首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Two main classes of models address the earliest steps of left-right patterning: those postulating that asymmetry is initiated via cilia-driven fluid flow in a multicellular tissue at gastrulation, and those postulating that asymmetry is amplified from intrinsic chirality of individual cells at very early embryonic stages. A recent study revealed that cultured human cells have consistent left-right (LR) biases that are dependent on apical-basal polarity machinery. The ability of single cells to set up asymmetry suggests that cellular chirality could be converted to embryonic laterality by cilia-independent polarity mechanisms in cell fields. To examine the link between cellular polarity and LR patterning in a vertebrate model organism, we probed the roles of apical-basal and planar polarity proteins in the orientation of the LR axis in Xenopus. Molecular loss-of-function targeting these polarity pathways specifically randomizes organ situs independently of contribution to the ciliated organ. Alterations in cell polarity also disrupt tight junction integrity, localization of the LR signaling molecule serotonin, the normally left-sided expression of Xnr-1, and the LR instruction occurring between native and ectopic organizers. We propose that well-conserved polarity complexes are required for LR asymmetry and that cell polarity signals establish the flow of laterality information across the early blastoderm independently of later ciliary functions. genesis 50:219-234, 2012. ? 2011 Wiley Periodicals, Inc.  相似文献   

2.
有性生殖是有花植物的一个重要特征, 胚胎则是实现有性生殖和世代交替的重要载体。植物胚胎从双受精开始, 经历了合子极性建立、顶基轴形成、细胞层分化和器官形成等过程, 这些过程都受到生长素的调控。近年来的研究表明, 生长素在生物合成、极性运输和信号转导3个层面上调控胚胎的发育过程。该文以双子叶植物拟南芥(Arabidopsis thaliana)为例, 综述了生长素对胚胎早期发育过程, 包括合子极性和顶基轴建立、表皮原特化和对称模式转变、胚根原特化和根尖分生组织形成及茎尖分生组织形成等发育的调控机制。  相似文献   

3.
Consistent laterality is a fascinating problem, and study of the Xenopus embryo has led to molecular characterization of extremely early steps in left-right patterning: bioelectrical signals produced by ion pumps functioning upstream of asymmetric gene expression. Here, we reveal a number of novel aspects of the H+/K+-ATPase module in chick and frog embryos. Maternal H+/K+-ATPase subunits are asymmetrically localized along the left-right, dorso-ventral, and animal-vegetal axes during the first cleavage stages, in a process dependent on cytoskeletal organization. Using a reporter domain fused to molecular motors, we show that the cytoskeleton of the early frog embryo can provide asymmetric, directional information for subcellular transport along all three axes. Moreover, we show that the Kir4.1 potassium channel, while symmetrically expressed in a dynamic fashion during early cleavages, is required for normal LR asymmetry of frog embryos. Thus, Kir4.1 is an ideal candidate for the K+ ion exit path needed to allow the electroneutral H+/K+-ATPase to generate voltage gradients. In the chick embryo, we show that H+/K+-ATPase and Kir4.1 are expressed in the primitive streak, and that the known requirement for H+/K+-ATPase function in chick asymmetry does not function through effects on the circumferential expression pattern of Connexin43. These data provide details crucial for the mechanistic modeling of the physiological events linking subcellular processes to large-scale patterning and suggest a model where the early cytoskeleton sets up asymmetric ion flux along the left-right axis as a system of planar polarity functioning orthogonal to the apical-basal polarity of the early blastomeres.  相似文献   

4.
The establishment of the apical-basal axis is a critical event in plant embryogenesis, evident from the earliest stages onwards. Polarity is evident in the embryo sac, egg cell, zygote, and embryo-suspensor complex. In the embryo-proper, two functionally distinct meristems form at each pole, through the localized expression of key genes. A number of mutants, notably of the model genetic organism Arabidopsis thaliana, have revealed new gene functions that are required for patterning of the apical-basal axis. There is now increasing evidence that two particular modes of signalling, via auxin and cell wall components, play important roles in co-ordinating the gene expression programmes that define determinative roles in the establishment of polarity.  相似文献   

