首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thyroid hormones (THs) have pleiotropic effects on vertebrate development, with amphibian metamorphosis as the most spectacular example. However, developmental functions of THs in non-vertebrate chordates are largely hypothetical and even TH endogenous production has been poorly investigated. In order to get better insight into the evolution of the thyroid hormone signaling pathway in chordates, we have taken advantage of the recent release of the amphioxus genome. We found amphioxus homologous sequences to most of the genes encoding proteins involved in thyroid hormone signaling in vertebrates, except the fast-evolving thyroglobulin: sodium iodide symporter, thyroid peroxidase, deiodinases, thyroid hormone receptor, TBG, and CTHBP. As only some genes encoding proteins involved in TH synthesis regulation were retrieved (TRH, TSH receptor, and CRH receptor but not their corresponding receptors and ligands), there may be another mode of upstream regulation of TH synthesis in amphioxus. In accord with the notion that two whole genome duplications took place at the base of the vertebrate tree, one amphioxus gene often corresponded to several vertebrate homologs. However, some amphioxus specific duplications occurred, suggesting that several steps of the TH pathway were independently elaborated in the cephalochordate and vertebrate lineages. The present results therefore indicate that amphioxus is capable of producing THs. As several genes of the TH signaling pathway were also found in the sea urchin genome, we propose that the thyroid hormone signaling pathway is of ancestral origin in chordates, if not in deuterostomes, with specific elaborations in each lineage, including amphioxus.  相似文献   

2.
In vertebrates, thyroid hormones (THs, thyroxine, and triiodothyronine) are critical cell signaling molecules. THs regulate and coordinate physiology within and between cells, tissues, and whole organisms, in addition to controlling embryonic growth and development, via dose-dependent regulatory effects on essential genes. While invertebrates and plants do not have thyroid glands, many utilize THs for development, while others store iodine as TH derivatives or TH precursor molecules (iodotyrosines)-or produce similar hormones that act in analogous ways. Such common developmental roles for iodotyrosines across kingdoms suggest that a common endocrine signaling mechanism may account for coordinated evolutionary change in all multi-cellular organisms. Here, I expand my earlier hypothesis for the role of THs in vertebrate evolution by proposing a critical evolutionary role for iodine, the essential ingredient in all iodotyrosines and THs. Iodine is known to be crucial for life in many unicellular organisms (including evolutionarily ancient cyanobacteria), in part, because it acts as a powerful antioxidant. I propose that during the last 3-4 billion years, the ease with which various iodine species become volatile, react with simple organic compounds, and catalyze biochemical reactions explains why iodine became an essential constituent of life and the Earth's atmosphere-and a potential marker for the origins of life. From an initial role as membrane antioxidant and biochemical catalyst, spontaneous coupling of iodine with tyrosine appears to have created a versatile, highly reactive and mobile molecule, which over time became integrated into the machinery of energy production, gene function, and DNA replication in mitochondria. Iodotyrosines later coupled together to form THs, the ubiquitous cell-signaling molecules used by all vertebrates. Thus, due to their evolutionary history, THs, and their derivative and precursors molecules not only became essential for communicating within and between cells, tissues and organs, and for coordinating development and whole-body physiology in vertebrates, but they can also be shared between organisms from different kingdoms.  相似文献   

3.
Euthyroid sick syndrome characterized by reduced levels of thyroid hormones (THs) is observed in patients with meningococcal shock. It has been found that the level of THs reflects disease severity and is predictive for mortality. The present study was conducted to investigate the impact of THs on host defense during meningococcal infection. We found that supplementation of thyroxine to mice infected with Neisseria meningitidis enhanced bacterial clearance, attenuated the inflammatory responses and promoted survival. In vitro studies with macrophages revealed that THs enhanced bacteria-cell interaction and intracellular killing of meningococci by stimulating inducible nitric oxide synthase (iNos)-mediated NO production. TH treatment did not activate expression of TH receptors in macrophages. Instead, the observed TH-directed actions were mediated through nongenomic pathways involving the protein kinases PI3K and ERK1/2 and initiated at the membrane receptor integrin αvβ3. Inhibition of nongenomic TH signaling prevented iNos induction, NO production and subsequent intracellular bacterial killing by macrophages. These data demonstrate a beneficial role of THs in macrophage-mediated N. meningitidis clearance. TH replacement might be a novel option to control meningococcal septicemia.  相似文献   

