首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The genome of avian erythroblastosis virus contains two independently expressed genetic loci (v-erbA and v-erbB) whose activities are probably responsible for oncogenesis by the virus. Both loci are closely related to nucleotide sequences found in the DNA and RNA of chickens and other vertebrates. We have isolated and characterized chicken DNA homologous to v-erbA and v-erbB. The two viral genes are represented by separate domains within chicken DNA (c-erbA and c-erbB), which are separated by a minimum of 12 kilobases (kb) of DNA and may not be linked at all. The nucleotide sequences shared by the viral and cellular erb loci are colinear, but the cellular loci are interrupted by multiple intervening sequences of various lengths. Polyribosomes prepared from normal chicken embryos contain two polyadenylated RNAs transcribed from c-erbA and two transcribed from c-erbB. The evident coding regions of these RNAs represent an unusually small fraction of the lengths of the RNAs, as if the 3′ untranslated domains of the RNAs might be exceptionally large (3–11 kb). These findings indicate that the c-erb loci are normal vertebrate genes rather than genes of cryptic endogenous retroviruses, and that they may have a role in the metabolism of normal cells. It appears that the viral erb genes, like most other retrovirus oncogenes, have been copied from cellular genes. In the viral genome, the two genes are devoid of introns, but they remain independently expressed loci, and they remain colinear with the coding domains of their cellular progenitors.  相似文献   

2.
Partial DNA sequencing of a genomic clone of the archaebacterium Halobacterium halobium, which hydridized with an avian v-myc probe, showed especially the presence, in the organism of one of the conserved regions through myb, myc and adenovirus E1a oncogenes. The archaebacterial deduced amino acid sequence displayed significant homology with the v-myc gene product. In accordance with the partial DNA sequencing which assured a sufficient homology to have similar epitopes, a protein having a molecular weight of 70,000 and possessing high antigenicity with a polyclonal antiserum against avian v-myc protein was isolated and purified from H. halobium extracts. The purified v-myc like protein stimulated in vitro DNA synthesis carried out by the alpha like DNA polymerase of H. halobium.  相似文献   

3.
Identification of several additional restriction endonuclease sites within the cellular substitution (amv) inserted into the avian myeloblastosis virus proviral genome has permitted us to isolate different regions of the amv sequence. These subsets of the avian myeloblastosis virus transforming gene have been cloned in the plasmid pBR322 and used as hybridization probes to investigate the topology of homologous (proto-amv) normal chicken DNA sequences. The results showed that the cellular proto-amv sequences in C/O chicken DNA are interrupted by at least one intervening sequence. A partial arrangement of the proto-amv sequences is presented.  相似文献   

4.
We determined the entire nucleotide sequence of the molecularly cloned DNA of Fujinami sarcoma virus (FSV). The sequence of 1182 amino acids was deduced for the FSV transforming protein P130, the product of the FSV gag-fps fused gene. The P130 sequence was highly homologous to the amino acid sequence obtained for the gag-fes protein of feline sarcoma virus, supporting the view that fps and fes were derived from a cognate cellular gene in avian and mammalian species. In addition, FSV P130 and p60src of Rous sarcoma virus were 40% homologous in the region of the carboxyterminal 280 amino acids, which includes the phosphoacceptor tyrosine residue. These results strongly suggest that the 3′ region of fps/fes and src originated from a common progenitor sequence. A portion (the U3 region) of the long terminal repeat of FSV DNA appears to be unusual among avian retroviruses in its close similarity in sequence and overall organization to the same region of the endogenous viral ev1 DNA.  相似文献   

5.
H W Jansen  B Rückert  R Lurz    K Bister 《The EMBO journal》1983,2(11):1969-1975
Molecularly cloned proviral DNA of avian replication-defective retrovirus Mill Hill No. 2 (MH2) was analyzed. The MH2 provirus measures 5.5 kb including two long terminal repeats (LTR), and contains a partial complement of the structural gene gag, 1.5 kb in size, near the 5' terminus, and a 1.3-kb segment of the v-myc transforming gene near the 3' terminus. These v-myc sequences are closely related to the v-myc transforming gene of avian acute leukemia virus MC29, and to the cellular chicken gene c-myc. The gag and myc domains on the MH2 provirus are separated by unique sequences, 1.3 kb in size and termed v-mil, which are unrelated to v-myc, or to other oncogenes or structural genes of the avian leukemia-sarcoma group of retroviruses. Normal chicken DNA contains sequences closely related to v-mil, termed c-mil. Analyses of chicken c-mil clones isolated from a recombinant DNA library of the chicken genome reveal that c-mil is a single genetic locus with a complex split gene structure. In the MH2 genome, v-mil is expressed via genome-sized mRNA as a gag-related hybrid protein, p100gag-mil, while v-myc is apparently expressed via subgenomic mRNA independently from major coding regions of structural genes. The presence in the MH2 genome of two unrelated cell-derived sequences and their independent expression may be significant for the oncogenic specificities of this virus.  相似文献   

