首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.  相似文献   

2.
3.
4.
5.
6.
Pharmacologic evidence suggests that the lipid products generated by one or more calcium-independent phospholipases A(2) (iPLA(2)s) participate in the regulation of vascular tone through smooth muscle cell (SMC) Ca(2+) signaling and the release of arachidonic acid. However, the recent identification of new members of the iPLA(2) family, each inhibitable by (E)-6-(bromomethylene)-3-(1-naphthalenyl)-2H-tetrahydropyran-2-one, has rendered definitive identification of the specific enzyme(s) mediating these processes difficult. Accordingly, we used iPLA(2)beta(-/-) mice to demonstrate that iPLA(2)beta is responsible for the majority of thapsigargin and ionophore (A23187)-induced arachidonic acid release from SMCs. Both thapsigargin and A23187 stimulated robust [(3)H]arachidonate (AA) release from wild-type aortic SMCs that was dramatically attenuated in iPLA(2)beta(-/-) mice (>80% reduction at 5 min; p < 0.01). Moreover, iPLA(2)beta(-/-) mice displayed defects in SMC Ca(2+) homeostasis and decreased SMC migration and proliferation in a model of vascular injury. Ca(2+)-store depletion resulted in the rapid entry of external Ca(2+) into wild-type aortic SMCs that was significantly slower in iPLA(2)beta-null cells (p < 0.01). Furthermore, SMCs from iPLA(2)beta-null mesenteric arterial explants demonstrated decreased proliferation and migration. The defects in migration and proliferation in iPLA(2)beta-null SMCs were restored by 2 mum AA. Remarkably, the cyclooxygenase-2-specific inhibitor, NS-398, prevented AA-induced rescue of SMC migration and proliferation in iPLA(2)beta(-/-) mice. Moreover, PGE(2) alone rescued proliferation and migration in iPLA(2)beta(-/-) mice. We conclude that iPLA(2)beta is an important mediator of AA release and prostaglandin E(2) production in SMCs, modulating vascular tone, cellular signaling, proliferation, and migration.  相似文献   

7.
Islet Ca2+-independent phospholipase A2 (iPLA2) is postulated to mediate insulin secretion by releasing arachidonic acid in response to insulin secretagogues. However, the significance of iPLA2 signaling in insulin secretion in vivo remains unexplored. Here we investigated the physiological role of iPLA2 in beta-cell lines, isolated islets, and mice. We showed that small interfering RNA-specific silencing of iPLA2 expression in INS-1 cells significantly reduced insulin-secretory responses of INS-1 cells to glucose. Immunohistochemical analysis revealed that mouse islet cells expressed significantly higher levels of iPLA2 than pancreatic exocrine acinar cells. Bromoenol lactone (BEL), a selective inhibitor of iPLA2, inhibited glucose-stimulated insulin secretion from isolated mouse islets; this inhibition was overcome by exogenous arachidonic acid. We also showed that iv BEL administration to mice resulted in sustained hyperglycemia and reduced insulin levels during glucose tolerance tests. Clamp experiments demonstrated that the impaired glucose tolerance was due to insufficient insulin secretion rather than decreased insulin sensitivity. Short-term administration of BEL to mice had no effect on fasting glucose levels and caused no apparent pathological changes of islets in pancreas sections. These results unambiguously demonstrate that iPLA2 signaling plays an important role in glucose-stimulated insulin secretion under physiological conditions.  相似文献   

8.
Taurine (Tau) is involved in beta (β)-cell function and insulin action regulation. Here, we verified the possible preventive effect of Tau in high-fat diet (HFD)-induced obesity and glucose intolerance and in the disruption of pancreatic β-cell morpho-physiology. Weaning Swiss mice were distributed into four groups: mice fed on HFD diet (36 % of saturated fat, HFD group); HTAU, mice fed on HFD diet and supplemented with 5 % Tau; control (CTL); and CTAU. After 19 weeks of diet and Tau treatments, glucose tolerance, insulin sensitivity and islet morpho-physiology were evaluated. HFD mice presented higher body weight and fat depots, and were hyperglycemic, hyperinsulinemic, glucose intolerant and insulin resistant. Their pancreatic islets secreted high levels of insulin in the presence of increasing glucose concentrations and 30 mM K+. Tau supplementation improved glucose tolerance and insulin sensitivity with a higher ratio of Akt phosphorylated (pAkt) related to Akt total protein content (pAkt/Akt) following insulin administration in the liver without altering body weight and fat deposition in HTAU mice. Isolated islets from HTAU mice released insulin similarly to CTL islets. HFD intake induced islet hypertrophy, increased β-cell/islet area and islet and β-cell mass content in the pancreas. Tau prevented islet and β-cell/islet area, and islet and β-cell mass alterations induced by HFD. The total insulin content in HFD islets was higher than that of CTL islets, and was not altered in HTAU islets. In conclusion, for the first time, we showed that Tau enhances liver Akt activation and prevents β-cell compensatory morpho-functional adaptations induced by HFD.  相似文献   

