首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The succession analysis of bacterial diversity in the A horizons (rich in organic matter) of three contrasting types of soil—burozem, soddy gley soil, and chernozem—showed that the bacterial diversity of soil microcosms in humid regions can be adequately evaluated only if soil samples are incubated at different soil moisture contents. A complete account of actinobacteria and proteobacteria requires the levels of soil moisture corresponding to the maximum capillary–sorption moisture and capillary moisture, respectively. The bacterial diversity, whose value was maximum on the 40th day of succession, was higher in soddy gley soil than in burozem. The taxonomic structures of the bacterial communities of these two types of soil were different. After wetting chernozem samples from arid regions, the soil bacterial community changed insignificantly with time and drastically differed from that of soils from humid regions. The difference in the bacterial diversity of soils was the most distinct when it was evaluated by measuring the proportion between proteobacteria and actinobacteria.  相似文献   

2.
The initial concentration of prokaryotic microorganisms, the type of their growth, doubling time, and the growth dynamics of bacteria and actinomycetes in three types of soil (meadow, chestnut, and soddy forest) were evaluated by the luminescence microscopic analysis of soil samples incubated in a humid chamber for 1 day. Soddy forest and chestnut soils differed in most of the parameters analyzed. Meadow soil was close to soddy forest soil in some parameters and to chestnut soil in other parameters. All soil suspensions exhibited high growth rates of bacteria and actinomycetes, indicating that the fraction of viable microorganisms in the soils was high.  相似文献   

3.
The initial concentration of prokaryotic microorganisms, the type of their growth, doubling time, and the growth dynamics of bacteria and actinomycetes in three types of soil (meadow, chestnut, and soddy forest) were evaluated by the luminescence microscopic analysis of soil samples incubated in a humid chamber for 1 day. Soddy forest and chestnut soils differed in most of the parameters analyzed. Meadow soil was close to soddy forest soil in some parameters and to chestnut soil in other parameters. All soil suspensions exhibited high growth rates of bacteria and actinomycetes, indicating that the fraction of viable microorganisms in the soils was high.  相似文献   

4.
Carbon stocks and accumulation rates in humus and peat horizons of the contiguous soil series of forest and bog ecosystems have been studied in the Central Forest State Biosphere Reserve, Tver Region. Upland soil types (soddy podzolic, brown, and white podzolic) have been compared to paludified (peat-enriched gley podzolic and peaty gley) and bog soils differing in trophic status, including those of upland, transitional, and lowland bogs. The results show that carbon stocks in mineral soils are many times smaller than in waterlogged soils and an order of magnitude smaller than in bog soils. Mineral and bog soils are characterized by similar rates of carbon accumulation averaged over the entire period of their existence. The highest rate of carbon accumulation has been noted for the soils of waterlogged habitats, although this process may be periodically disturbed by fires and other stress influences.  相似文献   

5.
福建省稻田土壤细菌群落的16S rDNA-PCR-DGGE分析   总被引:6,自引:0,他引:6  
用不依赖细菌培养的16S rDNA-PCR-DGGE方法对福建省6个不同地区12个取样点的稻田土壤进行细菌群落结构分析.对12份样品直接提取其总DNA,用F341GC/R534引物扩增16SrDNA基因的V3可变区,结合DGGE(denaturing gradient gel electrophoresis)技术分析样品细菌群落组成.结果表明,福建省不同地区的稻田土壤之间细菌群落结构存在较大差异.犬体上可分为闽东、闽南、闽北、闽西4个大类.同一地区的根际土和表土样品之间也存在差异,但差异相对较低,其中龙岩根际土和表土细菌群落结构相似性最大,永泰差异性最大.回收了DGGE图谱中11个条带,测序结果经过Blast比对表明其中10个条带代表的细菌是不可培养的,显示了DGGE技术的优越性.  相似文献   

6.
The dynamics of carbon dioxide emission from soil was studied during chitinolytic succession induced by humidification and chitin introduction at different temperatures (5, 27, and 50°C) using gas chromatography. The abundance and biomass of the chitinolytic bacterial and actinomycete complex in soil were evaluated by luminescent microscopy. Active development of the chitinolytic microbial complexes was observed at all studied temperatures. The most active growth of chitinolytic microorganisms was observed at high temperature during early succession and at low temperature during late succession. High and low temperatures provided for active development of the chitinolytic microbial complex in soils confined to warm climatic zones (brown desert-steppe soil) and soils of temporary zones (gray forest soil). Actinomycetes demonstrated the most active growth among chitinolytic microorganisms in the studied soil samples both at low and high temperatures.  相似文献   