5.
We have developed a reliable in vitro zygotic embryogenesis system in tobacco. A single zygote of a dicotyledonous plant was able to develop into a fertile plant via direct embryogenesis with the aid of a co-culture system in which fertilized ovules were employed as feeders. The results confirmed that a tobacco zygote could divide in vitro following the basic embryogenic pattern of the Solanad type. The zygote cell wall and directional expansion are two critical points in maintaining apical-basal polarity and determining the developmental fate of the zygote. Only those isolated zygotes with an almost intact original cell wall could continue limited directional expansion in vitro, and only these directionally expanded zygotes could divide into typical apical and basal cells and finally develop into a typical embryo with a suspensor. In contrast, isolated zygote protoplasts deprived of cell walls could enlarge but could not directionally elongate, as in vivo zygotes do before cell division, even when the cell wall was regenerated during in vitro culture. The zygote protoplasts could also undergo asymmetrical division to form one smaller and one larger daughter cell, which could develop into an embryonic callus or a globular embryo without a suspensor. Even cell walls that hung loosely around the protoplasts appeared to function, and were closely correlated with the orientation of the first zygotic division and the apical-basal axis, further indicating the essential role of the original zygotic cell wall in maintaining apical-basal polarity and cell-division orientation, as well as subsequent cell differentiation during early embryo development in vitro.  相似文献   

6.
During Arabidopsis embryogenesis, the zygote divides asymmetrically in the future apical-basal axis; however, a radial axis is initiated only within the eight-celled embryo. Mutations in the GNOM, KNOLLE, and KEULE genes affect these processes: gnom zygotes tend to divide symmetrically; knolle embryos lack oriented cell divisions that initiate protoderm formation; and in keule embryos, an outer cell layer is present that consists of abnormally enlarged cells from early development. Pattern formation along the two axes is reflected by the position-specific expression of the Arabidopsis lipid transfer protein (AtLTP1) gene. In wild-type embryos, the AtLTP1 gene is expressed in the protoderm and initially in all protodermal cells; later, AtLTP1 expression is confined to the cotyledons and the upper end of the hypocotyl. Analysis of AtLTP1 expression in gnom, knolle, and keule embryos showed that gnom embryos also can have no or reversed apical-basal polarity, whereas radial polarity is unaffected. knolle embryos initially lack but eventually form a radial pattern, and keule embryos are affected in protoderm cell morphology rather than in the establishment of the radial pattern.  相似文献   

7.
The mouse node is a transient early embryonic structure that is required for left-right asymmetry and for generation of the axial midline, which patterns neural and mesodermal tissues. The node is a shallow teardrop-shaped pit that sits at the distal tip of the early headfold (e7.75) embryo. The shape of the node is believed to be important for generation of the coherent leftward fluid flow required for initiation of left-right asymmetry, but little is known about the morphogenesis of the node. Here we show that the FERM domain protein Lulu/Epb4.1l5 is required for left-right asymmetry in the early mouse embryo. Unlike other genes previously shown to be required for left-right asymmetry in the mouse, lulu is not required for specification of node cell identity, for Nodal signaling in the node or for ciliogenesis. Instead, lulu is required for proper morphogenesis of the node and midline. The precursors of the wild-type node undergo a series of rapid morphological transitions. First, node precursors arise from an epithelial-to-mesenchymal transition at the anterior primitive streak. While in the mesenchymal layer, the node precursors form several ciliated rosette-like clusters; they then rapidly undergo a mesenchymal-to-epithelial transition to insert into the outer, endodermal layer of the embryo. In lulu mutants, node precursor cells are specified and form clusters, but those clusters fail to coalesce to make a single continuous node epithelium. The data suggest that the assembly of the contiguous node epithelium from mesenchymal clusters requires a rapid reorganization of apical-basal polarity that depends on Lulu/Epb4.1l5.  相似文献   