9.
A cytosolic 84-kDa group VIA phospholipase A(2) (iPLA(2)beta) that does not require Ca(2+) for catalysis has been cloned from several sources, including rat and human pancreatic islet beta-cells and murine P388D1 cells. Many potential iPLA(2)beta functions have been proposed, including a signaling role in beta-cell insulin secretion and a role in generating lysophosphatidylcholine acceptors for arachidonic acid incorporation into P388D1 cell phosphatidylcholine (PC). Proposals for iPLA(2)beta function rest in part on effects of inhibiting iPLA(2)beta activity with a bromoenol lactone (BEL) suicide substrate, but BEL also inhibits phosphatidate phosphohydrolase-1 and a group VIB phospholipase A(2). Manipulation of iPLA(2)beta expression by molecular biologic means is an alternative approach to study iPLA(2)beta functions, and we have used a retroviral construct containing iPLA(2)beta cDNA to prepare two INS-1 insulinoma cell clonal lines that stably overexpress iPLA(2)beta. Compared with parental INS-1 cells or cells transfected with empty vector, both iPLA(2)beta-overexpressing lines exhibit amplified insulin secretory responses to glucose and cAMP-elevating agents, and BEL substantially attenuates stimulated secretion. Electrospray ionization mass spectrometric analyses of arachidonic acid incorporation into INS-1 cell PC indicate that neither overexpression nor inhibition of iPLA(2)beta affects the rate or extent of this process in INS-1 cells. Immunocytofluorescence studies with antibodies directed against iPLA(2)beta indicate that cAMP-elevating agents increase perinuclear fluorescence in INS-1 cells, suggesting that iPLA(2)beta associates with nuclei. These studies are more consistent with a signaling than with a housekeeping role for iPLA(2)beta in insulin-secreting beta-cells.  相似文献   

10.
Studies involving pharmacologic inhibition or transient reduction of Group VIA phospholipase A2 (iPLA2beta) expression have suggested that it is a housekeeping enzyme that regulates cell 2-lysophosphatidylcholine (LPC) levels, rates of arachidonate incorporation into phospholipids, and degradation of excess phosphatidylcholine (PC). In insulin-secreting islet beta-cells and some other cells, in contrast, iPLA2beta signaling functions have been proposed. Using retroviral vectors, we prepared clonal INS-1 beta-cell lines in which iPLA2beta expression is stably suppressed by small interfering RNA. Two such iPLA2beta knockdown (iPLA2beta-KD) cell lines express less than 20% of the iPLA2beta of control INS-1 cell lines. The iPLA2beta-KD INS-1 cells exhibit impaired insulin secretory responses and reduced proliferation rates. Electrospray ionization mass spectrometric analyses of PC and LPC species that accumulate in INS-1 cells cultured with arachidonic acid suggest that 18:0/20:4-glycerophosphocholine (GPC) synthesis involves sn-2 remodeling to yield 16:0/20:4-GPC and then sn-1 remodeling via a 1-lyso/20:4-GPC intermediate. Electrospray ionization mass spectrometric analyses also indicate that the PC and LPC content and composition of iPLA2beta-KD and control INS-1 cells are nearly identical, as are the rates of arachidonate incorporation into PC and the composition and remodeling of other phospholipid classes. These findings indicate that iPLA2beta plays signaling or effector roles in beta-cell secretion and proliferation but that stable suppression of its expression does not affect beta-cell GPC lipid content or composition even under conditions in which LPC is being actively consumed by conversion to PC. This calls into question the generality of proposed housekeeping functions for iPLA2beta in PC homeostasis and remodeling.  相似文献   