7.
Soil drying and rewetting represents a common physiological stress for the microbial communities residing in surface soils. A drying–rewetting cycle may induce lysis in a significant proportion of the microbial biomass and, for a number of reasons, may directly or indirectly influence microbial community composition. Few studies have explicitly examined the role of drying–rewetting frequency in shaping soil microbial community structure. In this experiment, we manipulated soil water stress in the laboratory by exposing two different soil types to 0, 1, 2, 4, 6, 9, or 15 drying–rewetting cycles over a 2-month period. The two soils used for the experiment were both collected from the Sedgwick Ranch Natural Reserve in Santa Ynez, CA, one from an annual grassland, the other from underneath an oak canopy. The average soil moisture content over the course of the incubation was the same for all samples, compensating for the number of drying–rewetting cycles. At the end of the 2-month incubation we extracted DNA from soil samples and characterized the soil bacterial communities using the terminal restriction fragment length polymorphism (T-RFLP) method. We found that drying–rewetting regimes can influence bacterial community composition in oak but not in grass soils. The two soils have inherently different bacterial communities; only the bacteria residing in the oak soil, which are less frequently exposed to moisture stress in their natural environment, were significantly affected by drying–rewetting cycles. The community indices of taxonomic diversity and richness were relatively insensitive to drying–rewetting frequency. We hypothesize that drying–rewetting induced shifts in bacterial community composition may partly explain the changes in C mineralization rates that are commonly observed following exposure to numerous drying–rewetting cycles. Microbial community composition may influence soil processes, particularly in soils exposed to a significant level of environmental stress.  相似文献   

8.
The abundance and taxonomic structure of soil bacterial communities have been studied in different geomorphological parts of the Yakhroma floodplain. It has been found that the numbers of bacteria reach a peak in calcareous peat soil under forest near the floodplain terrace, decreasing to a minimum in soddy alluvial soil near the riverbed. All soils are characterized by the presence of different ecological-trophic bacterial groups capable of peat destruction. Seasonal dynamics of the structure of bacterial communities and, in some soil types, its spatial dynamics accounted for by changes in the botanical structure of peat across its profile have been revealed. All peat soils in the floodplain have high contents of organic matter and neutral pH and, therefore, are favorable biotopes for the development of saprotrophic bacteria. This, in turn, largely accounts for high productivity and stability of this agroecosystem as a whole.  相似文献   

9.
安然  马风云  崔浩然  秦光华  黄雅丽  田琪 《生态学报》2019,39(21):7960-7967
为研究黄河三角洲地区混交人工林土壤细菌群落特征,应用高通量测序技术,比较分析了刺槐臭椿混交林以及臭椿和刺槐纯林土壤细菌结构及多样性,并结合土壤理化性质进行分析。试验结果表明:在细菌门分类水平上,臭椿纯林、刺槐纯林、刺槐臭椿混交林土壤中分别检测出27、25、31门细菌,3种不同林分土壤中酸杆菌门、变形菌门、放线菌门、硝化螺旋菌门、绿弯菌门、浮霉菌门、芽单胞菌门、疣微菌门8种细菌是土壤中的主要细菌群落,其中酸杆菌门、变形菌门和放线菌门为优势细菌群落。不同类型人工林土壤中各门细菌相对丰度差异显著。混交林土壤细菌物种数和Shannon指数值分别为1910和9.1高于两种纯林。通过对土壤主要细菌群落与土壤理化性质进行主成分分析发现,3种不同林分之间在土壤细菌群落结构上有较高程度的分离,差异显著(P < 0.05),有效磷含量与混交林土壤细菌群落有较强的正相关关系。因此可以得出结论,不同林分类型、土壤理化性质和细菌群落结构三者相互影响,刺槐臭椿混交增加了土壤细菌群落多样性,土壤理化性质在一定程度上影响土壤细菌结构和多样性。  相似文献   