6.
7.
Avian myelocytomatosis virus (MC29V) is a retrovirus that transforms both fibroblasts and macrophages in culture and induces myelocytomatosis, carcinomas, and sarcomas in birds. Previous work identified a sequence of about 1,500 nucleotides (here denoted oncMCV) that apparently derived from a normal cellular sequence and that may encode the oncogenic capacity of MC29V. In an effort to further implicate oncMCV in tumorigenesis, we used molecular hybridization to examine the distribution of nucleotide sequences related to oncMCV among the genomes of various avian retroviruses. In addition, we characterized further the genetic composition of the remainder of the MC29V genome. Our work exploited the availability of radioactive DNAs (cDNA's) complementary to oncMCV (cDNAMCV) or to specific portions of the genome of avian sarcoma virus (ASV). We showed that genomic RNAs of avian erythroblastosis virus (AEV) and avian myeloblastosis virus (AMV) could not hybridize appreciably with cDNAMCV. By contrast, cDNAMCV hybridized extensively (about 75%) and with essentially complete fidelity to the genome of Mill Hill 2 virus (MH2V), whose pathogenicity is very similar to that of MC29V, but different from that of AEV or AMV. Hybridization with the ASV cDNA's demonstrated that the MC29V genome includes about half of the ASV envelope protein gene and that the remainder of the MC29V genome is closely related to nucleotide sequences that are shared among the genomes of many avian leukosis and sarcoma viruses. We conclude that oncMCV probably specifies the unique set of pathogenicities displayed by MC29V and MH2V, whereas the oncogenic potentials of AEV and AMV are presumably encoded by a distinct nucleotide sequence unrelated to oncMCV. The genomes of ASV, MC29V, and other avian oncoviruses thus share a set of common sequences, but apparently owe their various oncogenic potentials to unrelated transforming genes.  相似文献   

8.
9.
We report that the cloned DNA harboring the long terminal repeat (LTR), v-src, LTR proviral structure is tumorigenic in chickens of the Prague congenic lines. The growth rate of these tumors is by far the highest in the recombinant CC.R1 line, the B haplotype of which is composed of the B-F/L 4 and B-G 12 subregions originating from different naturally occurring haplotypes. Some of the tumors induced by the LTR, v-src, LTR DNA are repeatedly transplantable in syngeneic chickens, maintain unaltered provirus, and express v-src mRNA. Differences in the response to challenge with Rous sarcoma virus (RSV) and LTR, v-src, LTR DNA on a given experimental model are compared and possible involvement of an interaction between B-F/L and B-G region gene is considered. Regression of the LTR, v-src, LTR DNA-induced tumors did not prevent the formation and growth of tumors induced subsequently by RSV.  相似文献   

10.
The receptor for epidermal growth factor (EGF) has been the subject of intense study primarily as a consequence of the pioneering studies of Cohen on growth factors and also because of its homology to the transforming protein encoded by the avian oncogene v-erbB, which is a truncated receptor, and its consequent role in cancer. Although similar structural mutation of the EGF receptor has not yet been found in human tumours, aberrant overexpression of both EGF receptors and c-erbB2, a closely related putative receptor [1], have been found to occur in squamous cell carcinomas and glial tumours, and mammary carcinomas respectively [2–4]. In addition to EGF, the related polypeptides transforming growth factor α (TGFα) and vaccinia virus growth factor [5] are also ligands for the EGF receptor. Expression of TGFα occurs during embryonal development and in specific adult tissues; it may also play a role in cellular transformation (reviewed in Ref. 6). These important properties, as well as the potential roles of both TGFα and EGF in wound repair, have emphasized the need to understand EGF receptor structure, function and regulation. This review discusses the structural properties of the EGF receptor and how these can be related to receptor function and regulation.  相似文献   