11.
Insulin-secreting pancreatic islet beta-cells express a Group VIA Ca(2+)-independent phospholipase A(2) (iPLA(2)beta) that contains a calmodulin binding site and protein interaction domains. We identified Ca(2+)/calmodulin-dependent protein kinase IIbeta (CaMKIIbeta) as a potential iPLA(2)beta-interacting protein by yeast two-hybrid screening of a cDNA library using iPLA(2)beta cDNA as bait. Cloning CaMKIIbeta cDNA from a rat islet library revealed that one dominant CaMKIIbeta isoform mRNA is expressed by adult islets and is not observed in brain or neonatal islets and that there is high conservation of the isoform expressed by rat and human beta-cells. Binary two-hybrid assays using DNA encoding this isoform as bait and iPLA(2)beta DNA as prey confirmed interaction of the enzymes, as did assays with CaMKIIbeta as prey and iPLA(2)beta bait. His-tagged CaMKIIbeta immobilized on metal affinity matrices bound iPLA(2)beta, and this did not require exogenous calmodulin and was not prevented by a calmodulin antagonist or the Ca(2+) chelator EGTA. Activities of both enzymes increased upon their association, and iPLA(2)beta reaction products reduced CaMKIIbeta activity. Both the iPLA(2)beta inhibitor bromoenol lactone and the CaMKIIbeta inhibitor KN93 reduced arachidonate release from INS-1 insulinoma cells, and both inhibit insulin secretion. CaMKIIbeta and iPLA(2)beta can be coimmunoprecipitated from INS-1 cells, and forskolin, which amplifies glucose-induced insulin secretion, increases the abundance of the immunoprecipitatable complex. These findings suggest that iPLA(2)beta and CaMKIIbeta form a signaling complex in beta-cells, consistent with reports that both enzymes participate in insulin secretion and that their expression is coinduced upon differentiation of pancreatic progenitor to endocrine progenitor cells.  相似文献   

12.
Glucose stimulates both insulin secretion and hydrolysis of arachidonic acid (AA) esterified in membrane phospholipids of pancreatic islet beta-cells, and these processes are amplified by muscarinic agonists. Here we demonstrate that nonesterified AA regulates the biophysical activity of the pancreatic islet beta-cell-delayed rectifier channel, Kv2.1. Recordings of Kv2.1 currents from INS-1 insulinoma cells incubated with AA (5 mum) and subjected to graded degrees of depolarization exhibit a significantly shorter time-to-peak current interval than do control cells. AA causes a rapid decay and reduced peak conductance of delayed rectifier currents from INS-1 cells and from primary beta-cells isolated from mouse, rat, and human pancreatic islets. Stimulating mouse islets with AA results in a significant increase in the frequency of glucose-induced [Ca(2+)] oscillations, which is an expected effect of Kv2.1 channel blockade. Stimulation with concentrations of glucose and carbachol that accelerate hydrolysis of endogenous AA from islet phosphoplipids also results in accelerated Kv2.1 inactivation and a shorter time-to-peak current interval. Group VIA phospholipase A(2) (iPLA(2)beta) hydrolyzes beta-cell membrane phospholipids to release nonesterified fatty acids, including AA, and inhibiting iPLA(2)beta prevents the muscarinic agonist-induced accelerated Kv2.1 inactivation. Furthermore, glucose and carbachol do not significantly affect Kv2.1 inactivation in beta-cells from iPLA(2)beta(-/-) mice. Stably transfected INS-1 cells that overexpress iPLA(2)beta hydrolyze phospholipids more rapidly than control INS-1 cells and also exhibit an increase in the inactivation rate of the delayed rectifier currents. These results suggest that Kv2.1 currents could be dynamically modulated in the pancreatic islet beta-cell by phospholipase-catalyzed hydrolysis of membrane phospholipids to yield non-esterified fatty acids, such as AA, that facilitate Ca(2+) entry and insulin secretion.  相似文献   

