首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We review the cellular mechanisms implicated in cholesterol trafficking and distribution. Recent studies have provided new information about the distribution of sterols within cells, including analysis of its transbilayer distribution. The cholesterol interaction with other lipids and its engagement in various trafficking processes will determine its proper level in a specific membrane; making the cholesterol distribution uneven among the various intracellular organelles. The cholesterol content is important since cholesterol plays an essential role in membranes by controlling their physicochemical properties as well as key cellular events such as signal transduction and protein trafficking. Cholesterol movement between cellular organelles is highly dynamic, and can be achieved by vesicular and non-vesicular processes. Various studies have analyzed the proteins that play a significant role in these processes, giving us new information about the relative importance of these two trafficking pathways in cholesterol transport. Although still poorly characterized in many trafficking routes, several potential sterol transport proteins have been described in detail; as a result, molecular mechanisms for sterol transport among membranes start to be appreciated.  相似文献   

2.
Glycosylphosphatidylinositol-anchored proteins (GPI-APs) represent an interesting amalgamation of the three basic kinds of cellular macromolecules viz. proteins, carbohydrates and lipids. An unusually hybrid moiety, the GPI-anchor is expressed in a diverse range of organisms from parasites to mammalian cells and serves to anchor a large number of functionally diverse proteins and has been the center of attention in scientific debate for some time now. Membrane organization of GPI-APs into laterally-organized cholesterol-sphingolipid ordered membrane domains or "rafts" and endocytosis of GPI-APs has been intensely debated. Inclusion into or exclusion from these membrane domains seems to be the critical factor in determining the endocytic mechanisms and intracellular destinations of GPI-APs. The intracellular signaling as well as endocytic trafficking of GPI-APs is critically dependent upon the cell surface organization of GPI-APs, and the associations with these lipid rafts play a vital role during these processes. The mechanism of endocytosis for GPI-APs may differ from other cellular endocytic pathways, such as those mediated by clathrin-coated pits (caveolae), and is necessary for unique biological functions. Numerous intracellular factors are involved in and regulate the endocytosis of GPI-APs, and these may be variably dependent on cell-type. The central focus of this article is to describe the significance of the endocytosis of GPI-APs on a multitude of biological processes, ranging from nutrient-uptake to more complex immune responses. Ultimately, a thorough elucidation of GPI-AP mediated signaling pathways and their regulatory elements will enhance our understanding of essential biological processes and benefit as components of disease intervention strategies.  相似文献   

3.
Regulation of nuclear processes by inositol polyphosphates   总被引:10,自引:0,他引:10  
Inositide signaling pathways represent a multifaceted ensemble of cellular switches capable of regulating a number of processes, for example, intracellular calcium release, membrane trafficking, chemotaxis, ion channel activity and several nuclear functions. Over 30 inositide messengers are found in eukaryotic cells that may be grouped into two classes: (1) inositol lipids, phosphatidylinositols or phosphoinositides (PIPs) and (2) water-soluble inositol polyphosphates (IPs). This review will focus on inositol polyphosphate kinases (IPK) and inositol pyrophosphate synthases (IPS) responsible for the cellular production of IP(4), IP(5) IP(6) and PP-IPs. Of interest, IPK and IPS proteins localize, in part, within the nucleus and their activities are necessary for proper regulation of gene expression, mRNA export, DNA repair and telomere maintenance. The breadth of nuclear processes regulated and the evolutionary conservation of the genes involved in their synthesis have sparked renewed interest in inositide messengers derived from sequential phosphorylation of inositol 1,4,5-trisphosphate.  相似文献   

4.
The diversity of cellular membrane structures associated with regulation of intracellular calcium level is described in several different groups of organisms and cells. All the instances reported refer to cellular processes related to movement, in which calcium ion acts as trigger and/or modulator. In addition, a simplified five-stage picture of the underlying view of evolution of these structures is presented. In short: the choice made by nature in using calcium as intracellular messenger was very early in the history of life; all cellular structures devoted to intracellular calcium regulation, from the simplest form of amoeba to the highly sophisticated apparatus of mammalian skeletal muscle, can be linked together in the chain of evolution. Because the evidence is still sparse, any conclusion more positive would be speculative and of little value. Hopefully, in the coming years, with a better understanding of membrane architecture as a whole and its protein components (i.e. calcium channels, calcium-binding proteins), we will be able to test the first segments of this evolutionary hypothesis.  相似文献   

