首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To utilize Pichia pastoris to produce glutathione, an intracellular expression vector harboring two genes (gsh1 and gsh2) from Saccharomyces cerevisiae encoding enzymes involved in glutathione synthesis and regulated by the glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter was transformed into P. pastoris GS115. Through Zeocin resistance and expression screening, a transformant that had higher glutathione yield (217 mg/L) in flask culture than the host strain was obtained. In fed-batch culture process, this recombinant strain displayed high activity for converting precursor amino acids into glutathione. The glutathione yield and biomass achieved 4.15 g/L and 98.15 g (dry cell weight, DCW)/L, respectively, after 50 h fermentation combined with addition of three amino acids (15 mmol/L glutamic acid, 15 mmol/L cysteine, and 15 mmol/L glycine).  相似文献   

2.
为提高重组毕赤酵母生产碱性果胶酶的产量和生产强度, 在摇瓶条件下优化了重组毕赤酵母生产碱性果胶酶的关键因素。结果表明, 以下条件:初始甘油浓度40 g/L、初始甲醇浓度3.1 g甲醇/g DCW、每24 h添加0.51 g甲醇/g DCW、诱导表达周期72 h、250 mL三角瓶诱导培养基装液量30 mL、初始pH 6.0, 最适于菌体生长与产物表达。在此基础上, 7 L罐上通过恒速流加甘油进一步提高细胞密度, 诱导阶段甲醇采取前期恒速流加和后期DO-stat, 发酵结束菌体干重达80 g/L, 酶活为217 U/mL, 比摇瓶结果提高了66.2%。  相似文献   

3.
The cell growth and CoQ10 (coenzyme Q10) formation of Rhizobium radiobacter WSH2601 were investigated in a 7-1 bioreactor under different dissolved oxygen (DO) concentrations. A maximal CoQ10 content (C/B) of 1.91 mg/g dry cell weight (DCW) and CoQ10 concentration of 32.1 mg/l were obtained at the appropriate DO concentration of 40% (of air saturation). High DO concentration was favourable to the cell growth of Rhizobium radiobacter WSH2601. In order to achieve the maximal yield of CoQ10 production, a new DO-stat feeding strategy was proposed, which significantly improved cell growth and CoQ10 formation. With this strategy, the maximal CoQ10 concentration and DCW reached 51.1 mg/l and 23.9 g/l, respectively, which were 67 and 44.8% higher than those obtained in the batch culture with DO concentration controlled.  相似文献   

4.
为提高重组毕赤酵母生产碱性果胶酶的产量和生产强度,在摇瓶条件下优化了重组毕赤酵母生产碱性果胶酶的关键因素。结果表明,以下条件:初始甘油浓度40g/L、初始甲醇浓度3.1g甲醇/gDCW、每24h添加0.51g甲醇/gDCW、诱导表达周期72h、250mL三角瓶诱导培养基装液量30mL、初始pH6,0,最适于菌体生长与产物表达。在此基础上,7L罐上通过恒速流加甘油进一步提高细胞密度,诱导阶段甲醇采取前期恒速流加和后期DO-stat,发酵结束菌体干重达80g/L,酶活为217U/mL,比摇瓶结果提高了66.2%。  相似文献   

5.
Gluconobacter oxydans has a lower biomass yield. Uniform design (UD) was applied to determine the optimum composition of the critical media and their mutual interactions for increased biomass yield of Gluconobacter oxydans DSM 2003 in shake flasks. Fed-batch fermentation process for biomass was optimized in a 3.7-l fermentor. By undertaking a preliminary and improved fed-batch fermentation-process strategy, a cell density of 6.0 g/l (DCW) was achieved in 22 h and 14.1 g/l (DCW) in 35 h, which is the highest cell density of G. oxydans produced thus far in a 3.7-l bioreactor. The biomass production was increased by 135% compared with that using the original cultivation strategy. Bioconversion of ethylene glycol to glycolic acid was catalyzed by the resting cells of G. oxydans DSM 2003, and conversion rate reached 86.7% in 48 h. In summary, the approach including high-density fermentation of G. oxydans DSM 2003 and bioconversion process was established and proved to be an effective method for glycolic acid production.  相似文献   