13.
Many cells express a Group VIA phospholipase A2, designated iPLA2beta, that does not require calcium for activation, is stimulated by ATP, and is sensitive to inhibition by a bromoenol lactone suicide substrate (BEL). Studies in various cell systems have led to the suggestion that iPLA2beta has a role in phospholipid remodeling, signal transduction, cell proliferation, and apoptosis. We have found that pancreatic islets, beta-cells, and glucose-responsive insulinoma cells express an iPLA2beta that participates in glucose-stimulated insulin secretion but is not involved in membrane phospholipid remodeling. Additionally, recent studies reveal that iPLA2beta is involved in pathways that contribute to beta-cell proliferation and apoptosis, and that various phospholipid-derived mediators are involved in these processes. Detailed characterization of the enzyme suggests that the beta-cells express multiple isoforms of iPLA2beta, and we hypothesize that these participate in different cellular functions.  相似文献   

14.
ELOVL family member 6, elongation of very long-chain fatty acids (Elovl6) is a microsomal enzyme that regulates the elongation of C12–16 saturated and monounsaturated fatty acids and is related to the development of obesity-induced insulin resistance via the modification of the fatty acid composition. In this study, we investigated the role of systemic Elovl6 in the pancreatic islet and β-cell function. Elovl6 is expressed in both islets and β-cell lines. In mice fed with chow, islets of the Elovl6−/− mice displayed normal architecture and β-cell mass compared with those of the wild-type mice. However, when fed a high-fat, high-sucrose (HFHS) diet, the islet hypertrophy in response to insulin resistance observed in normal mice was attenuated and glucose-stimulated insulin secretion (GSIS) increased in the islets of Elovl6−/− mice compared with those of the wild-type mice. Enhanced GSIS in the HFHS Elovl6−/− islets was associated with an increased ATP/ADP ratio and the suppression of ATF-3 expression. Our findings suggest that Elovl6 could be involved in insulin secretory capacity per β-cell and diabetes.  相似文献   

15.
16.
The Group VIA Phospholipase A(2) (iPLA(2)beta) is the first recognized cytosolic Ca(2+)-independent PLA(2) and has been proposed to participate in arachidonic acid (20:4) incorporation into glycerophosphocholine lipids, cell proliferation, exocytosis, apoptosis, and other processes. To study iPLA(2)beta functions, we disrupted its gene by homologous recombination to generate mice that do not express iPLA(2)beta. Heterozygous iPLA(2)beta(+/-) breeding pairs yield a Mendelian 1:2:1 ratio of iPLA(2)beta(+/+), iPLA(2)beta(+/-), and iPLA(2)beta(-/-) pups and a 1:1 male:female gender distribution of iPLA(2)beta(-/-) pups. Several tissues of wild-type mice express iPLA(2)beta mRNA, immunoreactive protein, and activity, and testes express the highest levels. Testes or other tissues of iPLA(2)beta(-/-) mice express no iPLA(2)beta mRNA or protein, but iPLA(2)beta(-/-) testes are not deficient in 20:4-containing glycerophosphocholine lipids, indicating that iPLA(2)beta does not play an obligatory role in formation of such lipids in that tissue. Spermatozoa from iPLA(2)beta(-/-) mice have reduced motility and impaired ability to fertilize mouse oocytes in vitro and in vivo, and inhibiting iPLA(2)beta with a bromoenol lactone suicide substrate reduces motility of wild-type spermatozoa in a time- and concentration-dependent manner. Mating iPLA(2)beta(-/-) male mice with iPLA(2)beta(+/+), iPLA(2)beta(+/-), or iPLA(2)beta(-/-) female mice yields only about 7% of the number of pups produced by mating pairs with an iPLA(2)beta(+/+) or iPLA(2)beta(+/-) male, but iPLA(2)beta(-/-) female mice have nearly normal fertility. These findings indicate that iPLA(2)beta plays an important functional role in spermatozoa, suggest a target for developing male contraceptive drugs, and complement reports that disruption of the Group IVA PLA(2) (cPLA(2)alpha) gene impairs female reproductive ability.  相似文献   