11.
Viral RNA, molecularly cloned proviral DNA, and virus-specific protein of avian retrovirus MH2 were analyzed. The complexity and sequence conservation of the transformation-specific v-myc sequences of MH2 RNA were compared with those of the other members of the MC29 subgroup of acute leukemia viruses, MC29, CMII, and OK10, and with chicken cellular c-myc sequences. All T1 oligonucleotides mapping within the 1.3-kilobase coding region of MC29 v-myc have homologous counterparts in the RNAs of all MC29 subgroup viruses and in c-myc. These counterparts are either identical in composition or altered by single point mutations. Hence, the 47,000-dalton carboxy-terminal sequences of the transforming proteins of these viruses and of the cellular gene product are probably highly conserved but may contain single amino acid substitutions. T1 oligonucleotide mapping of MH2 RNA indicated that the MH2 v-myc sequences map close to the 3' end of viral RNA. A genomic library of an MH2-transformed quail cell line was prepared by using the Charon 4A vector system. By screening with an myc-specific probe, a clone containing the entire MH2 provirus (lambda MH2-1) was isolated. Digestion of cloned DNA with KpnI yielded a 5.1-kilobase fragment hybridizing to both gag- and myc-specific probes. Further restriction mapping of lambda MH2-1 DNA showed that about 1.6 kilobases of the gag gene are present near the 5' end of proviral DNA, and the conserved part of v-myc, i.e., 1.3 kilobases, is present near the 3' end of proviral DNA. These two domains are separated by a segment of at least 1 kilobase of different genetic origin, including additional unique sequences unrelated to virion genes. Tryptic peptide analysis of the gag-related protein of MH2, p100, revealed gag-specific peptides and several unique methionine-containing peptides. One of the latter is possibly shared with the polymerase precursor protein Pr180gag-pol, but no myc-specific peptides, defined for the MC29 protein p110gag-myc, appear to be present in MH2 p100. The data on viral RNA, proviral DNA, and protein of MH2 reveal a unique genetic structure for this virus of the MC29 subgroup and suggest that its v-myc gene is not expressed as a gag-related protein.  相似文献   

12.
Several lambda proto-amv recombinants isolated from a lambda Charon 4A library of leukemic chicken DNA were analyzed by using various restriction endonucleases and hybridization with specific probes representing different regions of the transforming gene of avian myeloblastosis virus. The position of 30 sites for 11 different restriction endonucleases was established in the proto-amv region of chicken DNA. Identical restriction endonuclease maps were obtained for the normal and leukemic DNAs in the proto-amv domain, which covers 8 to 9 kilobases of DNA. The cellular genetic elements homologous to the cellular sequence (amv) inserted into the avian myeloblastosis virus genome are contained within six major proto-amv segments which are interrupted by at least five large DNA regions lacking homology with amv.  相似文献   

13.
The cellular gene c-abl is the normal homologue of the transforming gene (v-abl) within the genome of the Abelson leukaemia virus. The cDNA sequence coding for the cellular form of the murine abl gene (c-abl type IV) has been inserted into the baculovirus transfer vector, pAc36C, so that the c-abl gene is under the control of the polyhedrin promoter of Autographa californica nuclear polyhedrosis virus (AcNPV). Spodoptera frugiperda cells infected with the recombinant transfer vector in the presence of wild type AcNPV DNA yielded recombinant, polyhedrin negative virus that expressed moderate levesl of the c-Abl protein (representing approx. 0.5–1% of the stained cellular proteins as determined by densitometric scanning). The insect derived c-Abl protein was compared to the P210-BCR/ABL protein from K562 cells, a cell line derived from a patient with chronic myelogenous leukaemia. Antibodies raised againts synthetic peptides based on c-abl encoded peptides react with the insect derived c-Abl. In addition, the baculovirus derived c-Abl protein has a tyrosine kinase activity as demonstrated by phosphorylation of a synthetic polypeptide and also by autophosphorylation. Phosphoamino acid analysis of immunoprecipitated, autophosphorylated baculovirus derived c-Abl protein indicates that the majority of label incorporated is on the tyrosine residues. Immunofluorescence microscopy has been used to show that the majority of the c-Abl protein expressed in cells infected with recombinant virus is located in the nuclear and plasma membranes.  相似文献   

14.
Molecularly cloned proviral DNA of avian oncogenic retrovirus CMII was isolated by screening a genomic library of a CMII-transformed quail cell line with a myc-specific probe. On a 10.4-kilobase EcoRI fragment, the cloned DNA contained 4.4 kilobases of CMII proviral sequences extending from the 5' long terminal repeat to the EcoRI site within the partial (delta) complement of the env gene. The gene order of CMII proviral DNA is 5'-delta gag-v-myc-delta pol-delta env-3'. All three structural genes are partially deleted: the gag gene at the 3' end, the env gene at the 5' end, and the pol gene at both ends. The delta gag (0.83 kilobases)-v-myc (1.50 kilobases) sequences encode the p90gag-myc transforming protein of CMII. In comparison with the p110gag-myc protein of acute leukemia virus MC29, p90gag-myc lacks amino acids corresponding to additional 516 bases of gag sequences and 12 bases of 5' v-myc sequences present in the MC29 genome. Nucleotide sequence analysis of CMII proviral DNA at the delta gag-v-myc and the v-myc-delta pol junctions revealed significant homologies between avian retroviral structural genes and the cellular oncogene c-myc precisely at the positions corresponding to the gene junctions in CMII. Furthermore, the delta gag-v-myc junction in CMII corresponds to sequence elements in gag and C-myc that are possible splicing signals. The data suggest that transduction of cellular oncogenes may involve RNA splicing and recombination with homologous sequences on retroviral vectors. Different sequence elements of both the retroviral vectors and the c-myc gene recombined during genesis of highly oncogenic retroviruses CMII, MC29, or MH2.  相似文献   