10.
祁连山中部4种典型植被类型土壤细菌群落结构差异   总被引:2,自引:0,他引:2  
朱平  陈仁升  宋耀选  韩春坛  刘光琇  陈拓  张威 《生态学报》2017,37(10):3505-3514
土壤微生物参与土壤生态过程,在土壤生态系统的结构和功能中发挥着重要作用。2013年7月采集了祁连山中段4种典型植被群落(垫状植被、高寒草甸、沼泽草甸和高寒灌丛)的表层土壤,分析了表层土壤微生物生物量碳氮和采用Illumina高通量测序技术研究了土壤细菌群落结构及多样性,并结合土壤因子对土壤细菌群落结构和多样性进行了相关性分析。结果表明:(1)土壤微生物生物量碳氮的大小排序为:沼泽草甸高寒草甸高寒灌丛垫状植被;(2)土壤细菌群落相对丰度在5%以上的优势类群是放线菌门、酸杆菌门、α-变形菌、厚壁菌门和芽单胞菌门5大门类;(3)沼泽草甸土壤细菌α多样性(物种丰富度和系统发育多样性)显著高于其它3种植被类型(P0.05),而垫状植被土壤细菌α多样性最低;(4)冗余分析和Pearson相关性分析表明,土壤pH、土壤含水量、土壤有机碳和总氮是土壤细菌群落结构和α多样性的主要影响因子。研究结果可为祁连山高寒生态系统稳定和保护提供理论依据。  相似文献   

11.
Nutrient Addition Dramatically Accelerates Microbial Community Succession   总被引:1,自引:0,他引:1  
The ecological mechanisms driving community succession are widely debated, particularly for microorganisms. While successional soil microbial communities are known to undergo predictable changes in structure concomitant with shifts in a variety of edaphic properties, the causal mechanisms underlying these patterns are poorly understood. Thus, to specifically isolate how nutrients – important drivers of plant succession – affect soil microbial succession, we established a full factorial nitrogen (N) and phosphorus (P) fertilization plot experiment in recently deglaciated (∼3 years since exposure), unvegetated soils of the Puca Glacier forefield in Southeastern Peru. We evaluated soil properties and examined bacterial community composition in plots before and one year after fertilization. Fertilized soils were then compared to samples from three reference successional transects representing advancing stages of soil development ranging from 5 years to 85 years since exposure. We found that a single application of +NP fertilizer caused the soil bacterial community structure of the three-year old soils to most resemble the 85-year old soils after one year. Despite differences in a variety of soil edaphic properties between fertilizer plots and late successional soils, bacterial community composition of +NP plots converged with late successional communities. Thus, our work suggests a mechanism for microbial succession whereby changes in resource availability drive shifts in community composition, supporting a role for nutrient colimitation in primary succession. These results suggest that nutrients alone, independent of other edaphic factors that change with succession, act as an important control over soil microbial community development, greatly accelerating the rate of succession.  相似文献   

12.
Bacterial communities of four arable soils--pelosol, gley, para brown soil, and podsol brown soil--were analysed by fingerprinting of 16S rRNA gene fragments amplified from total DNA of four replicate samples for each soil type. Fingerprints were generated in parallel by denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and single strand conformation polymorphism (SSCP) to test whether these commonly applied techniques are interchangeable. PCR amplicons could be separated with all three methods resulting in complex ribotype patterns. Although the fragments amplified comprised different variable regions and lengths, DGGE, T-RFLP and SSCP analyses led to similar findings: (a) a clustering of fingerprints which correlated with soil physico-chemical properties, (b) little variability between the four replicates of the same soil, (c) the patterns of the two brown soils were more similar to each other than to those of the other two soils, and (d) the fingerprints of the different soil types revealed significant differences in a permutation test, which was recently developed for this purpose.  相似文献   

