共查询到20条相似文献,搜索用时 0 毫秒
1.
Social enhancement and social inhibition of foraging behaviour in hatchery-reared Atlantic salmon 总被引:1,自引:0,他引:1
The results of two experiments showed that observation of a trained conspecific Atlantic salmon Salmo salar significantly increased the rate at which naïve hatchery-reared fish accepted novel, live prey items, whereas the presence of an untrained conspecific actually decreased learning rates due to social inhibition. Pre-release training involving exposure of hatchery-reared fish to live prey items in the presence of pre-trained demonstrators would result in a significant enhancement in their foraging success on release and help prevent starvation, which is thought to be one of the principal causes of post-release mortality in hatchery-reared fishes. 相似文献
2.
Both in foraging groups and in a sequential prey encounter context, learning had a visible effect on the pattern of selection for three live prey types ( Ecdyonurus larvae, Hydropsyche larvae, and Gammarus ) by juvenile Atlantic salmon Salmo salar . Compared to wild-caught fish, naive, hatchery-reared fish that had not been exposed to natural prey ate Hydropsyche larvae in a remarkably low proportion, and consumed a higher proportion of Gammarus. Ecdyonurus experienced a high and rather steady predation rate across the experience gradient, but after a short period of experience with live prey the consumption rate for Hydropsyche increased drastically, and that of Gammarus decreased, matching the selection pattern exhibited by wild fish. Individual fish offered prey in a sequential encounter context increased consumption rates of all the prey types as they gained experience, but the improvement was higher for the prey that were less consumed initially. Fish became more selective as they approached satiation, conforming to the prediction of optimal foraging theory that higher predator's energy requirements, as well as low food availability, result in reduced selectivity. The results also suggest that fish from distinct populations can differ in the degree of diet selectivity according to their energetic requirements for growth. The fast learning response of Atlantic salmon parr towards novel prey probably allows fish to maintain a high foraging efficiency when faced with frequent changes in the availability of different prey types. 相似文献
3.
The effects of paternal reproductive tactic and rearing environment on juvenile variation in growth as mediated through aggression and foraging behaviours of Chinook salmon (Oncorhynchus tshawytscha) 下载免费PDF全文
Adriana R. Forest Mitchel G. E. Dender Trevor E. Pitcher Christina A. D. Semeniuk 《Ethology : formerly Zeitschrift fur Tierpsychologie》2017,123(5):329-341
In species with indeterminate growth, differential growth rates can lead to animals adopting alternative reproductive tactics such as sneak–guard phenotypes, which is partially predicted by variation in growth during the juvenile life‐history stage. To investigate sources of growth variation, we examined the independent and joint effects of paternal reproductive tactic (G) and rearing environment (E) on juvenile growth in Chinook salmon (Oncorhynchus tshawytscha), hypothesizing G and E effects are partially mediated through differences in behaviour such as aggressive interactions and resulting foraging behaviours. We created maternal half‐sibling families with one‐half of the female's eggs fertilized by the milt of a sneaker “jack” and the other half by a guarder “hooknose”. At the exogenous feeding stage, each split‐clutch family was then divided again and reared in a rationed diet or growth‐promotion diet environment for approximately 6 months, during which growth parameters were measured. Before saltwater transfer at 9 months of age, social interactions were observed in groups of six fish of various competitor origins. We found ration restricts growth rate and juvenile mass, and evidence of genetic effects on growth depensation, where jack‐sired individuals grew less uniformly over time. These growth‐related differences influenced an individual's level of aggression, with individuals raised on a restricted diet and those whose families experienced greatest growth being most aggressive. These individuals were more likely to feed than not and feed most often. Jack‐sired individuals were additionally aggressive in the absence of food, and when raised on a rationed diet outcompeted others to feed most. These results show how individuals may achieve higher growth rates via intrinsic (G) or induced (E) aggressive behavioural phenotypes, and eventually attain the threshold body size necessary during the saltwater phase to precociously sexually mature and adopt alternative reproductive phenotypes. 相似文献
4.
