首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calvasculin, an EF-hand protein with a molecular mass of 11 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis, is present abundantly in bovine aorta (Watanabe, Y., Kobayashi, R., Ishikawa, T., and Hidaka, H. (1992) Arch. Biochem. Biophys. 292, 563-569). This protein is synthesized constitutively by bovine aortic smooth muscle (BASM) cells and rat embryo fibroblast 3Y1 cells in culture. We discovered that calvasculin was secreted by BASM cells and 3Y1 cells. Immunofluorescence staining of BASM cells showed a granular distribution for calvasculin that was typical of a secreted protein. This protein bound with an extracellular matrix protein, 36-kDa microfibril-associated glycoprotein (36-kDa MAP), in a Ca(2+)-dependent manner in vitro. A stoichiometry analysis showed that the 36-kDa MAP bound 2.2 calvasculin eq/mol of protein. Solid-phase binding assays indicated a preferential affinity of native calvasculin for 36-kDa MAP among the extracellular matrices in a Ca(2+)-dependent manner. These results suggest that calvasculin, intracellular Ca(2+)-binding protein, is released to the extracellular space and binds with 36-kDa MAP.  相似文献   

2.
To elucidate the molecular mechanism involved in the suppression of keloids and hypertrophic scars by tranilast, we investigated the target protein of tranilast in bovine skin and aorta. A specific tranilast-binding protein was isolated from both tissues by drug affinity chromatography and was identified as 36-kDa microfibril-associated glycoprotein (36-kDa MAGP). Binding of 36-kDa MAGP to tranilast seemed to be specific since 36-kDa MAGP could be eluted from the drug affinity column by tranilast itself and also binding of 36-kDa MAGP to other anti-allergy drugs (amlexanox and cromolyn) is significantly weaker than that to tranilast. Light and electron microscopic immunohistochemistry detected the protein at the periphery of elastic fibers in normal human skin. In hypertrophic scar tissue, however, 36-kDa MAGP was located on small bundles of microfibrils. These findings provide support for the concept that elastogenesis occurs in scar tissue and 36-kDa MAGP might be one of the targets for tranilast.  相似文献   

3.
MAGP-36 was discovered in porcine aorta in 1989 and is thought to be one of the microfibril-associated proteins. MAGP-36 has been localized on the surface of elastic fibers or laminae in immunohistochemical studies. However, its functional role in the aorta is obscure. Herein, we report on the binding activity of MAGP-36 to components of the aortic wall and its accumulation pattern in the aorta during development and growth. In vitro, MAGP-36 bound to elastin and collagen in a Ca(2+)-dependent manner, and mediated the adhesion of human aortic smooth muscle cells. This cell adhesion mostly depended on the RGD-containing domain of MAGP-36. We examined the accumulation of MAGP-36 with quantitative Western blot analysis and immunoelectron microscopy in chick aortae during development and growth. The amount of MAGP-36 increased on the surface of elastic fibers or laminae between days 14 and 34 after the start of incubation, and reached a plateau at about 53 days. This accumulation of MAGP-36 roughly correlated with an increase in blood pressure for this period. Thus, MAGP-36 might be a bridging protein that connects elastin to other components of the aortic wall and might play a role in maintaining the integrity of the aortic structure under arterial pressure.  相似文献   

4.
Microfibril-associated MAGP-2 stimulates elastic fiber assembly   总被引:3,自引:0,他引:3  
Elastic fibers are complex structures composed of a tropoelastin inner core and microfibril outer mantle guiding tropoelastin deposition. Microfibrillar proteins mainly include fibrillins and microfibril-associated glycoproteins (MAGPs). MAGP-2 exhibits developmental expression peaking at elastic fiber onset, suggesting that MAGP-2 mediates elastic fiber assembly. To determine whether MAGP-2 regulates elastic fiber assembly, we used an in vitro model featuring doxycycline-regulated cells conditionally overexpressing exogenous MAGP-2 and constitutively expressing enhanced green fluorescent protein-tagged tropoelastin. Analysis by immunofluorescent staining showed that MAGP-2 overexpression dramatically increased elastic fibers levels, independently of extracellular levels of soluble tropoelastin, indicating that MAGP-2 stimulates elastic fiber assembly. This was associated with increased levels of matrix-associated MAGP-2. Electron microscopy showed that MAGP-2 specifically associates with microfibrils and that elastin globules primarily colocalize with MAGP-2-associated microfibrils, suggesting that microfibril-associated MAGP-2 facilitates elastic fiber assembly. MAGP-2 overexpression did not change levels of matrix-associated fibrillin-1, MAGP-1, fibulin-2, fibulin-5, or emilin-1, suggesting that microfibrils and other elastic fiber-associated proteins known to regulate elastogenesis do not mediate MAGP-2-induced elastic fiber assembly. Moreover, mutation analysis showed that MAGP-2 does not stimulate elastic fiber assembly through its RGD motif, suggesting that integrin receptor binding does not mediate MAGP-2-induced elastic fiber assembly. Because MAGP-2 interacts with Jagged-1 that controls cell-matrix interaction and cell motility, two key factors in elastic fiber macroassembly, microfibril-associated MAGP-2 may stimulate elastic fiber macroassembly by targeting the release of elastin globules from the cell membrane onto developing elastic fibers.  相似文献   

