首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The neutralization of type 1 poliovirus by monoclonal antibody 35-1f4 was studied. The virions were rapidly linked by antibody into oligomers and larger aggregates, followed by slow redistribution of antibody between the immune complexes. The antibody content and infectivity of immune complexes were determined. Remaining single virions were fully infectious and free of antibody. The oligomers and larger aggregates did not significantly contribute to the residual infectivity, which therefore correlated with the number of remaining single virions. Papain digestion of neutralized poliovirus released fully infectious, antibody-free virions from the immune complexes. Anti-immunoglobulin antibodies reneutralized these virions. Polymerization was shown to occur even at virus concentrations of less than 10(3) PFU per ml.  相似文献   

2.
Three adenovirus type 2-specified immunogens elicited neutralizing antibodies when injected into rabbits; these were the fiber, the hexon, and the penton base. Adenovirus type 2 virions, neutralized by antihexon- or anti-penton base antisera, attached to HeLa cells to the same extent as untreated control virus, and after attachment, neutralized viruses also became sensitive to DNase treatment. A fraction of 75 to 80% of the attached antibody-treated virions penetrated the plasma membrane, which should be compared with an 84 to 88% penetration level in the control series. A majority of the antihexon-neutralized virions was found in intracellular vesicles, as revealed with an electron microscope, but in the case of anti-penton base neutralization, a maximum of 50% of the virions was retained within vesicles, and ca. 30% was free in the cytoplasmic compartment. A value greater than 45% was never obtained for neutralization with a monospecific anti-penton base antiserum, which could imply the existence of alternative pathways for virus penetration into HeLa cells--one of these being sensitive to treatment with anti-penton base antiserum. Antisera containing antifiber specificities efficiently aggregated virions, and the aggregation data mirrored the degree of neutralization. Antifiber-neutralized virions attached to cells to a three- to five times greater extent than untreated control virus, but the former virions had a reduced ability to become sensitive to DNase treatment. Around 15% of the attached antifiber-treated virions was found as large aggregates inside multivesicular bodies or lysosomes.  相似文献   

3.
Antibodies against a large and a small DNA polymerase isolated from chicken embryos and against avian myeloblastosis virus DNA polymerase were used to study the serological relationships of the DNA polymerase activities of three avian systems with RNA and a DNA polymerase-avian leukosis-sarcoma viruses, reticuloendotheliosis viruses, and a fraction from uninfected chicken cells. The DNA polymerase activity of disrupted virions of all avian leukosis-sarcoma viruses tested was neutralized to the same extent by antibody against avian myeloblastosis virus DNA polymerase and was not neutralized by the antibodies against chicken cellular DNA polymerases. The viruses tested included induced leukosis viruses and Rous-associated virus-O. The DNA polymerase activity of disrupted virions of all of the reticuloendotheliosis viruses was not neutralized by any of the antibodies. The chicken endogenous RNA-directed DNA polymerase activity was neutralized partially or completely, in different experiments, by antibody against the small DNA polymerase isolated from chicken embryos, but was not neutralized by the other two antibodies.  相似文献   

4.
Parainfluenza virus 5 (PIV5) activates and is neutralized by the alternative pathway (AP) in normal human serum (NHS) but not by heat-inactivated (HI) serum. We have tested the relationship between the fusion activity within the PIV5 F protein, the activation of complement pathways, and subsequent complement-mediated virus neutralization. Recombinant PIV5 viruses with enhanced fusion activity were generated by introducing point mutations in the F fusogenic peptide (G3A) or at a distal site near the F transmembrane domain (S443P). In contrast to wild-type (WT) PIV5, the mutant G3A and S443P viruses were neutralized by both NHS and HI serum. Unlike WT PIV5, hyperfusogenic G3A and S443P viruses were potent C4 activators, C4 was deposited on NHS-treated mutant virions, and the mutants were neutralized by factor B-depleted serum but not by C4-depleted serum. Antibodies purified from HI human serum were sufficient to neutralize both G3A and S443P viruses in vitro but were ineffective against WT PIV5. Electron microscopy data showed greater deposition of purified human antibodies on G3A and S443P virions than on WT PIV5 particles. These data indicate that single amino acid changes that enhance the fusion activity of the PIV5 F protein shift the mechanism of complement activation in the context of viral particles or on the surface of virus-infected cells, due to enhanced binding of antibodies. We present general models for the relationship between enhanced fusion activity in the paramyxovirus F protein and increased susceptibility to antibody-mediated neutralization.  相似文献   