8.
The Arabidopsis GNOM protein, a guanine nucleotide exchange factor (GEF) that acts on ADP ribosylation factor (ARF)-type G proteins, is required for coordination of cell polarity along the apical-basal embryo axis. Interallelic complementation of gnom mutants suggested that dimerization is involved in GNOM function. Here, direct interaction between GNOM molecules is demonstrated in vitro and by using a yeast two-hybrid system. Interaction was confined to an N-terminal domain conserved within a subgroup of large ARF GEFs. The same domain mediated in vitro binding to cyclophilin 5 (Cyp5), which was identified as a GNOM interactor in two-hybrid screening. Cyp5 displayed peptidylprolyl cis/trans-isomerase and protein refolding activities that were sensitive to cyclosporin A. Cyp5 protein accumulated in several plant organs and, like GNOM, was partitioned between cytosolic and membrane fractions. Cyp5 protein was also expressed in the developing embryo. Our results suggest that Cyp5 may regulate the ARF GEF function of the GNOM protein during embryogenesis.  相似文献   

9.
Cell polarity in development and cancer   总被引:2,自引:0,他引:2  
The development of cancer is a multistep process in which the DNA of a single cell accumulates mutations in genes that control essential cellular processes. Loss of cell-cell adhesion and cell polarity is commonly observed in advanced tumours and correlates well with their invasion into adjacent tissues and the formation of metastases. Growing evidence indicates that loss of cell-cell adhesion and cell polarity may also be important in early stages of cancer. The strongest hints in this direction come from studies on tumour suppressor genes in the fruitfly Drosophila melanogaster, which have revealed their importance in the control of apical-basal cell polarity.  相似文献   

10.
Epithelial cells have a distinctive polarity based on the restricted distribution of proteins and junctional complexes along an apical-basal axis. Studying the formation of the polarized ectoderm of the Drosophila embryo has identified a number of the molecules that establish this polarity. The Crumbs (Crb) complex is one of three separate complexes that cooperate to control epithelial polarity and the formation of zonula adherens. Here we show that glaikit (gkt), a member of the phospholipase D superfamily, is essential for the formation of epithelial polarity and for neuronal development during Drosophila embryogenesis. In epithelial cells, gkt acts to localize the Crb complex of proteins to the apical lateral membrane. Loss of gkt during neuronal development leads to a severe CNS architecture disruption that is not dependent on the Crb pathway but probably results from the disrupted localization of other membrane proteins. A mutation in the human homolog of gkt causes the neurodegenerative disease spinocerebellar ataxia with neuropathy (SCAN1), making it possible that a failure of membrane protein localization is a cause of this disease.  相似文献   

11.
During epithelial development cells become polarized along their apical-basal axis and some epithelia also exhibit polarity in the plane of the tissue. Mutations in the gene encoding a Drosophila Pak family serine/threonine kinase, dPak, disrupt the follicular epithelium that covers developing egg chambers during oogenesis. The follicular epithelium normally exhibits planar polarized organization of basal F-actin bundles such that they lie perpendicular to the anterior-posterior axis of the egg chamber, and requires contact with the basement membrane for apical-basal polarization. During oogenesis, dPak becomes localized to the basal end of follicle cells and is required for polarized organization of the basal actin cytoskeleton and for epithelial integrity and apical-basal polarity. The receptor protein tyrosine phosphatase Dlar and integrins, all receptors for extracellular matrix proteins, are required for polarization of the basal F-actin bundles, and for correct dPak localization in follicle cells. dpak mutant follicle cells show increased beta(Heavy)-spectrin levels, and we speculate that dPak regulation of beta(Heavy)-spectrin, a known participant in the maintenance of membrane domains, is required for correct apical-basal polarization of the membrane. We propose that dPak mediates communication between the basement membrane and intracellular proteins required for polarization of the basal F-actin and for apical-basal polarity.  相似文献   