Juvenile Atlantic salmon Salmo salar subjected to three weeks of cooler temperatures were 8·5% smaller than controls at the end of the temperature manipulation, but had caught up in size 20 weeks later. The behavioural means is examined by which this catch-up or compensatory growth is achieved. While on average compensating fish did not spend more time feeding, dominant fish within each group gained more exclusive access to the feeding area during periods of catch-up growth. Therefore the extent to which compensatory growth could be achieved was dependent on both the social status of the individual and the dominants' ability to monopolize the food patch. 相似文献
5.
Atlantic salmon salmo salar L. parr were reared for 3 months under standard hatchery conditions or in a structurally enriched tank (containing plants, rocks and novel objects). Half of each of these fish had prior exposure to live prey in the form of live bloodworm while the other half were fed hatchery‐pellets. After 12 days all fish were tested on a novel live prey item (brine shrimp). A significant interaction between the two factors (prior exposure to live prey and rearing condition) revealed that foraging performance was only enhanced in fish that had been reared in a complex environment and exposed to live prey. It appears that the ability to generalize from one live prey type to another is only enhanced in fish that had been reared in an enriched environment. The findings support the assertion that the provision of enriched environments in combination with exposure to live prey prior to release may significantly improve the post‐release survival rates of hatchery‐reared fishes. As both the environmental enrichment and the prior foraging experience procedures were comparatively simple, the provision of such pre‐release experiences are likely to prove cost effective to hatcheries. 相似文献
6.
7.
8.
Temperature, light intensity and plasma melatonin levels in juvenile Atlantic salmon 总被引:1,自引:0,他引:1
M. J. R. Porter N. Duncan S. O. Handeland S. O. Stafansson N. R. Bromage 《Journal of fish biology》2001,58(2):431-438
Plasma melatonin synthesis in juvenile Atlantic salmon Salmo salar decreased with increasing light intensity. Melatonin profiles reflected accurately the photoperiod under which the salmon were maintained. Groups maintained at 12°C showed significantly higher ( P < 0·01) levels of dark phase plasma melatonin compared with the groups maintained at 4°C. 相似文献
9.
Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon 总被引:9,自引:0,他引:9
The study was undertaken on three adjacent rivers in NW Ireland, on one of which an Atlantic salmon Salmo salar freshwater juvenile rearing unit is situated. Two markers which distinguished farm and wild populations were used. An Ava II-B RFLP in the ND1 region of mtDNA was at a frequency of 0.58 in the farm strain but absent in the wild populations. Allele E at minisatellite locus Ssa- A45/2/l was at a frequency of 0.91 in farm samples, but at a maximum of 0.41 in the populations in the two rivers adjacent to the one with the juvenile rearing unit. The farm strain showed a significant reduction in mean heterozygosity (0.281 ± 0.057), over three minisatellite loci examined, compared to wild samples (0.532 ± 0.063). The occurrence of farm genotypes and the independent occurrence of mtDNA and minisatellite markers in several parr samples from the river indicated that escaped juvenile salmon completed their life cycle, bred and interbred with native fish, upon their return to the river. Escaped fish homed accurately, as adults, to the site of escape, i.e. the area adjacent to the hatchery outflow in the upstream part of the river. Breeding of males in the lower part of the river was also indicated but this could have been due to mature male parr which had moved downstream. The return of adults of farm origin to the river to breed was indicated by the presence of the Ava II-B haplotype in adults netted in the estuary. 相似文献
10.