5.
Previous molecular and immunological studies have mapped four neutralization sites on human rhinovirus type 14 (B. Sherry, A. G. Mosser, R. J. Colonno, and R. R. Rueckert, J. Virol. 57:246-257, 1986). Eight monoclonal antibodies, one pair for each of the four target sites and all belonging to a single isotype, immunoglobulin G2a, were studied under conditions which resulted in 95% neutralization of infectious viral particles. All eight antibodies shifted the isoelectric point of virions from 6.7 to much more acidic forms, ranging from pI 1.8 to 3.2. In addition, antibodies targeted against three of the four neutralization sites caused significant aggregation of virions under the neutralization conditions employed. Aggregation could be reversed by digesting virus-antibody complexes with papain. Following papain digestion, the acidic pIs of three of the neutralized virus preparations returned to neutral and infectivity was restored. Membrane-binding assays with virus neutralized with a nonaggregating antibody showed a dose-related inhibition of virus attachment to cellular receptors. Purified Fab fragments at a 13- to 61-fold-higher concentration than intact antibodies caused a comparable isoelectric shift, neutralized virions in the absence of aggregation, and interfered with attachment of virions to host cell receptors in a membrane-binding assay. These findings suggest that neutralizing antibodies interfere with the attachment of rhinoviruses to cellular receptors and that bivalent attachment of antibody is not a prerequisite for neutralization.  相似文献   

6.
Postabsorption neutralization of poliovirus.   总被引:3,自引:3,他引:0       下载免费PDF全文
R Vrijsen  A Mosser    A Boey 《Journal of virology》1993,67(6):3126-3133
Nineteen neutralizing murine monoclonal antibodies against poliovirus type 1, including representatives reacting with each of the antigenic sites on the virion, were tested for their abilities to neutralize the virus either before or after attachment to susceptible cells. All antibodies neutralized unattached virus; six had reasonable titers of postabsorption neutralization (PAN). Experiments with antibodies lacking PAN activity showed that Fc-specific rabbit anti-mouse antibodies could confer PAN activity. PAN was shown to involve the prevention of the cell-mediated conversion of virus to 135S and 80S particles. Evidence that one of the PAN-positive antibodies probably bound bivalently to preabsorbed virions, whereas a PAN-negative antibody bound monovalently, is presented. Two PAN-positive antibodies were added to an excess of virus in suspension, and only one antibody caused the virus to aggregate.  相似文献   

7.
The rotavirus capsid is composed of three concentric protein layers. Proteins VP4 and VP7 comprise the outer layer. VP4 forms spikes, is the viral attachment protein, and is cleaved by trypsin into VP8* and VP5*. VP7 is a glycoprotein and the major constituent of the outer protein layer. Both VP4 and VP7 induce neutralizing and protective antibodies. To gain insight into the virus neutralization mechanisms, the effects of neutralizing monoclonal antibodies (MAbs) directed against VP8*, VP5*, and VP7 on the decapsidation process of purified OSU and RRV virions were studied. Changes in virion size were followed in real time by 90 degrees light scattering. The transition from triple-layered particles to double-layered particles induced by controlled low calcium concentrations was completely inhibited by anti-VP7 MAbs but not by anti-VP8* or anti-VP5* MAbs. The inhibitory effect of the MAb directed against VP7 was concentration dependent and was abolished by papain digestion of virus-bound antibody under conditions that generated Fab fragments but not under conditions that generated F(ab')(2) fragments. Electron microscopy showed that RRV virions reacted with an anti-VP7 MAb stayed as triple-layered particles in the presence of excess EDTA. Furthermore, the infectivity of rotavirus neutralized via VP8*, but not that of rotavirus neutralized via VP7, could be recovered by lipofection of neutralized particles into MA-104 cells. These data are consistent with the notion that antibodies directed at VP8* neutralize by inhibiting binding of virus to the cell. They also indicate that antibodies directed at VP7 neutralize by inhibiting virus decapsidation, in a manner that is dependent on the bivalent binding of the antibody.  相似文献   