5.
Viroids are small, circular, noncoding RNAs that currently are known to infect only plants. They also are the smallest self-replicating genetic units known. Without encoding proteins and requirement for helper viruses, these small RNAs contain all the information necessary to mediate intracellular trafficking and localization, replication, systemic trafficking, and pathogenicity. All or most of these functions likely result from direct interactions between distinct viroid RNA structural motifs and their cognate cellular factors. In this review, we discuss current knowledge of these RNA motifs and cellular factors. An emerging theme is that the structural simplicity, functional versatility, and experimental tractability of viroid RNAs make viroid-host interactions an excellent model to investigate the basic principles of infection and further the general mechanisms of RNA-templated replication, intracellular and intercellular RNA trafficking, and RNA-based regulation of gene expression. We anticipate that significant advances in understanding viroid-host interactions will be achieved through multifaceted secondary and tertiary RNA structural analyses in conjunction with genetic, biochemical, cellular, and molecular tools to characterize the RNA motifs and cellular factors associated with the processes leading to systemic infection.  相似文献   

6.
The development of processes to produce biopharmaceuticals industrially is still largely empirical and relies on optimizing both medium formulation and cell line in a product-specific manner. Current small-scale (well plate-based) process development methods cannot provide sufficient sample volume for analysis, to obtain information on nutrient utilization which can be problematic when processes are scaled to industrial fermenters. We envision a platform where essential metabolites can be monitored non-invasively and in real time in an ultra-low volume assay in order to provide additional information on cellular metabolism in high throughput screens. Towards this end, we have developed a model system of Chinese Hamster Ovary cells stably expressing protein-based biosensors for glucose and glutamine. Herein, we demonstrate that these can accurately reflect changing intracellular metabolite concentrations in vivo during batch and fed-batch culture of CHO cells. The ability to monitor intracellular depletion of essential nutrients in high throughput will allow rapid development of improved bioprocesses.  相似文献   

7.
Living cells are characterized by their capacity to maintain a stable steady state. For instance, cells are able to conserve their volume, internal ionic composition and electrical potential difference across the plasma membrane within values compatible with the overall cell functions. The dynamics of these cellular variables is described by complex integrated models of membrane transport. Some clues for the understanding of the processes involved in global cellular homeostasis may be obtained by the study of the local stability properties of some partial cellular processes. As an example of this approach, I perform, in this study, the neighborhood stability analysis of some elementary integrated models of membrane transport. In essence, the models describe the rate of change of the intracellular concentration of a ligand subject to active and passive transport across the plasma membrane of an ideal cell. The ligand can be ionic or nonionic, and it can affect the cell volume or the plasma membrane potential. The fundamental finding of this study is that, within the physiological range, the steady states are asymptotically stable. This basic property is a necessary consequence of the general forms of the expressions employed to describe the active and passive fluxes of the transported ligand.  相似文献   

8.
The motility of greatly swollen, immobile bull spermatozoa is restored by cellular dehydration caused by (a) an increase in the medium tonicity or (b) an experimentally induced decrease in the intracellular content of osmotically active particles. The coiled motor apparatus will then gradually uncoil, exhibit kinetic activity and finally take on a straight configuration analogous to that of spermatozoa in isotonic media. The coiling of the motor apparatus occurring in swelling spermatozoa and its uncoiling in swollen spermatozoa subjected to dehydration are processes evoked by the pressure exerted on the motor apparatus by the shape-altering cell membrane and are not dependent on the presence of any movements in the motor apparatus. Thus, these processes occur in fluoride-immobilized spermatozoa. The uncoiling process is, however, gradually inhibited and finally blocked by storing the spermatozoa previously in a hypotonic medium for a prolonged period. In this case, subsequent cellular dehydration will induce lysis of the cells and their motor apparatus will remain coiled inside the leaky membrane envelope. The background to this fact is discussed.  相似文献   