6.
S-adenosyl-L-methionine (SAM) has important applications in many fields including chemical therapy and pharmaceutical industry. In this study, the recombinant Escherichia coli strain was constructed for effective production of SAM by introducing the SAM synthase gene (metK). This strain produced 34.5?mg/L of SAM in basic medium in shake flask. Yeast extract, pH, and loaded volume had a significant positive effect on the yield of SAM. Their optimal values were 35?g/L, 7.5, and 30?mL, respectively. The final conditions optimized were as follows: glucose 20, g/L; peptone, 40?g/L; yeast extract, 35?g/L; NaCl, 10?g/L; MgSO4, 1.2?g/L; L-methionine, 1?g/L; rotate speed, 220?rpm; loaded volume, 30?mL; inoculation, 1%; temperature, 37°C; and initial medium, pH 7.5. The recombinant strain produced 128.2?mg/L of SAM under the above conditions in shake flask. The production of SAM in a 5?L fermentor was also investigated. The maximal biomass of the recombinant strain was 60.4?g/L after the cells were cultured for 20?hr, and the highest yield of SAM was 300.9?mg/L after induction for 8?hr in a 5?L fermentor. This study provides a good foundation for the future production and use of SAM.  相似文献   

7.
Of 23 strains of halotolerant (up to 12% w/v NaCl) photosynthetic bacteria isolated from various sources, one isolate, SH5, accumulated intracellular 5-aminolevulinic acid (ALA) at 0.45 μg/g dry cell wt (DCW) growing aerobically in the dark. The strain was identified as Rhodobacter sphaeroides using 16S rDNA sequencing. Biosynthesis of ALA was enhanced to 14 μg/g DCW using modified glutamate/glucose (50 mM) medium with the addition of 10 mM levulinic acid after 24 h cultivation. Addition of 30 μM Fe2+ to this medium increased the yield to 226 μg/g DCW.  相似文献   

8.
The inhibition of substrate and products on the growth of Actinobacillus succinogenes in fermentation using glucose as the major carbon source was studied. A. succinogenes tolerated up to 143 g/L glucose and cell growth was completely inhibited with glucose concentration over 158 g/L. Significant decrease in succinic acid yield and prolonged lag phase were observed with glucose concentration above 100 g/L. Among the end-products investigated, formate was found to have the most inhibitory effect on succinic acid fermentation. The critical concentrations of acetate, ethanol, formate, pyruvate and succinate were 46, 42, 16, 74, 104 g/L, respectively. A growth kinetic model considering both substrate and product inhibition is proposed, which adequately simulates batch fermentation kinetics using both semi-defined and wheat-derived media. The model accurately describes the inhibitory kinetics caused by both externally added chemicals and the same chemicals produced during fermentation. This paper provides key insights into the improvement of succinic acid production and the modelling of inhibition kinetics.  相似文献   

9.
For the purpose of mass producingMonascus red pigments optimum medium composition and environmental conditions were investigated in submerged flask cultures. The optimum carbon and nitrogen sources were determined to be 30 g/L of glucose and 1.5 g/L of monosodium glutamate (MSG). Of the three metals examined, Fe2+ showed the stronges stimulatory effect on pigment production and some stimulatory effect was also found in Mn2+. Optimum pH and agitation speed were determined to be 6.5 and 700 rpm, respectively. Under the optimum culture conditions batch fermentation showed that the maximum biomass yield and specific productivity of red pigments were 0.20 g DCW/g glucose and, 32.5 OD500 g DCW−1 h−1, respectively.  相似文献   

10.
Production of lactic acid from paper sludge was studied using thermophilic Bacillus coagulan strains 36D1 and P4-102B. More than 80% of lactic acid yield and more than 87% of cellulose conversion were achieved using both strains without any pH control due to the buffering effect of CaCO3 in paper sludge. The addition of CaCO3 as the buffering reagent in rich medium increased lactic acid yield but had little effect on cellulose conversion; when lean medium was utilized, the addition of CaCO3 had little effect on either cellulose conversion or lactic acid yield. Lowering the fermentation temperature lowered lactic acid yield but increased cellulose conversion. Semi-continuous simultaneous saccharification and co-fermentation (SSCF) using medium containing 100 g/L cellulose equivalent paper sludge without pH control was carried out in serum bottles for up to 1000 h. When rich medium was utilized, the average lactic acid concentrations in steady state for strains 36D1 and P4-102B were 92 g/L and 91.7 g/L, respectively, and lactic acid yields were 77% and 78%. The average lactic acid concentrations produced using semi-continuous SSCF with lean medium were 77.5 g/L and 77.0 g/L for strains 36D1 and P4-102B, respectively, and lactic acid yields were 72% and 75%. The productivities at steady state were 0.96 g/L/h and 0.82 g/L/h for both strains in rich medium and lean medium, respectively. Our data support that B. coagulan strains 36D1 and P4-102B are promising for converting paper sludge to lactic acid via SSCF.  相似文献   