E. Swansburg G. Chaput †‡ D. Moore † D. Caissie † N. El-Jabi 《Journal of fish biology》2002,61(3):661-683
Climate change models predict a 2 to 6° C increase in air temperature within the next 100 years in the Maritime Provinces of eastern Canada. Higher air temperatures are expected to contribute to increased water temperatures, alterations in stream flow conditions, and ultimately reductions in fish growth. Mean annual size-at-age of juvenile Atlantic salmon Salmo salar decreased in the Northwest Miramichi and Southwest Miramichi Rivers between 1971–1999. Lengths-at-age of juveniles were significantly correlated between the two rivers. For Atlantic salmon parr, stronger associations between inter-cohort fork length ( L F ) than intra-cohort L F were observed, suggesting that environmental conditions in the current year of growth have the more significant effects on size of age 2 year parr than conditions encountered the previous year by age 1 year parr of the same cohort. Fork lengths of parr were significantly and negatively associated with spring air and water temperatures. In the Miramichi River, increases in air and water temperature as predicted from climate change models may adversely affect growth of juvenile Atlantic salmon parr, reducing the overall productivity of the Atlantic salmon populations in this region. 相似文献
11.
Flower-visiting insects exhibit innate preferences for particular colours. A previous study demonstrated that naive Papilio xuthus females prefer yellow and red, whereas males are more attracted to blue. Here, we demonstrate that the innate colour preference can be modified by olfactory stimuli in a sexually dimorphic manner. Naive P. xuthus were presented with four coloured discs: blue, green, yellow and red. The innate colour preference (i.e. the colour first landed on) of the majority of individuals was blue. When scent from essential oils of either orange flower or lily was introduced to the room, females’ tendency to select the red disc increased. Scents of lavender and flowering potted Hibiscus rosa-sinensis, however, were less effective. Interestingly, the odour of the non-flowering larval host plant, Citrus unshiu, shifted the preference to green in females. In males, however, all plant scents were less effective than in females, such that blue was always the most favoured colour. These observations indicate that interactions between visual and olfactory cues play a more prominent role in females. 相似文献
12.
Spatial and temporal variation in length‐at‐age and environmental factors affecting variation in growth rate of juvenile Atlantic salmon Salmo salar were studied using data from a long‐term study in the River Stjørdalselva, central Norway. Mean annual instantaneous growth rate among 1+ and 2+year juvenile Atlantic salmon varied between 0·59 and 1·50 g g−1 year−1 and mean instantaneous daily growth rate of young‐of‐the‐year (YOY) varied between 0·013 and 0·033 g g−1 day−1 . Between year variation in growth was larger than the within year intra‐watercourse spatial variation. For YOY and 1+year Atlantic salmon, a major part of the observed between year variation in growth rates was explained by variation in mean daily water discharge and spring temperature. For 2+year juvenile Atlantic salmon, mean daily water discharge and cohort density were the only variables to significantly explain variation in growth rates. A large part of the within water‐course spatial variation could not be explained by temperature variations and juvenile Atlantic salmon in the uppermost areas of the river, experiencing the lowest ambient temperatures during the growth period, displayed the highest growth rates. Within the baselines set by temperature, biotic and abiotic factors connected to water flow regime and variation in food availability are suggested to be a major determinants of the temporal and spatial variation in juvenile Atlantic salmon growth rates. 相似文献
13.
Asset protection in juvenile salmon: how adding biological realism changes a dynamic foraging model 总被引:1,自引:0,他引:1
The "asset-protection principle" created by Clark is based ona dynamic programming model and states that individuals should(1) become more averse to predation risk as they accumulatefitness assets but (2) generally be more willing to acceptpredation risk later in the foraging season. To test whetherthese predictions hold under biologically meaningful foraging
parameters, I constructed a dynamic model of the optimal trade-offbetween foraging and predator avoidance in juvenile salmon.The model incorporates temperature and body-size dependentbio-energetic constraints typical for juvenile fish, whichgrow by orders of magnitude over a season. In its simplestform using seasonally constant growth potential and a linear
over-winter survival function, my results equal those of Clark'smodel. Adding a fitness function and environmental data fromfield studies accentuates the asset-protection effect and fundamentallychanges the seasonal pattern of optimal effort. Simulationof typical poor feeding conditions in mid-summer yields theprediction of increased foraging in the spring in anticipationof worsening conditions. Increasing overall predation riskresults in smaller fish at the end of the season with a trade-offbetween summer and winter survival. The model generates testablepredictions for juvenile salmon and provides insights for otherorganisms (particularly poikilotherms) that are subject tosize-dependent or seasonally changing foraging dynamics. 相似文献
14.