15.
16.
Using biochemical methods, we have shown that a new specific sequence, v-lil, is associated with a given stock of B77 avian sarcoma virus (clone 9). We prepared a DNA complementary to v-lil sequences, using substractive hybridizations, and investigated the properties of this sequence. v-lil has a genetic complexity of ca. 2,000 nucleotides and is not present in various stocks of avian sarcoma virus, avian leukosis virus, or defective leukemia virus. v-lil is not associated with B77 avian sarcoma virus isolated from the original tumor and thus has been acquired by in vitro passage of the virus on chicken embryo fibroblasts. A search for the origin of the v-lil sequence among the DNAs of different avian species has shown that a similar sequence, c-lil, is present in normal chicken DNA (1 to 2 copies per haploid genome). c-lil is not highly conserved but is present in the DNA of all chickens from the genus Gallus. The c-lil sequence is transcribed at a low level (1 to 3 copies per cell) in normal chicken embryo fibroblasts. The biological function, if any, of v-lil or its cellular equivalent has yet to be determined.  相似文献   

17.
We have examined the arrangement of integrated avian sarcoma virus (ASV) DNA sequences in several different avian sarcoma virus transformed mammalian cell lines, in independently isolated clones of avian sarcoma virus transformed rat liver cells, and in morphologically normal revertants of avian sarcoma virus transformed rat embryo cells. By using restriction endonuclease digestion, agarose gel electrophoresis, Southern blotting, and hybridization with labeled avian sarcoma virus complementary DNA probes, we have compared the restriction enzyme cleavage maps of integrated viral DNA and adjacent cellular DNA sequences in four different mouse and rat cell lines transformed with either Bratislava 77 or Schmidt-Ruppin strains of avian sarcoma virus. The results of these experiments indicated that the integrated viral DNA resided at a different site within the host cell genome in each transformed cell line. A similar analysis of several independently derived clones of Schmidt-Ruppin transformed rat liver cells also revealed that each clone contained a unique cellular site for the integration of proviral DNA. Examination of several morphologically normal revertants and spontaneous retransformants of Schmidt-Ruppin transformed rat embryo cells revealed that the internal arrangement and cellular integration site of viral DNA sequences was identical with that of the transformed parent cell line. The loss of the transformed phenotype in these revertant cell lines, therefore, does not appear to be the result of rearrangement or deletions either within the viral genome or in adjacent cellular DNA sequences. The data presented support a model for ASV proviral DNA integration in which recombination can occur at multiple sites within the mammalian cell genome. The integration and maintenance of at least one complete copy of the viral genome appear to be required for continuous expression of the transformed phenotype in mammalian cells.  相似文献   

18.
H E Varmus  T Padgett  S Heasley  G Simon  J M Bishop 《Cell》1977,11(2):307-319
We have used two experimental strategies to test the role of cellular functions in the synthesis and integration of virus-specific DNA in cells infected by avian sarcoma virus.First, quail embryo fibroblasts, placed in stationary phase (G0) by prolonged serum starvation, did not support the efficient synthesis of viral DNA during the first 24–48 hr after infection. Synthesis of viral DNA was impaired according to at least two parameters: the amount of DNA was diminished, particularly the amount of the plus-strand DNA (identical in polarity to the viral genome); and the length of both minus and plus strands was reduced in the stationary cells. In parallel cultures fed with fresh serum, over two thirds of the cells were able to reenter the cell cycle within 24 hr, and viral DNA of normal size was synthesized.Second, density labeling of viral and cellular DNA with BUdR was used to determine whether cellular DNA synthesis was required for integration of viral DNA. In both quail embryo fibroblasts released from G0 by serum replacement and randomly growing duck embryo fibroblasts, viral DNA was integrated only into cellular DNA replicated during the infection.Our results indicate that serum-starved cells lack a factor (or factors) required for the efficient and complete synthesis of ASV-specific DNA. We have not been able to establish whether such factor(s) are present in growing cells only during S phase. Integration of viral DNA appears to require cellular DNA synthesis; this may be due to a requirement for a factor (or factors) present in adequate concentration only during S phase or to a requirement for the structural changes in cellular DNA that accompany replication.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号