12.
The pattern of cell division is very regular in Arabidopsis embryogenesis, enabling seedling structures to be traced back to groups of cells in the early embryo. Recessive mutations in the FASS gene alter the pattern of cell division from the zygote, without interfering with embryonic pattern formation: although no primordia of seedling structures can be recognised by morphological criteria at the early-heart stage, all elements of the body pattern are differentiated in the seedling. fass seedlings are strongly compressed in the apical-basal axis and enlarged circumferentially, notably in the hypocotyl. Depending on the width of the hypocotyl, fass seedlings may have up to three supernumerary cotyledons. fass mutants can develop into tiny adult plants with all parts, including floral organs, strongly compressed in their longitudinal axis. At the cellular level, fass mutations affect cell elongation and orientation of cell walls but do not interfere with cell polarity as evidenced by the unequal division of the zygote. The results suggest that the FASS gene is required for morphogenesis, i.e., oriented cell divisions and position-dependent cell shape changes generating body shape, but not for cell polarity which seems essential for pattern formation.  相似文献   

13.
The polarized distribution of F-actin is important in providing the driving force for directional migration in mammalian leukocytes and Dictyostelium cells, in which compartmentation of phosphatidylinositol 3-kinase (PI3K) and phosphatidylinositol phosphatase is critical for the establishment of cell polarity. Since monospores from the red alga Porphyra yezoensis are a real example of migrating plant cells, the involvement of the cytoskeleton and PI3K was investigated during their early development. Our results indicate that the asymmetrical localization of F-actin at the leading edge is fixed by the establishment of the anterior-posterior axis in migrating monospores, which is PI3K-dependent and protein synthesis-independent. After migration, monospores adhere to the substratum and then become upright, developing into multicellular thalli via the establishment of the apical-basal axis. In this process, F-actin usually accumulates at the bottom of the basal cell and development after migration requires new protein synthesis. These findings suggest that the establishment of anterior-posterior and apical-basal axes are differentially regulated during the early development of monospores. Our results also indicate that PI3K-dependent F-actin asymmetry is evolutionally conserved in relation to the establishment of cell polarity in migrating eukaryotic cells.  相似文献   

14.
Epithelial cells are polarized along their apical-basal axis. Much of the cellular machinery that goes into establishing and maintaining epithelial cell polarity is evolutionarily conserved. Model organisms, including the fruit fly, Drosophila melanogaster, are thus particularly useful for the study of cell polarity. Work in Drosophila has identified several important components of the polarity machinery and has also established the surprising existence of a secondary cell polarity pathway required only under conditions of energetic stress. This work has important implications for the understanding of human cancer. Most cancers are epithelial in origin, and the loss of cell polarity is a critical step towards malignancy. Thus a better understanding of how polarity is established and maintained in epithelial cells will help us to understand the process of malignant transformation and may lead to improved therapies. In the present chapter we discuss the current understanding of how epithelial cell polarity is regulated and the known associations between polarity factors and cancer.  相似文献   

15.
The development of specialized organs is tightly linked to the regulation of cell growth, orientation, migration and adhesion during embryogenesis. In addition, the directed movements of cells and their orientation within the plane of a tissue, termed planar cell polarity (PCP), appear to be crucial for the proper formation of the body plan. In Drosophila embryogenesis, Discs large (dlg) plays a critical role in apical-basal cell polarity, cell adhesion and cell proliferation. Craniofacial defects in mice carrying an insertional mutation in Dlgh-1 suggest that Dlgh-1 is required for vertebrate development. To determine what roles Dlgh-1 plays in vertebrate development, we generated mice carrying a null mutation in Dlgh-1. We found that deletion of Dlgh-1 caused open eyelids, open neural tube, and misorientation of cochlear hair cell stereociliary bundles, indicative of defects in planar cell polarity (PCP). Deletion of Dlgh-1 also caused skeletal defects throughout the embryo. These findings identify novel roles for Dlgh-1 in vertebrates that differ from its well-characterized roles in invertebrates and suggest that the Dlgh-1 null mouse may be a useful animal model to study certain human congenital birth defects.  相似文献   