11.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

12.
Laboratory experiments were conducted to examine the ability of several clay minerals from Sweden to remove the fish-killing microalga, Prymnesium parvum Carter, from suspension. In their commercial form (i.e. after incineration at 400 °C), seawater slurries (salinity = 26) of the three minerals tested were generally ineffective at removing P. parvum from culture within a range of 0.01 to 0.50 g/L, and after 2.5 h of flocculation and settling. Dry bentonite (SWE1) displayed the highest removal efficiency (RE) at 17.5%, with 0.50 g/L. Illite (SWE3) averaged only 7.5% RE between 0.10 to 0.50 g/L, while kaolinite (SWE2) kept the cells suspended instead of removing them. Brief mixing of the clay-cell suspension after SWE1 addition improved RE by a factor of 2.5 (i.e. 49% at 0.50 g/L), relative to no mixing. The addition of polyaluminum chloride (PAC, at 5 ppm) to 0.50 g/L SWE1 also improved RE to 50% relative to SWE1 alone, but only minor improvements in RE were seen with SWE2 and SWE2 combined with PAC. In further experiments, P. parvum grown in NP-replete conditions were removed in greater numbers than cells in N- or P-limited cultures, at 0.10–0.25 g/L of SWE1 and 5 ppm PAC. With 0.50 g/L, RE converged at 40% for all three culture conditions. The toxin concentration of NP-replete cultures decreased from 24.2 to 9.2 μg/mL (60% toxin RE) with 0.10–0.50 g/L SWE1 treatment and 5 ppm PAC. A strong correlation was found between cell and toxin RE (r2=0.995). For N-limited cultures, toxin RE ranged between 21 and 87% with the same clay/PAC concentrations, although the correlation between cell and toxin removal was more moderate (r2=0.746) than for NP-replete conditions. Interestingly, the toxin concentration within the clay-cell pellet increased dramatically after treatment, suggesting that clay addition may stimulate toxin production in N-stressed cells. For P-limited cultures, toxin concentration also decreased following clay/PAC treatment (i.e. 36% toxin RE), but toxin removal was poorly correlated to cell removal (r2=0.462). To determine whether incineration affected SWE1’s removal ability, a sample of its wet, unprocessed form was tested. The RE of wet bentonite (SWE4) was slightly better than that of SWE1 (31% versus 17%, respectively, at 0.50 g/L), but when 5 ppm PAC was added, RE increased from 10 to 64% with 0.05 g/L of SWE4, and increased further to 77% with 0.50 g/L. There were no significant differences in RE among NP-replete, N-limited and P-limited cultures using PAC-treated SWE4. Finally, RE varied with P. parvum concentration, reaching a maximum level at the lowest cell concentration (1×103 cells/mL): 100% RE with 0.10 and 0.50 g/L SWE4 + 5 ppm PAC. RE dropped as cell concentration increased to 1×104 and 5×104 cells/mL, but rose again when concentration increased to 1×105 cells/mL, the concentration used routinely for the removal experiments above. Based on these results, SWE4 with PAC was the most effective mineral sample against P. parvum. Overall, these studies demonstrated that clay flocculation can be effective at removing P. parvum and its toxins only under certain treatment conditions with respect to cell concentration, clay type and concentration, and physiological status.  相似文献   

13.
To develop an efficient way to produce S-adenosylmethionine (SAM), methionine adenosyltransferase gene (mat) from Streptomyces spectabilis and Vitreoscilla hemoglobin gene (vgb) were coexpressed intracellularly in Pichia pastoris, both under control of methanol-inducible promoter. Expression of mat in P. pastoris resulted in about 27 times higher specific activity of methionine adenosyltransferase (SMAT) and about 19 times higher SAM production relative to their respective control, suggesting that overexpression of mat could be used as an efficient method for constructing SAM-accumulating strain. Under induction concentration of 0.8 and 2.4% methanol, coexpression of vgb improved, though to different extent, cell growth, SAM production, and respiratory rate. However, the effects of VHb on SAM content (specific yield of SAM production) and SMAT seemed to be methanol concentration-dependent. When cells were induced with 0.8% methanol, no significant effects of VHb expression on SAM content and specific SMAT could be detected. When the cells were induced with 2.4% methanol, vgb expression increased SAM content significantly and depressed SMAT remarkably. We suggested that under our experimental scheme, the presence of VHb might improve ATP synthesis rate and thus improve cell growth and SAM production in the recombinant P. pastoris.  相似文献   