13.
Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.  相似文献   

14.
水稻土是非常复杂又典型的生态系统, 分析淹水培养过程中水稻土细菌的丰度和群落结构变化规律, 可以客观反映水稻土中细菌群落结构信息, 为深入探讨水稻土细菌微生物对稻田的影响和在生态系统中的作用(营养元素转换、重金属还原与抑制甲烷生成过程等)提供实验基础与理论依据。作者采用淹水非种植水稻土微环境模式系统, 提取水稻土淹水培养1 h和1、5、10、20、30、40、60 d后的微生物总DNA, 利用Real-time PCR和PCR-DGGE (denaturing gradient gel electrophoresis)技术检测了淹水培养过程中细菌丰度与群落结构的变化。结果表明: 淹水水稻土中细菌的丰度在1 d时最大, 并在40 d到达第二个峰值, 说明淹水过程改变了细菌的丰度。基于16S rRNA基因V3区的DGGE图谱分析显示, 淹水过程中细菌的群落结构发生了演替性变化: r-策略生存的细菌仅存在于淹水初期; k-策略生存的细菌存在于淹水后期; r-和k-策略共生存的细菌存在于整个淹水过程中, 淹水后期k-策略的细菌占据优势。淹水培养过程中优势种群多样性指数大体呈现先上升后减小的趋势。主成分分析(PCA)将淹水处理过程分成几类不同的生境, 反映出中、后期细菌群落结构较为稳定; 测序结果表明, 32个优势条带所代表的细菌分别属于厚壁菌门、绿弯菌门、拟杆菌门、变形菌门和酸杆菌门, 且与来自不同地域的水稻土、其他类型土壤、活性污泥以及湖泊沉积物等生态系统的细菌关系密切。  相似文献   

15.
We have performed a phylogenetic survey of microbial species present in two soils from northern Arizona. Microbial DNA was purified directly from soil samples and subjected to PCR amplification with primers specific for bacterial 16S rRNA gene sequences (rDNAs). Clone libraries from the two soils were constructed, and 60 clone inserts were partially sequenced. Phylogenetic analysis of these sequences revealed extensive diversity. Most of the analyzed sequences (64%) fell into five novel clusters having no known cultured members. Extensive analysis of 10 nearly full-length rDNAs from clones representative of the novel groups indicated that four of the five groups probably cluster into a large "supergroup" which is as distinct from currently recognized bacterial divisions as the latter are from each other. From this we postulate the existence of a major bacterial lineage, previously known only from a single cultured representative, whose diversity and ecology we are only beginning to explore. Analysis of our data and that from other rDNA sequence-based studies of soils from different geographic regions shows considerable overlap of sequence types. Taken together, these groups encompass most of the novel rDNA sequences recovered in each comparable analysis reported to date, despite large differences in soil types and geographic sources. Our results indicate that members of these new groups comprise a phylogenetically diverse, geographically widespread, and perhaps numerically important component of the soil microbiota.  相似文献   

16.
山东地区盐碱土花生种子际土壤微生物群落结构的研究   总被引:2,自引:0,他引:2  
【目的】以不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤为实验对象,探讨花生种子在吸水膨胀与萌发过程中,不同类型盐碱土对种子际土壤微生物多样性变化的影响。【方法】采集不同含盐量的滨海盐土、内陆盐碱土和中等肥力非盐碱土壤,通过对各样品中细菌的16S r RNA基因的V3-V4区进行PCR扩增,利用Illumina Hiseq高通量测序技术对12份V3-V4高变区PCR产物进行测序,并对测序数据进行生物信息学分析。【结果】(1)盐碱土壤的种子际细菌群落多样性高于非盐碱土壤,且以东营青坨滨海盐土种子际土壤细菌群落多样性较高。(2)不同类型土壤样本微生物群落结构在纲水平存在明显差异。4种土壤类型种子际土壤细菌共分属于6个菌纲,分别为Proteobacteria、Actinobacteria、Actinobacteria、Bacteroidetes、Acidobacteria和Firmicutes菌纲,并均以Proteobacteria和Actinobacteria菌纲为主要菌纲。全样本菌落结构分析结果表明,4种类型土壤中不同吸胀时间内种子际微生物菌落在门、属水平上的类型和丰度差异最为显著(P0.05)。(3)beta多样性分析和各样本遗传距离(phylogenetic distances)聚类树图分析表明,4个土壤类型的12个土壤样本种子际土壤中微生物群落均可聚为2大类。【结论】土壤含盐量越高其种子际土壤细菌群落多样性较高。不同类型土壤样本微生物群落结构在纲水平存在明显差异,以Proteobacteria和Actinobacteria菌纲为主要菌纲。种子吸胀萌发时间影响种子际微生物菌落在门、属水平上的类型和丰度,但对相同土壤类型样本间遗传距离无影响。  相似文献   