4.
New insights into ancient seasonal life timers   总被引:2,自引:0,他引:2  
Organisms must adapt to seasonal changes in the environment and time their physiology accordingly. In vertebrates, the annual change in photoperiod is often critical for entraining the neuroendocrine pathways, which drive seasonal metabolic and reproductive cycles. These cycles depend on thyroid hormone (TH), reflecting its ancestral role in metabolic control. Recent studies reveal that - in mammals and birds - TH effects are mediated by the hypothalamus. Photoperiodic manipulations alter hypothalamic TH availability by regulating the expression of TH deiodinases (DIO). In non-mammalian vertebrates, light acts through extraretinal, 'deep brain' photoreceptors, and the eyes are not involved in seasonal photoperiodic responses. In mammals, extraretinal photoreceptors have been lost, and the nocturnal melatonin signal generated from the pineal gland has been co-opted to provide the photoperiodic message. Pineal function is phased to the light-dark cycle by retinal input, and photoperiodic changes in melatonin secretion control neuroendocrine pathway function. New evidence indicates that these comparatively divergent photosensensory mechanisms re-converge in the pars tuberalis of the pituitary, lying beneath the hypothalamus. In all vertebrates studied, the pars tuberalis secretes thyrotrophin in a light- or melatonin-sensitive manner, to act on neighbouring hypothalamic DIO expressing cells. Hence, an ancient and fundamentally conserved brain thyroid signalling system governs seasonal biology in vertebrates.  相似文献   

5.
6.
7.
8.
Thyroid hormones (THs) have a wide and important range of effects within the central nervous system beginning from fetal life and continuing throughout the adult life. Thyroid disorders are one of the major causes of cognitive impairment including Alzheimer's disease (AD). Several studies in recent years have indicated an association between hypothyroidism or hyperthyroidism and AD. Despite available evidence for this association, it remains unclear whether thyroid dysfunction results from or contributes to the progression of AD. This review discusses the role of THs in learning and memory and summarizes the studies that have linked thyroid function and AD. Eventually, we elaborate how THs may be effective in treating AD by putting forward potential mechanisms.  相似文献   

9.
Regulation of cell proliferation by thyroid hormone (TH) has been demonstrated, but the effect of THs and the mechanisms involved in lymphocyte activity have not been elucidated. Differential expression of PKC isoenzymes and high nitric oxide synthase (NOS) activity have been described in tumor T lymphocytes. We have analyzed the direct actions of TH on normal T lymphocytes and BW5147 T lymphoma cells in relation to PKC and NOS activities. THs increased tumor and mitogen-induced normal T lymphocyte proliferation. PKC isoenzyme-selective blockers impaired these effects in both cell types, indicating the participation of Ca2+-dependent and -independent isoenzymes in normal and tumor cells, respectively. TH actions were blunted by extra- and intracellular Ca2+ blockers only in normal T lymphocytes, whereas NOS blockers impaired TH-induced proliferation in T lymphoma cells. Incubation for 24 h with TH induced a rise in total and membrane-associated PKC activities in both cell types and led to a rapid and transient effect only in tumor cells. THs increased atypical PKC-zeta expression in BW5147 cells and classical PKC isoenzymes in mitogen-stimulated normal T cells. TH augmented NOS activity and inducible NOS protein and gene expression only in tumor cells. Blockade of PKC and the atypical PKC-zeta isoform inhibited TH-mediated stimulation of inducible NOS and cell proliferation. These results show, for the first time, that differential intracellular signals are involved in TH modulation of lymphocyte physiology and pathophysiology.  相似文献   

10.
11.
Thyroid hormones, learning and memory   总被引:4,自引:0,他引:4  
Thyroid hormones (THs), T3 and T4, have many physiological actions and are essential for normal behavioral, intellectual and neurological development. THs have a broad spectrum of effects on the developing brain and mediate important effects within the CNS throughout life. Insufficient maternal iodine intake during gestation and TH deficiency during human development are associated to pathological alterations such as cretinism and mental retardation. In adulthood, thyroid dysfunction is related to neurological and behavioral abnormalities, including memory impairment. Analysis of different experimental models suggests that most of the effects on cognition as a result of thyroid dysfunction rely on hippocampal modifications. Insufficiency of THs during development thus alters hippocampal synaptic function and impairs behavioral performance of hippocampal-dependent learning and memory tasks that persist in euthyroid adult animals. In the present review, we summarize the current knowledge obtained by clinical observations and experimental models that shows the importance of THs in learning and mnemonic processes.  相似文献   