Behavioural influences on life-history variation in juvenile Atlantic salmon,Salmo salar 总被引:2,自引:0,他引:2
John E. Thorpe Neil B. Metcalfe Felicity A. Huntingford 《Environmental Biology of Fishes》1992,33(4):331-340
Synopsis Juvenile Atlantic salmon emigrate from the river in a given year as a consequence of a physiological decision influencing
appetite and growth during the previous summer. The direction of the decision depends on developmental performance exceeding
a genetically determined threshold at that time, and that performance is governed by environmental opportunity. The animal's
foraging efficiency (ability to avoid predators, and to compete) determines how well that opportunity is used. Those fish
which maintained relatively high growth after July preferred higher stream flows, and were more likely to hide than to flee
from a predator. Predator vigilance reduced intake, and ability to discriminate edible particles. Early competitive ability
depended on fierceness rather than size, and ultimate large size was a consequence of dominant status. Initial status among
high ranking individuals (but not among low ones) predicted the likelihood of maintaining growth in late summer. Size by July
was the better predictor for low ranked fish. The influence of high status on life-history variation depends on how much it
suppresses the growth of those lower in the hierarchy.
Invited review 相似文献
15.
Prey selection and growth efficiency of juvenile sockeye salmon Oncorhynchus nerka switched between live prey and pelleted diets were investigated. First feeding sockeye salmon fry were placed into one of three dietary treatments for 7 months prior to assessing potential differences with a growth and a behavioural assay. Dietary treatments were (1) adult Artemia franciscana for 1 month, followed by pelleted feed for an additional 6 months ( Art − BD), (2) pelleted feed from first feeding for 7 months (BD) and (3) adult A. franciscana for 1 month, and a combination of pelleted feed and live adult A. franciscana for 6 months ( Art + BD). Equal numbers from each treatment group were then tagged, pooled into replicate 'common garden' tanks and fed novel live prey items ( Daphnia sp. and mosquito Culex pipiens larvae) for an additional 3 weeks. No significant differences in the growth efficiency of sockeye salmon were found during the 3 week feeding trial on the novel prey items. Additional sockeye salmon from each dietary treatment were used in a behavioural assay to determine if the treatments had an impact on foraging efficiency (prey selection or time to capture prey). No significant differences in prey selection were found among treatment groups in time to capture pellets, A. franciscana or mosquito larvae. Also, no significant differences were found within treatment groups in time to capture different food sources. No substantive benefits in foraging efficiency of sockeye salmon associated with prior exposure to live prey were demonstrated. This suggests that altering existing hatchery practices for juvenile sockeye salmon by offering live food prior to release is unlikely to influence post-hatchery feeding behaviour or increase post-release survival. 相似文献
16.
Social dominance, prior residence and the acquisition of profitable feeding sites in juvenile Atlantic salmon 总被引:5,自引:0,他引:5
Twelve groups of 10 Atlantic salmon Salmo salar parr were screened for dominance in small tanks with a single localized food source using a serial removal method and the top, middle and bottom two fish in each group were classified as high, medium and low social status, respectively. These 72 ranked fish were weighed and formed into four groups or waves, each consisting of six fish of each status category. The fish were given dye marks according to status and wave and were then introduced into an artificial stream in four waves over a 12-day period. Patterns of settlement/emigration were recorded over a 2-month period, at the end of which the fish were removed from the stream, identified and reweighed, and daily specific growth rates calculated. Fifty-one fish established feeding stations in the flume, the remainder emigrating via a downstream trap. The average growth rate over the 2-month period was 0·87% day−1 . Probability of settlement and growth rates following settlement were significantly higher in fish from the earlier waves. In contrast, salmon that were dominant in the initial trial were less likely than subordinate fish to settle in the experimental stream and showed lower postsettlement growth rates. The possibility that fish have individually consistent behavioural profiles that promote success in different competitive environments is discussed with reference to published literature for other groups. A small-scale trial at the end of the main experiment confirmed the prior residence effect and demonstrated that 1 day was sufficient for such an effect to be evident. 相似文献
17.