8.
Two hybridomas (H3 and D3) secreting monoclonal neutralizing antibody to intact poliovirus type 1 (Mahoney strain) were established. Each antibody bound to a site qualitatively different from that to which the other antibody bound. The H3 site was located on intact virions and, to a lesser extent, on 80S naturally occurring empty capsids and 14S precursor subunits. The D3 site was found only on virions and empty capsids. Neither site was expressed on 80S heat-treated virions. The antibodies did not react with free denatured or undenatured viral structural proteins. Viral variants which were no longer capable of being neutralized by either one or the other antibody were obtained. Such variants arose during normal cell culture passage of wild-type virus and were present in the progeny viral population on the order of 10(-4) variant per wild-type virus PFU. Toluene-2,4-diisocyanate, a heterobifunctional covalent cross-linking reagent, was used to irreversibly bind the F(ab) fragments of the two antibodies to their respective binding sites. In this way, VP1 was identified as the structural protein containing both sites.  相似文献   

9.
The ability of naturally immune mouse sera to neutralize ecotropic AKR murine leukemia virus (MuLV) was examined by using unfrozen virus preparations harvested for 1 h. In this assay several mouse sera significantly and consistently neutralized MuLV infectivity. The ability of these sera to neutralize was correlated with the presence of antibodies against MuLV detectable in a radioimmune precipitation assay using radioactively labeled intact virions. This neutralization was specific, in that either N- or B-tropic viruses, but not Friend MuLV, were neutralized. In addition, neutralization could be abrogated with purified AKR MuLV gp71 at concentrations that do not interfere with virus infectivity but could not be abrogated with Rauscher MuLV gp71. Neutralizing activity could be removed by absorption with intact AKR MuLV, but not by absorption with Friend MuLV, a BALB/c xenotropic virus, or with NZB xenotropic virus. All the neutralizing activity of (B6C3)F1 mouse sera was associated with the immunoglobulin G fraction.  相似文献   

10.
We previously constructed seven mutations in the gene for glycoprotein D (gD) of herpes simplex virus type 1 in which the codon for one of the cysteine residues was replaced by a serine codon. Each of the mutant genes was cloned into a eucaryotic expression vector, and the proteins were transiently expressed in mammalian cells. We found that alteration of any of the first six cysteine residues had profound effects on protein conformation and oligosaccharide processing. In this report, we show that five of the mutant proteins exhibit temperature-sensitive differences in such properties as aggregation, antigenic conformation, oligosaccharide processing, and transport to the cell surface. Using a complementation assay, we have now assessed the ability of the mutant proteins to function in virus infection. This assay tests the ability of the mutant proteins expressed from transfected plasmids to rescue production of infectious virions of a gD-minus virus, F-gD beta, in Vero cells. Two mutant proteins, Cys-2 (Cys-106 to Ser) and Cys-4 (Cys-127 to Ser), were able to complement F-gD beta at 31.5 degrees C but not at 37 degrees C. The rescued viruses, designated F-gD beta(Cys-2) and F-gD beta(Cys-4), were neutralized as efficiently as wild-type virus by anti-gD monoclonal antibodies, indicating that gD was present in the virion envelope in a functional form. Both F-gD beta(Cys-2) and F-gD beta(Cys-4) functioned normally in a penetration assay. However, the infectivity of these viruses was markedly reduced compared with that of the wild type when they were preincubated at temperatures above 37 degrees C. The results suggest that mutations involving Cys-106 or Cys-127 in gD-1 confer a temperature-sensitive phenotype on herpes simplex virus. These and other properties of the cysteine-to-serine mutants allowed us to predict a disulfide bonding pattern for gD.  相似文献   

11.
The non-neutralizable or persistent fraction of virus populations has been found to be caused by aggregated virus. Detailed investigation was performed with the prototype strain of echovirus type 4 (Pesascek), as this virus is notorious for its large non-neutralizable fraction. When Pesascek virus was clarified by low-speed centrifugation, homologous antiserum hardly neutralized the virus. However, when the virus was filtered through membranes having a porosity only twice the diameter of the virus, monodispersed virus was obtained which was efficiently neutralized. Serum titers were up to 1,000 times higher if the neutralization test was carried out with monodispersed virus. Virus in non-neutralizable aggregates was found to constitute 30% of the infective units of unfiltered Pesascek virus but only 0.1% of the antigenically related DuToit strain. This explains why DuToit strain has been a more satisfactory indicator strain for detecting type 4 antibodies, regardless of the echo 4 strain used for inducing the antibodies. Clarified suspensions and ultrafiltrates of viruses belonging to the picorna-, reo-, myxo-, adeno-, herpes-, and poxvirus groups were studied. Clarified suspensions yielded persistent fractions of 0.005% for poliovirus, of 0.1% for reovirus, of 0.6% for influenza virus, of <0.001% for adenovirus, of 0.06% for herpesvirus, and of 10 to 30% for vaccinia virus. In all cases the persistent fractions were removed by membrane filters which had a pore diameter no larger than twice that of the virus under test, and the high concentration of virus in each ultrafiltrate was completely neutralized by antiserum.  相似文献   