14.
Combination of physical and chemical mutagenesis was used to isolate hyper secretory strains of Aspergillus niger NCIM 563 for phytase production. Phytase activity of mutant N-1 and N-79 was about 17 and 47% higher than the parent strain. In shake flask the productivity of phytase in parent, mutant N-1 and N-79 was 6,181, 7,619 and 9,523 IU/L per day, respectively. Up scaling of the fermentation from shake flask to 3 and 14 L New Brunswick fermenter was studied. After optimizing various fermentation parameters like aeration, agitation and carbon source in fermentation medium the fermentation time to achieve highest phytase activity was reduced considerably from 14 days in shake flask to 8 days in 14 L fermenter. Highest phytase activity of 80 IU/ml was obtained in 1% rice bran–3.5% glucose containing medium with aeration 0.2 vvm and agitation 550 rpm at room temperature on 8th day of fermentation. Addition of either bavistin (0.1%), penicillin (0.1%), formalin (0.2%) and sodium chloride (10%) in fermented broth were effective in retaining 100% phytase activity for 8 days at room temperature while these reagents along with methanol (50%) and ethanol (50%) confer 100% stability of phytase activity at 4°C till 20 days. Among various carriers used for application of phytase in feed, wheat bran and rice bran were superior to silica and calcium carbonate. Thermo stabilization studies indicate 100% protection of phytase activity in presence of 12% skim milk at 70°C, which will be useful for its spray drying.  相似文献   

15.
Process strategies for production of recombinant rhamnulose 1-phosphate aldolase (RhuA) in Escherichia coli were found to have an important impact on downstream processing when preparing the enzyme for its use as immobilized biocatalyst. First, a continuous inducer feed was implemented in substrate limited fed-batch cultures to overexpress RhuA with a hexa histidine-tag (6xHis-tag) at its N-terminus. The final specific RhuA level was 180 mg g−1 DCW, but the final specific enzyme activity (1.7 AU mg−1 RhuA) was considerably lower than expected. Only 55% of immobilization yield was achieved when immobilized metal affinity chromatography (IMAC) was used to purify and immobilize RhuA from cellular lysate in a single step. Western blot analyses showed that only 20% of overexpressed RhuA kept the whole 6xHis-tag at the end of the culture due to partial proteolysis. Two different growth strategies improved protein quality and immobilization yield:
(i) Temperature reduction to 28 °C in substrate limited operation decreased proteolysis and allowed higher specific activities, 210 mg g−1 DCW. The enzyme activity increased to 4 AU mg−1 RhuA and purification-immobilization yield to 93%.
(ii) A novel fed-batch operational procedure, working at high glucose concentration was implemented. High aldolase levels, 233 mg g−1 DCW, were reached at the end of the culture. The final enzyme activity was also higher than 4 AU mg−1 RhuA, and 95% of immobilization yield was achieved.
For both cases, Western blot analyses showed that 80–100% of overexpressed RhuA kept the whole 6xHis-tag at the end of the culture, confirming that recombinant protein quality had been improved.  相似文献   

16.
The effect of higher cell densities on the expression and segregational stability of a recombinant E. coli- B. subtilisshuttle plasmid coding for carboxymethylcellulase (CMCase) activity, was studied in E. coli DH5. Of the various feeding policies adopted for maximal expression and stability, exponential feeding resulted in the highest biomass of 15g dry cell weight (DCW) l–1 and plasmid stability of 45%. A CMCase activity of 11400 Uml–1 was achieved as compared to 230 Uml–1 during batch cultivation. In the case of other feeding strategies viz., constant feeding, linear feeding or intermittent feeding, the plasmid stability varied between 20% to 60%. Biomass achieved ranged from 5.0 g DCW l–1 to 9.0 g DCW l–1 and enzyme activities were between 2550 Uml–1 and 6000 Uml–1.  相似文献   