Stream-dwelling, juvenile Atlantic salmon, Salmo salar L., feed mainly on drifting invertebrates, usually by swimming upstream from a stationary position to intercept individual prey items. Laboratory experiments tested the prediction that individual salmon should reduce the distance over which they would travel (attack distance) to intercept drifting food items as the energy cost of swimming increases with increasing current velocity. Attack distance varied inversely with current velocity as expected. The fish's average speed of upstream movement relative to the substrate remained constant and the duration of individual attacks therefore declined as current velocity increased. Calculated reaction distances and a second ecperiment using tethered prey drifting at speeds independent of current velocity confirmed that these relationships were due to fish actually delaying attacks on perceived prey for longer periods as current velocity increased. Using estimated metabolic rates for burst swimming, it appears that energy expenditure per attack varies little with current velocity. Therefore, by reducing their reaction and attack distances in response to increasing current velocity, the fish reduced their energy cost of travel per attack. 相似文献
18.
Mario Gallego-Abenza Matthias-Claudio Loretto Thomas Bugnyar 《Ethology : formerly Zeitschrift fur Tierpsychologie》2020,126(4):413-422
Social foraging provides several benefits for individuals but also bears the potential costs of higher competition. In some species, such competition arises through kleptoparasitism, that is when an animal takes food which was caught or collected by a member of its social group. Except in the context of caching, few studies have investigated how individuals avoid kleptoparasitism, which could be based on physical strength/dominance but also cognitive skills. Here, we investigated the foraging success of wild common ravens, Corvus corax, experiencing high levels of kleptoparasitism from conspecifics when snatching food from the daily feedings of captive wild boars in a game park in the Austrian Alps. Success in keeping the food depended mainly on the individuals’ age class and was positively correlated with the time to make a decision in whether to fly off with food or consume it on site. While the effect of age class suggests that dominant and/or experienced individuals are better in avoiding kleptoparasitism, the effect of decision time indicates that individuals benefit from applying cognition to such decision-making, independently of age class. We discuss our findings in the context of the ecological and social intelligence hypotheses referring to the development of cognitive abilities. We conclude that investigating which factors underline kleptoparasitism avoidance is a promising scenario to test specific predictions derived from these hypotheses. 相似文献
19.
Despite the widespread assumption that the learning abilities of animals are adapted to the particular environments in which they operate, the quantitative effects of learning performance on fitness remain virtually unknown. Here, we evaluate the learning performance of bumble-bees (Bombus terrestris) from multiple colonies in an ecologically relevant associative learning task under laboratory conditions, before testing the foraging performance of the same colonies under the field conditions. We demonstrate that variation in learning speed among bumble-bee colonies is directly correlated with the foraging performance, a robust fitness measure, under natural conditions. Colonies vary in learning speed by a factor of nearly five, with the slowest learning colonies collecting 40% less nectar than the fastest learning colonies. Such a steep fitness function is suggestive of strong selection for higher learning speed. Partial correlation analysis reveals that other factors such as forager body size or colour preference appear to be negligible in our study. Although our study does not directly prove causality of learning on foraging success, our approach of correlating natural within-species variation in these two factors represents a major advance over traditional between-species correlative analyses where comparability can be compromised by the fact that species vary along multiple dimensions. 相似文献