9.
Marvelous background rejection in total internal reflection fluorescence microscopy (TIR-FM) has made it possible to visualize single-fluorophores in living cells. Cell signaling proteins including peptide hormones, membrane receptors, small G proteins, cytoplasmic kinases as well as small signaling compounds have been conjugated with single chemical fluorophore or tagged with green fluorescent proteins and visualized in living cells. In this review, the reasons why single-molecule analysis is essential for studies of intracellular protein systems such as cell signaling system are discussed, the instrumentation of TIR-FM for single-molecule imaging in living cells is explained, and how single molecule visualization has been used in cell biology is illustrated by way of two examples: signaling of epidermal growth factor in mammalian cells and chemotaxis of Dictyostelium amoeba along a cAMP gradient. Single-molecule analysis is an ideal method to quantify the parameters of reaction dynamics and kinetics of unitary processes within intracellular protein systems. Knowledge of these parameters is crucial for the understanding of the molecular mechanisms underlying intracellular events, thus single-molecule imaging in living cells will be one of the major technologies in cellular nanobiology.  相似文献   

10.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.  相似文献   

11.
The mechanistic (or mammalian) target of rapamycin (mTOR), an evolutionarily conserved protein kinase, orchestrates cellular responses to growth, metabolic and stress signals. mTOR processes various extracellular and intracellular inputs as part of two mTOR protein complexes, mTORC1 or mTORC2. The mTORCs have numerous cellular targets but members of a family of protein kinases, the protein kinase (PK)A/PKG/PKC (AGC) family are the best characterized direct mTOR substrates. The AGC kinases control multiple cellular functions and deregulation of many members of this family underlies numerous pathological conditions. mTOR phosphorylates conserved motifs in these kinases to allosterically augment their activity, influence substrate specificity, and promote protein maturation and stability. Activation of AGC kinases in turn triggers the phosphorylation of diverse, often overlapping, targets that ultimately control cellular response to a wide spectrum of stimuli. This review will highlight recent findings on how mTOR regulates AGC kinases and how mTOR activity is feedback regulated by these kinases. We will discuss how this regulation can modulate downstream targets in the mTOR pathway that could account for the varied cellular functions of mTOR.  相似文献   

12.

Background  

Viruses are obligate intracellular parasites that rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies.  相似文献   

13.

Background  

Viruses are obligate intracellular parasites and rely upon the host cell for different steps in their life cycles. The characterization of cellular genes required for virus infection and/or cell killing will be essential for understanding viral life cycles, and may provide cellular targets for new antiviral therapies.  相似文献   

14.
There is a well established role for various phospholipases involved in the production of intracellular signals at the plasma membrane. In contrast much less is known of their role in other intracellular compartments, however, emerging evidence would suggest that some of these enzymes are also involved in the production of signals within the nucleus. Translocation to and activation of protein kinase C (PKC) within the nucleus has been suggested to be important in a number of diverse cellular processes suggesting the requirement for the intranuclear production of diacylglycerol (DAG), a known physiological activator of this enzyme. As the activation of a number of phospholipases leads to the production of DAG this review will consider the notion that these enzymes are present within the nucleus and that their activities can be stimulated to produce this important regulator of PKC.  相似文献   

15.
The systemic vasculature is known to undergo marked change in both human and experimental hypertension. The in vitro study of individual cellular components from the blood vessel wall and the regulation of their intracellular biochemical processes will aid in developing an understanding of the pathogenesis of hypertension. Vascular smooth muscle cells derived from the aorta and mesenteric arteries of normotensive and hypertensive rats can be successfully maintained in culture, providing a system free of confounding variables such as blood pressure. To assist in fully understanding the pathophysiology of hypertension, this cell culture model can be used to examine interactions between receptor and ligand, the transduction of an associated signal, characterization of subsequent intracellular responses and ultimately, quantification of a physiological and functional consequence of these events, for example, proliferation. The application of in vitro techniques to hypertension research will continue to contribute new knowledge to increase our understanding of the mechanisms behind the hypertensive disease process.  相似文献   