12.
By the aid of freezing and thawing, cell-free infectious virions were detected from an apparently nonproductive Vero cell line infected with Niigata-1 strain of subacute sclerosing panencephalitis virus. The production of infectious virions was limited in amount and such virions were detectable only during a limited period after cell subculture. The infectious virions were filtrable through a 0.65 mu membrane filter and neutralized completely by an antiserum against measles virus. The virions were banded at the density of 1.132, while Edmonston strain of measles virus banded at 1.164 in potassium tartrate density gradients. Infectious virions were also released from infected Vero cells by treatment of the cells in a hypotonic solution to an amount comparable to that obtained by freezing and thawing. Infection of normal culture of Vero cells with the infectious virions readily established a virus-cell interaction identical to that in the original infected culture from which the virions were recovered.  相似文献   

13.
Newcastle disease virus (NDV), an avian paramyxovirus, is inherently tumor selective and is currently being considered as a clinical oncolytic virus and vaccine vector. In this study, we analyzed the effect of complement on the neutralization of NDV purified from embryonated chicken eggs, a common source for virus production. Fresh normal human serum (NHS) neutralized NDV by multiple pathways of complement activation, independent of neutralizing antibodies. Neutralization was associated with C3 deposition and the activation of C2, C3, C4, and C5 components. Interestingly, NDV grown in mammalian cell lines was resistant to complement neutralization by NHS. To confirm whether the incorporation of regulators of complement activity (RCA) into the viral envelope afforded complement resistance, we grew NDV in CHO cells stably transfected with CD46 or HeLa cells, which strongly express CD46 and CD55. NDV grown in RCA-expressing cells was resistant to complement by incorporating CD46 and CD55 on virions. Mammalian CD46 and CD55 molecules on virions exhibited homologous restriction, since chicken sera devoid of neutralizing antibodies to NDV were able to effectively neutralize these virions. The incorporation of chicken RCA into NDV produced in embryonated eggs similarly provided species specificity toward chicken sera.  相似文献   

14.
Varicella-zoster virus (VZV) codes for approximately eight glycosylated polypeptides in infected cell cultures and in virions. To determine the number of serologically distinct glycoprotein gene products encoded by VZV, we have developed murine monoclonal antibodies to purified virions. Of 10 monoclonal antibodies which can immunoprecipitate intracellular VZV antigens and virion glycoproteins, 1 (termed gA) reacted with gp105, 1 (termed gB) reacted with gp115 (intracellular only), gp62, and gp57, and 8 (termed gC) reacted with gp92, gp83, gp52, and gp45. The anti-gA monoclonal antibody neutralized VZV infectivity in the absence of complement. All eight anti-gC monoclonal antibodies neutralized only in the presence of complement. An anti-gB monoclonal antibody obtained from another laboratory also neutralizes in the absence of complement. Since the above reactivities account for all major detectable VZV glycoprotein species, the data strongly suggest that VZV has three major glycoprotein genes which encode glycosylated polypeptides with neutralization epitopes.  相似文献   

15.
Treatment of the Sabin strain of type 1 poliovirus with trypsin produced two stable fragments of capsid protein VP1 which remained associated with the virions. Trypsinized virus was fully infectious and was neutralized by type-specific antisera. The susceptible site in the Sabin 1 strain was between the lysine at position 99 and the asparagine at position 100. A similar tryptic cleavage occurred in the Leon and Sabin strains of type 3 poliovirus, probably at the arginine at position 100, but not in the type 1 Mahoney strain, which lacks a basic residue at either position 99 or position 100. Tryptic treatment of heat-treated virus and 14S assembly intermediates produced unique stable fragments which were different from those produced in virions. The implications of our results for future characterization of the surface structures of these particles and structural rearrangements in the poliovirus capsid are discussed.  相似文献   