16.
Two PDZ-domain-containing adapter-like proteins, PAR-3 and PAR-6, and a protein kinase, atypical protein kinase C (PKC), cooperate together to establish cell polarity in a variety of biological contexts. These include asymmetric cell division in early Caenorhabditis elegans embryo and Drosophila neuroblasts, as well as the establishment and maintenance of apical-basal polarity in Drosophila and mammalian epithelial cells. Recent studies on the role of this PAR-aPKC complex in epithelial cell polarization provide new insights into the molecular basis of epithelial junctional formation and cell polarity.  相似文献   

17.
A Wodarz 《Current biology : CB》2001,11(23):R975-R978
Epithelial cells are polarized along their apical-basal axis and in some cases also within the plane of the epithelium, a phenomenon called planar polarity. Recent studies have now shown that these two types of polarity are controlled by a common set of genes.  相似文献   

18.
Some epithelial cells are polarized along an axis orthogonal to their apical-basal axes. Recent studies in Drosophila lead to the view that three classes of signaling molecules govern the planar cell polarity (PCP) pathway. The first class, or module, functions across whole tissues, providing directional information to individual cells. The second module, apparently shared by all planar polarized tissues, and related to the canonical Wnt signaling pathway, interprets the directional signal to produce subcellular asymmetries. The third modules are tissue specific, acting to translate subcellular asymmetry into the appropriate morphological manifestations in the different cell types.  相似文献   

19.
Establishment of apical-basal polarity is crucial for epithelial sheets that form a compartment in the body, which function to maintain the environment in the compartment. Effects of impaired polarization are easily observed in three-dimensional (3-D) culture systems rather than in two-dimensional (2-D) culture systems. Although the mechanisms for establishing the polarity are not completely understood, signals from the extracellular matrix (ECM) are considered to be essential for determining the basal side and eventually generating polarity in the epithelial cells. To elucidate the common features and differences in polarity establishment among various epithelial cells, we analyzed the formation of epithelial apical-basal polarity using three cell lines of different origin: MDCK II cells (dog renal tubules), EpH4 cells (mouse mammary gland), and R2/7 cells (human colon) expressing wild-type α-catenin (R2/7 α-Cate cells). These cells showed clear apical-basal polarity in 2-D cultures. In 3-D cultures, however, each cell line displayed different responses to the same ECM. In MDCK II cells, spheroids with a single lumen formed in both Matrigel and collagen gel. In R2/7 α-Cate cells, spheroids showed similar apical-basal polarity as that seen in MDCK II cells, but had multiple lumens. In EpH4 cells, the spheroids displayed an apical-basal polarity that was opposite to that seen in the other two cell types in both ECM gels, at least during the culture period. On the other hand, the three cell lines showed the same apical-basal polarity both in 2-D cultures and in 3-D cultures using the hanging drop method. The three lines also had similar cellular responses to ECM secreted by the cells themselves. Therefore, appropriate culture conditions should be carefully determined in advance when using various epithelial cells to analyze cell polarity or 3-D morphogenesis.  相似文献   

20.
The establishment of the anterior-posterior (AP) axis in Drosophila melanogaster requires signaling between the oocyte and surrounding somatic follicle cells during oogenesis [1] [2]. First, a signal from the oocyte (Gurken (Grk), a transforming growth factor-alpha (TGFalpha) homolog) is received by predetermined terminal follicle cells in which the epidermal growth factor receptor (EGFR) pathway is activated and a posterior fate is induced [2] [3] [4]. Later, the posterior follicle cells send an unidentified signal back to the oocyte, which leads to the reorganization of its cytoskeletal polarity. This reorganization is required for proper localization of maternal determinants, such as oskar (osk) and bicoid (bcd) mRNAs, that determine the AP polarity of the oocyte and the subsequent embryo [2]. We show here that when the gene lanA, which encodes the extracellular matrix component laminin A, is mutated in posterior follicle cells, localization of AP determinants is disrupted in the underlying oocyte. Posterior follicle-cell differentiation and follicle cell apical-basal polarity are unaffected in the lanA mutant cells, suggesting that laminin A is required for correct signaling from the posterior follicle cells that polarizes the oocyte. This is the first evidence that the extracellular matrix is involved in the establishment of a major body axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号