12.
Thyroid dysfunction is common in individuals with diabetes mellitus (DM) and may contribute to the associated cardiac dysfunction. However, little is known about the extent and pathophysiological consequences of low thyroid conditions on the heart in DM. DM was induced in adult female Sprague Dawley (SD) rats by injection of nicotinamide (N; 200 mg/kg) followed by streptozotocin (STZ; 65 mg/kg). One month after STZ/N, rats were randomized to the following groups (N = 10/group): STZ/N or STZ/N + 0.03 μg/mL T3; age-matched vehicle-treated rats served as nondiabetic controls (C). After 2 months of T3 treatment (3 months post-DM induction), left ventricular (LV) function was assessed by echocardiography and LV pressure measurements. Despite normal serum thyroid hormone (TH) levels, STZ/N treatment resulted in reductions in myocardial tissue content of THs (T3 and T4: 39% and 17% reduction versus C, respectively). Tissue hypothyroidism in the DM hearts was associated with increased DIO3 deiodinase (which converts THs to inactive metabolites) altered TH transporter expression, reexpression of the fetal gene phenotype, reduced arteriolar resistance vessel density, and diminished cardiac function. Low-dose T3 replacement largely restored cardiac tissue TH levels (T3 and T4: 43% and 10% increase versus STZ/N, respectively), improved cardiac function, reversed fetal gene expression and preserved the arteriolar resistance vessel network without causing overt symptoms of hyperthyroidism. We conclude that cardiac dysfunction in chronic DM may be associated with tissue hypothyroidism despite normal serum TH levels. Low-dose T3 replacement appears to be a safe and effective adjunct therapy to attenuate and/or reverse cardiac remodeling and dysfunction induced by experimental DM.  相似文献   

13.
Hypothalamic thyrotropin-releasing hormone (TRH) stimulates thyroid-stimulating hormone (TSH) secretion from the anterior pituitary. TSH then initiates thyroid hormone (TH) synthesis and release from the thyroid gland. Although opposing TRH and TH inputs regulate the hypothalamic-pituitary-thyroid axis, TH negative feedback is thought to be the primary regulator. This hypothesis, however, has yet to be proven in vivo. To elucidate the relative importance of TRH and TH in regulating the hypothalamic-pituitary-thyroid axis, we have generated mice that lack either TRH, the beta isoforms of TH receptors (TRbeta KO), or both (double KO). TRbeta knock-out (KO) mice have significantly higher TH and TSH levels compared with wild-type mice, in contrast to double KO mice, which have reduced TH and TSH levels. Unexpectedly, hypothyroid double KO mice also failed to mount a significant rise in serum TSH levels, and pituitary TSH immunostaining was markedly reduced compared with all other hypothyroid mouse genotypes. This impaired TSH response, however, was not due to a reduced number of pituitary thyrotrophs because thyrotroph cell number, as assessed by counting TSH immunopositive cells, was restored after chronic TRH treatment. Thus, TRH is absolutely required for both TSH and TH synthesis but is not necessary for thyrotroph cell development.  相似文献   

14.
Serum angiotensin converting enzyme activities were significantly increased in 26 untreated hyperthyroid patients (20.3 +/- 5.4 U/ml; P less than 0.001) compared with healthy control subjects (13.1 +/- 2.3 U/ml). In 12 patients a significant fall in enzyme activities was observed after treatment compared with pretreatment serum ACE levels (P less than 0.001). Eight patients with hypothyroidism (15.7 +/- 5.1 U/ml) and 11 athyreotic patients, totally thyroidectomized for well-differentiated thyroid cancer, showed no significant differences in serum ACE activities (14.3 +/- 2.2 U/ml) compared with control subjects. After thyroid hormone supplementation a significant increase in serum ACE activity (P less than 0.05) was found in the athyreotic patients. Addition of increasing amounts of L-thyroxine to a serum sample of an athyreotic patient showed no significant effect on ACE activity in vitro. We suggest that the elevated serum ACE activity in hyperthyroidism is not from the thyroid gland, but represents a direct effect of thyroid hormone on ACE synthesis and/or release from endothelial cells.  相似文献   

15.
Thyroid hormones (THs) play a critical role in differentiation, growth, and metabolism of animal and human organ systems, including the brain. Although associations between normal levels of THs and cognitive functions in healthy elderly individuals have been reported, the findings are inconsistent, possibly due to differences in study designs. Because thyroid disease occurs more frequently in women, the goal of the present study was to examine the relationship between levels of THs and performance on neuropsychological tests in 122 healthy, euthyroid women whose mean age was 51 years. Higher levels of free T3 were positively associated with longer completion times (slower performance) on Trail Making Test - Part A (p = 0.006) and Part B (p = 0.032) and on the Tower of London test (p = 0.002). Higher levels of thyroglobulin antibodies (TgAb) were positively correlated with more errors on the Trail Making Test Part B (p = 0.000), on the Word Fluency test (p = 0.023), and on the Design Fluency test (p = 0.045). No significant correlations between TH levels and scores on mood, verbal memory, or working memory measures were observed. The findings point to a possible link between THs and cognitive processes that are mediated primarily by frontal cortex, areas associated with executive function tasks, and suggest that elevations in levels of free T3 and TgAB within the normal range may negatively influence executive functions.  相似文献   