16.
Cells mixedly infected with parainfluenza virus SV5 and vesicular stomatitis virus (VSV) yield phenotypically mixed virions, in addition to both parental types. Two types of phenotypically mixed virions have been identified: 0.6 to 1.2% of the VSV plaque formers were neutralized by SV5 antiserum, but not by VSV antiserum, suggesting the presence of a VSV genome in an SV5 envelope; 9 to 45% of the VSV plaque formers were neutralized by both antisera, indicating the presence of both SV5 and VSV antigens in their envelopes. The presence of SV5 antigen in virions with the typical bullet-shaped appearance of VSV was confirmed with ferritin-labeled anti-SV5 antibody. In contrast to standard VSV, phenotypically mixed virions adsorbed to and eluted from chicken erythrocytes, indicating that these virions contained in their envelopes SV5 hemagglutinin, and possibly neuraminidase. Thus, the VSV nucleocapsid can interact with membranes which contain SV5 proteins in the manner which leads to virus maturation, and the production of a high yield of phenotypically mixed virions with the morphology of VSV indicates that this process can function efficiently. No evidence of genetic recombination between the two viruses was found. These results raise the possibility of an evolutionary relatedness between the paramyxoviruses and the rhabdoviruses.  相似文献   

17.
The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.  相似文献   

18.
19.
N Verdaguer  I Fita  E Domingo    M G Mateu 《Journal of virology》1997,71(12):9813-9816
Neutralization of an aphthovirus by monovalent binding of an antibody is reported. Foot-and-mouth disease virus (FMDV) clone C-S8c1 was neutralized by monoclonal antibody (MAb) SD6, which was directed to a continuous epitope within a major antigenic site of the G-H loop of capsid protein VP1. On a molar basis, the Fab fragment was at most fivefold less active in neutralization than the intact antibody, and both blocked virus attachment to cells. Neither the antibody nor the Fab fragment caused aggregation of virions, as evidenced by sucrose gradient sedimentation studies of the antibody-virus complex formed at antibody to virion ratios of 1:50 to 1:10,000. The results of neutralization of infectivity and of ultracentrifugation are fully consistent with structural data based on X-ray crystallographic and cryoelectron microscopy studies, which showed monovalent interaction of the antibody with a critical receptor binding motif Arg-Gly-Asp. The conclusions of these neutralization studies are that (i) bivalent binding of antibody is not a requisite for strong neutralization of aphthoviruses and (ii) aggregation of viral particles, which has been proposed to be the dominant neutralization mechanism of antibodies that bind monovalently to virions, is not necessary for the neutralization of FMDV C-S8c1 by MAb SD6.  相似文献   

20.
Chang KS  Jiang J  Cai Z  Luo G 《Journal of virology》2007,81(24):13783-13793
Recent advances in reverse genetics of hepatitis C virus (HCV) made it possible to determine the properties and biochemical compositions of HCV virions. Sedimentation analysis and characterization of HCV RNA-containing particles produced in the cultured cells revealed that HCV virions cover a large range of heterogeneous densities in sucrose gradient. The fractions of low densities are infectious, while the higher-density fractions containing the majority of HCV virion RNA are not. HCV core protein and apolipoprotein B and apolipoprotein E (apoE) were detected in the infectious HCV virions. The level of apoE correlates very well with HCV infectivity. Both apoE- and HCV E2-specific monoclonal antibodies precipitated HCV, demonstrating that HCV virions contain apoE and E2 proteins. apoE-specific monoclonal antibodies efficiently neutralized HCV infectivity in a dose-dependent manner, resulting in a reduction of infectious HCV by nearly 4 orders of magnitude. The knockdown of apoE expression by specific small interfering RNAs (siRNAs) remarkably reduced the levels of intracellular as well as secreted HCV virions. The apoE siRNA suppressed HCV production by more than 100-fold at 50 nM. These findings demonstrate that apoE is required for HCV virion infectivity and production, suggesting that HCV virions are assembled as apoE-enriched lipoprotein particles. Our findings also identified apoE as a novel target for discovery and development of antiviral drugs and monoclonal antibodies to suppress HCV virion formation and infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号