17.
Obesity is frequently associated with the consumption of high carbohydrate/fat diets leading to hyperinsulinemia. We have demonstrated that soy protein (SP) reduces hyperinsulinemia, but it is unclear by which mechanism. Thus, the purpose of the present work was to establish whether SP stimulates insulin secretion to a lower extent and/or reduces insulin resistance, and to understand its molecular mechanism of action in pancreatic islets of rats with diet-induced obesity. Long-term consumption of SP in a high fat (HF) diet significantly decreased serum glucose, free fatty acids, leptin, and the insulin:glucagon ratio compared with animals fed a casein HF diet. Hyperglycemic clamps indicated that SP stimulated insulin secretion to a lower extent despite HF consumption. Furthermore, there was lower pancreatic islet area and insulin, SREBP-1, PPARgamma, and GLUT-2 mRNA abundance in comparison with rats fed the casein HF diet. Euglycemic-hyperinsulinemic clamps showed that the SP diet prevented insulin resistance despite consumption of a HF diet. Incubation of pancreatic islets with isoflavones reduced insulin secretion and expression of PPARgamma. Addition of amino acids resembling the plasma concentration of rats fed casein stimulated insulin secretion; a response that was reduced by the presence of isoflavones, whereas the amino acid pattern resembling the plasma concentration of rats fed SP barely stimulated insulin release. Infusion of isoflavones during the hyperglycemic clamps did not stimulate insulin secretion. Therefore, isoflavones as well as the amino acid pattern seen after SP consumption stimulated insulin secretion to a lower extent, decreasing PPARgamma, GLUT-2, and SREBP-1 expression, and ameliorating hyperinsulinemia observed during obesity.  相似文献   

18.
The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment of beta cell function both in vivo and in vitro in a process that appears to be independent of the intestinally secreted incretin hormones. We therefore conclude that the incretin hormones together significantly impact both beta-cell function and beta-cell development.  相似文献   

19.
Somatostatin (SRIF) regulates pancreatic insulin and glucagon secretion. In the present study we describe the generation of SRIF receptor subtype 5 knockout (sst(5) KO) mice to examine the role of SRIF receptor subtypes (sst) in regulating insulin secretion and glucose homeostasis. Mice deficient in sst(5) were viable, fertile, appeared healthy, and displayed no obvious phenotypic abnormalities. Pancreatic islets isolated from sst(5) KO mice displayed increased total insulin content as compared with islets obtained from wild-type (WT) mice. Somatostatin-28 (SRIF-28) and the sst(5)/sst(1)-selective agonist compound 5/1 potently inhibited glucose-stimulated insulin secretion from WT islets. SRIF-28 inhibited insulin secretion from sst(5) KO islets with 16-fold less potency while the maximal effect of compound 5/1 was markedly diminished when compared with its effects in WT islets. sst(5) KO mice exhibited decreased blood glucose and plasma insulin levels and increased leptin and glucagon concentrations compared with WT mice. Furthermore, sst(5) KO mice displayed decreased susceptibility to high fat diet-induced insulin resistance. The results of these studies suggest sst(5) mediates SRIF inhibition of pancreatic insulin secretion and contributes to the regulation of glucose homeostasis and insulin sensitivity. Our findings suggest a potential beneficial role of sst(5) antagonists for alleviating metabolic abnormalities associated with obesity and insulin resistance.  相似文献   

20.
Our previous findings show that insulin-produced cells are found in human pancreatic ducts. However, the underlying molecular mechanism of transdifferentiation in pancreatic ductal cells is not yet totally uncovered. High-fat diet (HFD) and high-glucose diet (HGD) fed mice were subjected to the biochemical tests in sera. And the pancreatic samples were used for immunostaining and immunoblotting assays, respectively. These serological findings showed that fasting blood glucose, insulin, blood lipids (triglyceride, total cholesterol), liver functional enzymes (glutamic-oxaloacetic transaminase, glutamic-pyruvic transaminase) were increased in HFD fed mice. Immunostaining observations showed that insulin protein was positively expressed in pancreatic islets and ducts, characterized with elevated immunoreactive cells of insulin, neurogenin-3, poly (ADP-ribose) polymerase (PARP), and reduced F-box/WD repeat-containing protein 7-positive cells in pancreatic islets and ducts of HFD and HGD fed mice. Interestingly, immunoblotting assays suggested that intrapancreatic expressions of insulin, Krüppel-like Factor 2, PARP, p42/44MAPK proteins were upregulated in HFD and HGD exposed mice, while Fbxw7 protein content in pancreas samples were reduced. Taken together, the current findings reveal that there may be potential transdifferentiation of insulin-producing cells in pancreatic ducts through inducing a pathway of intracellular Fbxw7 ubiquitination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号