16.
W S Schwark  R R Keesey 《Life sciences》1976,19(11):1699-1704
The effect of neonatal hypothyroidism on tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) activity, as well as on water content, was studied in different regions of the developing rat brain. Neonatal hypothyroidism, induced by daily treatment with propylthiouracil starting at birth, led to a cretinoid syndrome with a marked impairment of body and brain growth. Compared to control littermates, 30- and 45-day-old cretinous rats had elevated levels of water in the brain stem. The activities of TH and TPH were increased in a time-dependent manner in the brain stem, basal ganglia and hypothalamus of maturing cretinous animals. The increased activity of these rate-limiting enzymes of mono-amine synthesis may account for the elevated levels of brain norepi-nephrine and serotonin in rats subjected to neonatal hypothyroidism.  相似文献   

17.
Abstract: The effect of thyroid hormones (THs) on the expression of actin gene during fetal human brain development and the period of sensitivity to the hormones have been investigated. Developmental profile of actin in the cytoskeletal (CSK) and noncytoskeletal (non-CSK) fractions in the fetal cerebra showed a pronounced rise in the level of CSK actin at weeks 17–19. Northern blot analysis also revealed a sharp rise in the level of actin mRNA at weeks 16–18, temporally coinciding with the period of rise of THs and peak expression of TH receptors in the fetal brain. In organ cultures of weeks 13–23 fetal cerebra, THs elicited a general stimulation of CSK proteins at all ages studied with a preferential effect on actin at weeks 17–19. During this period, THs also stimulated the rate of synthesis of actin. Kinetics of induction of actin by TH in the non-CSK and CSK fractions in organ cultures of week 17 fetal cerebra showed an increased level of actin in both fractions within 1 h. Subsequently (at 5 and 18 h), induction was evident only in the insoluble CSK fraction, suggesting an effect of the hormone on the intracellular distribution of actin between the soluble non-CSK fraction and the insoluble CSK fraction. Correspondingly, in cultures of week 17 fetal cerebra, THs elicited an increase in actin mRNA level within 30 min of hormonal exposure. The overall results suggest that THs regulate the expression of actin gene by stimulating the rate of synthesis as well as intracellular distribution of actin during the mid phase of the second trimester of gestation.  相似文献   

18.
Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC).  相似文献   

19.
The activities of tyrosine hydroxylase (TH) and glutamic acid decarboxylase (GAD) from several mouse brain regions were assayed following repeated administration of adrenocorticotrophic hormone (ACTH), lysine vasopressin (LVP) or corticosterone. Although similar treatments with ACTH have been shown to result in changes of catecholamine turnover and GABA content, no changes in the activity of either TH or GAD were observed in any brain region. Likewise LVP had no effect on either enzyme. Since the assays for TH were performed with concentrations of tyrosine and tetrahydrobiopterin cofactor below their respective Michaelis constants, this suggests that the changes of catecholamine turnover are not mediated by changes of TH activity. Twice daily corticosterone adrninistration for four days increased TH activity in the hypothalamus but not in any other brain region.  相似文献   

20.
Comparing thyroid and insect hormone signaling   总被引:1,自引:1,他引:0  
Transitions between different states of development, physiology,and life history are typically mediated by hormones. In insects,metamorphosis and reproductive maturation are regulated by aninteraction between the sesquiterpenoid juvenile hormone (JH)and the steroid 20-hydroxy-ecdysone (20E). In vertebrates andsome marine invertebrates, the lipophilic thyroid hormones (THs)affect metamorphosis and other life history transitions. Interestingly,when applied to insects, THs can physiologically mimic manyfacets of JH action, suggesting that the molecular actions ofTHs and JH/20E might be similar. Here we discuss functionalparallels between TH and JH/20E signaling in insects, with aparticular focus on the fruit fly, Drosophila melanogaster,a genetically and physiologically tractable model system. Comparingthe effects of THs with the well defined physiological rolesof insect hormones such as JH and 20E in Drosophila might provideimportant insights into hormone function and the evolution ofendocrine signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号