16.
In higher eukaryotes, glucosylceramide is the simplest member and precursor of a fascinating class of membrane lipids, the glycosphingolipids. These lipids display an astounding variation in their carbohydrate head groups, suggesting that glycosphingolipids serve specialized functions in recognition processes. It is now realized that they are organized in signalling domains on the cell surface. They are of vital importance as, in their absence, embryonal development is inhibited at an early stage. Remarkably, individual cells can live without glycolipids, perhaps because their survival does not depend on glycosphingolipid-mediated signalling mechanisms. Still, these cells suffer from defects in intracellular membrane transport. Various membrane proteins do not reach their intracellular destination, and, indeed, some intracellular organelles do not properly differentiate to their mature stage. The fact that glycosphingolipids are required for cellular differentiation suggests that there are human diseases resulting from defects in glycosphingolipid synthesis. In addition, the same cellular differentiation processes may be affected by defects in the degradation of glycosphingolipids. At the cellular level, the pathology of glycosphingolipid storage diseases is not completely understood. Cell biological studies on the intracellular fate and function of glycosphingolipids may open new ways to understand and defeat not only lipid storage diseases, but perhaps other diseases that have not been connected to glycosphingolipids so far.  相似文献   

17.
The high-resolution spatial induction of ultraviolet (UV) photoproducts in mammalian cellular DNA is a goal of many scientists who study UV damage and repair. Here we describe how UV photoproducts can be induced in cellular DNA within nanometre dimensions by near-diffraction-limited 750 nm infrared laser radiation. The use of multiphoton excitation to induce highly localized DNA damage in an individual cell nucleus or mitochondrion will provide much greater resolution for studies of DNA repair dynamics and intracellular localization as well as intracellular signalling processes and cell–cell communication. The technique offers an advantage over the masking method for localized irradiation of cells, as the laser radiation can specifically target a single cell and subnuclear structures such as nucleoli, nuclear membranes or any structure that can be labelled and visualized by a fluorescent tag. It also increases the time resolution with which migration of DNA repair proteins to damage sites can be monitored. We define the characteristics of localized DNA damage induction by near-infrared radiation and suggest how it may be used for new biological investigations.  相似文献   

18.
The exact ion gradients across cellular membranes and their changes due to metabolic or transport processes can be best studied with the use of ion-selective microelectrodes. The last decade of research using ion-selective microelectrodes in intact cells has proven this technique to be indispensable for the investigation of a variety of physiological questions of regulatory processes, membrane transport, cellular signalling, developmental biology and plant nutrition. Their application to selected problems has led to numerous exciting observations, many of which have changed our view concerning cellular responses to environmental stimuli and in many instances have led to a new understanding of plant cell physiology. Since, with these electrodes, intracellular as well as extracellular free ion concentrations can be simultaneously detected with electrical transport parameters such as membrane potential and membrane conductance, they can be powerful tools in the hands of many plant cell biologists.  相似文献   

19.
Traffic jams II: an update of diseases of intracellular transport   总被引:8,自引:2,他引:6  
As more details emerge on the mechanisms that mediate and control intracellular transport, the molecular basis for variety of human diseases has been revealed. In turn, disease pathology and physiology shed light on the intricate controls that regulate intracellular transport to assure proper cellular and tissue function and homeostasis. We previously listed a number of diseases that are the result of defects in intracellular transport, or cause defects in intracellular transport. (Aridor M, Hannan LA. Traffic Jam: A compendium of human diseases that affect intracellular transport processes. Traffic 2000; 1: 836–851). This Toolbox updates the previous list to include additional disorders that were recently identified to be related to intracellular trafficking. In the time since we have published our first list there have been significant advances in understanding of the molecular basis of these defects. Such advances will pave the way to future effective therapeutics.  相似文献   

20.
Ubiquitination of intracellular proteins by the yeast RAD6 (UBC2) ubiquitin-conjugating (E2) enzyme is required for cellular processes as diverse as DNA repair, selective proteolysis, and normal growth. For most RAD6-dependent functions, the relevant in vivo targets, as well as the mechanisms and cofactors that govern RAD6 substrate selectivity, are unknown. We have explored the utility of "charge-to-alanine" scanning mutagenesis to generate novel RAD6 mutants that are enzymatically competent with respect to unfacilitated (E3-independent) ubiquitination but that are nevertheless severely handicapped with respect to several in vivo functions. Five of the nine mutants we generated show defects in their in vivo functions, but almost all of the most severely affected mutants displayed unfacilitated ubiquitin-conjugating activity in vitro. We suggest that E2 mutants obtained by this approach are likely to be defective with respect to interaction with other, trans-acting factors required for their intracellular activity or substrate selectivity and therefore will be useful for further genetic and biochemical studies of ubiquitin-conjugating enzyme function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号