17.
微生物多样性对于生物土壤结皮在沙漠生态系统中改善局部环境以及提升生态功能具有重要作用。本研究对腾格里沙漠东南缘沙坡头地区藻结皮、藓结皮及其下层的四季样品进行了16S rDNA高通量测序, 以期阐明细菌多样性及其在生物土壤结皮演替过程中的季节变化规律。结果表明4种类型样品的细菌丰富度在夏季显著低于其他3个季节。4种类型样品中主要的细菌类群为变形菌门、放线菌门、绿弯菌门、酸杆菌门、蓝细菌门等, 其中变形菌门和放线菌门为优势类群, 夏季时变形菌门的相对多度显著高于春季、秋季、冬季, 且在结皮层中相对多度显著高于结皮下层。放线菌门的相对多度在春季、夏季显著高于秋季、冬季, 且结皮下层相对多度高于结皮层。生物土壤结皮演替过程中细菌多样性及其相对多度季节动态变化表明其对沙漠土壤局部环境的变化作出了响应, 这为深入理解生物土壤结皮在沙漠生态系统中的生态功能提供了微生物多样性数据。  相似文献   

18.
19.

This study evaluated the effect of inorganic mercury (Hg) on bacterial community and diversity in different soils. Three soils—neutral, alkaline and acidic—were spiked with six different concentrations of Hg ranging from 0 to 200 mg kg−1 and aged for 90 days. At the end of the ageing period, 18 samples from three different soils were investigated for bacterial community structure and soil physicochemical properties. Illumina MiSeq-based 16s ribosomal RNA (rRNA) amplicon sequencing revealed the alteration in the bacterial community between un-spiked control soils and Hg-spiked soils. Among the bacterial groups, Actinobacteria (22.65%) were the most abundant phyla in all samples followed by Proteobacteria (21.95%), Bacteroidetes (4.15%), Firmicutes (2.9%) and Acidobacteria (2.04%). However, the largest group showing increased abundance with higher Hg doses was the unclassified group (45.86%), followed by Proteobacteria. Mercury had a considerable negative impact on key soil functional bacteria such as ammonium oxidizers and nitrifiers. Canonical correspondence analysis (CCA) indicated that among the measured soil properties, Hg had a major influence on bacterial community structure. Furthermore, nonlinear regression analysis confirmed that Hg significantly decreased soil bacterial alpha diversity in lower organic carbon containing neutral and alkaline soils, whereas in acidic soil with higher organic carbon there was no significant correlation. EC20 values obtained by a nonlinear regression analysis indicated that Hg significantly decreased soil bacterial diversity in concentrations lower than several guideline values.

  相似文献   

20.
森林演替会通过改变植物群落组成和土壤环境影响土壤生物群落, 反过来, 土壤生物群落的变化也会对生态系统的演替产生反馈作用, 但迄今南亚热带森林演替过程中土壤生物群落的变化特征尚不清晰。本研究以广东省鼎湖山的南亚热带森林演替序列(马尾松(Pinus massoniana)林-针阔叶混交林-季风常绿阔叶林)为对象, 研究了森林演替过程中土壤线虫多样性和群落结构的动态变化及其影响因素。通过采集不同演替阶段的土壤样品, 分析和比对了不同演替阶段土壤线虫的多度、多样性、群落组成、土壤线虫生态指数以及土壤理化性质的差异。结果表明: (1)在南亚热带森林演替过程中, 针阔叶混交林和季风常绿阔叶林土壤线虫的α多样性显著高于马尾松林, 但土壤线虫总数和各营养类群多度及其相对丰度并无显著变化; (2)针阔叶混交林中土壤线虫富集指数显著高于马尾松林, 表明其土壤养分状况要好于马尾松林, 而季风常绿阔叶林土壤线虫结构指数较高, 表明其受干扰程度较低; (3)针阔叶混交林的土壤含水量和土壤理化性质(除土壤总磷含量)已达到季风常绿阔叶林的水平, 但两者的土壤pH值均显著低于马尾松林, 而土壤pH值和土壤含水量是影响土壤线虫群落动态变化的主要因素。综上所述, 南亚热带森林中土壤线虫多度、多样性和群落结构对森林演替的响应略有不同, 演替过程中土壤环境因素的趋同是导致针阔叶混交林和季风常绿阔叶林中土壤线虫多样性和群落特征相似的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号