17.
Bacillus subtilis glutamine synthetase (GS) was highly expressed (about 86% of total protein) as soluble protein in Escherichia coli BL21(DE3) containing pET28a-glnA, which was induced by 0.4 mM IPTG in LB medium, and maximal theanine-forming activity of the recombinant GS induced in LB is 6.4 U/mg at a series concentration (0–100 mM) of Mn2+ at optimal pH 7.5. In order to get GS with high theanine-forming activity, safety, and low cost for food and pharmaceutics industry, M9-A (details are described in “Materials and methods”) and 0.1% (w/v) lactose were selected as culture medium and inducer respectively. Recombinant GS was also highly expressed (84% of total protein) and totally soluble in M9-A and the specific activity of the recombinant GS is 6.2 U/mg which is approximate to that (6.4 U/mg) induced in LB in the presence of 10 mM Mn2+ at optimal pH 7.5. The activity is markedly higher activated by Mn2+ than that by other nine bivalent cations. Furthermore, M9-B (5 μM Mn2+ was added into M9-A) was used to culture the recombinant strain and theanine-forming activity of the recombinant GS induced in M9-B was improved 20% (up to 7.6 U/mg). Finally, theanine production experiment coupled with yeast fermentation system was carried out in a 1.0 ml reaction system with 0.1 mg crude GS from M9-B or M9-A, and the yield of theanine were 15.3 and 13.1 g/L by paper chromatography and HPLC, respectively.  相似文献   

18.
NAD kinase was overexpressed to enhance the accumulation of poly(3-hydroxybutyrate) (PHB) in recombinant Escherichia coli harboring PHB synthesis pathway via an accelerated supply of NADPH, which is one of the most crucial factors influencing PHB production. A high copy number expression plasmid pE76 led to a stronger NAD kinase activity than that brought about by the low copy number plasmid pELRY. Overexpressing NAD kinase in recombinant E. coli was found not to have a negative effect on cell growth in the absence of PHB synthesis. Shake flask experiments demonstrated that excess NAD kinase in E. coli harboring the PHB synthesis operon could increase the accumulation of PHB to 16–35 wt.% compared with the controls; meanwhile, NADP concentration was enhanced threefold to sixfold. Although the two NAD kinase overexpression recombinants exhibited large disparity on NAD kinase activity, their influence on cell growth and PHB accumulation was not proportional. Under the same growth conditions without process optimization, the NAD kinase-overexpressing recombinant produced 14 g/L PHB compared with 7 g/L produced by the control in a 28-h fermentor study. In addition, substrate to PHB yield Y PHB/glucose showed an increase from 0.08 g PHB/g glucose for the control to 0.15 g PHB/g glucose for the NAD kinase-overexpressing strain, a 76% increase for the Y PHB/glucose. These results clearly showed that the overexpression of NAD kinase could be used to enhance the PHB synthesis.  相似文献   

19.
Fed-batch cultures ofL. erythrorhizon hairy root were carried out by controlling sucrose concentration and media conductivity in a shake flask and a modified stirred tank reactor. For the efficient product recovery from the culture,in situ adsorption by XAD-2 was also conducted. When sucrose was used as a carbon source, the highest shikonin production and hairy root growth were obtained. When glucose or fructose was used instead, the growth was severely inhibited. In addition, it was found that alternating feeding of sucrose could be used as an effective strategy for enhancing the productivity of shikonin derivatives., As the XAD-2 amount was increased up to 1.5 g/L, shikonin production was enhanced by removing shikonin produced and other products which might be inhibitory to cell growth. Most amount of shikonin produced was successfully recovered in XAD-2 (Over 99%). Using hairy root culture in a modified stirred tank reactor, the shikonin productivity and hairy root growth rate on the average were 9.34 mg/L day and 0.49 g DCW/L · day, respectively.  相似文献   

20.
Summary Permeabilized Coleus blumei cells were cultivated in an immobilized state to study the effect of dimethyl sulfoxide (DMSO) concentrations and growth regulators on cell growth and rosmarinic acid (RA) production characteristics. Luffa (the fibrous skeleton of mature fruit of Luffa cylindrica) was a good support matrix for cell immobilization because of its high void volume. Maximum cell loading capacity was 1.33 g dry cell weight (DCW)/g dry Luffa. The experiments were done in shake flasks with no free medium. The medium was supplied in a fed-batch mode to avoid the flotation of Luffa pieces. The sucrose in the medium was completely hydrolyzed to glucose and fructose without any sugar accumulation in the medium. The cell viability was slightly higher in the cells on top of the Luffa than those in the middle. Cell growth rate and rosmarinic acid (RA) production were approximately half that obtained in cell suspension cultures. Cell yield (g DCW/g glucose) was similar to that of cell suspension cultures. The absence of growth regulators did not promote an increase of RA production but did decrease the cell mass. The second step preconditioning with 0.5% DMSO did not improve the cell's adaptability to higher DMSO concentrations and the cell mass did not increase with 2.5% DMSO.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号