in advanced developmental stages. High rates of both cooling and warming during a freezethaw sequence were more dangerous in one-cell embryos than in late ones. Both ethylene glycol and DMSO exerted a significant protection against freezing injury on embryos in all the stages after fertilization, but not on unfertilized egg cells. Cryopreservation of sea urchin sperm at ?196 °C in the presence of 1.5 m ethylene glycol has been achieved for 3 days. The fertilizability of eggs inseminated by frozen-thawed sperm was more than two-thirds. Nearly all the eggs thus fertilized developed to normal gastrulae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号