5.
Elastic fibers are composed of the protein elastin and a network of 10-12-nm microfibrils, which are composed of several glycoproteins, including fibrillin-1, fibrillin-2, and MAGP1/2 (microfibril-associated glycoproteins-1 and -2). Although fibrillins and MAGPs covalently associate, we find that the DSL (Delta/Serrate/LAG2) protein Jagged1, an activating ligand for Notch receptor signaling, also interacts with MAGP-2 in both yeast two-hybrid and coimmunoprecipitation studies. Interaction between Jagged1 and MAGP-2 requires the epidermal growth factor-like repeats of Jagged1. MAGP-2 was found complexed with the Jagged1 extracellular domain shed from 293T cells and COS-7 cells coexpressing full-length Jagged1 and MAGP-2. MAGP-2 shedding of the Jagged1 extracellular domain was decreased by the metalloproteinase hydroxamate inhibitor BB3103 implicating proteolysis in its release. Although MAGP-2 also interacted with the other DSL ligands, Jagged2 and Delta1, they were not found associated with MAGP-2 in the conditioned media, identifying differential effects of MAGP-2 on DSL ligand shedding. The related microfibrillar protein MAGP-1 was also found to interact with DSL ligands but, unlike MAGP-2, was unable to facilitate the shedding of Jagged1. Our findings suggest that in addition to its role in microfibrils, MAGP-2 may also affect cellular differentiation through modulating the Notch signaling pathway either by binding to cell surface DSL ligands or by facilitating release and/or stabilization of a soluble extracellular form of Jagged1.  相似文献   

6.
By using quantitative Western blot analysis and the real time polymerase chain reaction technique, we investigated the differential gene expression of microfibril-associated glycoprotein (MAGP-36) in rat organs. The gene was expressed highly in sites rich in elastic fibers, such as aorta, skin, and esophagus. However, MAGP-36 was also expressed highly in some other sites containing no elastic fibers. In lung and trachea, the expression levels of MAGP-36 mRNA were about seven times higher than those in other elastic tissues, although the protein abundances were almost at the same levels as other elastic tissues. MAGP-36 seemed to be secreted outside these organs. In brain, kidney, and spleen, although the expression levels of MAGP-36 mRNA were low, substantial amounts of MAGP-36 protein were detected. An immunohistochemical study revealed that MAGP-36 was present at the brush border of the S3 segment of proximal tubules in kidney. Since MAGP-36 is known to bind to mannan, MAGP-36 might be involved in mannose transport in the S3 segment. Thus, MAGP-36 might be multifunctional and present in a wide variety of sites in various organs.  相似文献   

7.
We have purified a glycoprotein from bovine lung washings using affinity chromatography on a maltose-affinity column. On SDS-polyacrylamide gel electrophoresis the protein showed a molecular mass of 36 kDa in the reduced state and 66 kDa in the unreduced state. On gel permeation chromatography the apparent molecular mass was 250 kDa. N-terminal sequencing showed homology to the human matrix protein microfibril-associated protein (hMFAP4), and the glycoprotein was designated bovine MFAP4 (bMFAP4). Lung surfactant protein D (SP-D) was also purified from lung washings, and calcium-dependent binding was demonstrated between bMFAP4 and SP-D. hMFAP4 was cloned, and recombinant hMFAP4 showed the same binding pattern to SP-D as bMFAP4. No binding was seen to recombinant SP-D composed of the neck region and carbohydrate recognition domain of SP-D, indicating that the interaction between MFAP4 and SP-D is mediated via the collagen region of SP-D. MFAP4 also showed calcium-dependent binding to mannan, which was partially inhibited by maltose. Our findings indicate that MFAP4 has two binding specificities, one for collagen and one for carbohydrate, and we suggest that MFAP4 may fix the collectins in the extracellular compartment during inflammation.  相似文献   

8.
Lymphatic-vasculature function critically depends on extracellular matrix (ECM) and on its connections with lymphatic endothelial cells (LECs). However, the composition and the architecture of ECM have not been fully taken into consideration in studying the biology and the pathology of the lymphatic system. EMILIN1, an elastic microfibril-associated protein, is highly expressed by LECs in vitro and colocalizes with lymphatic vessels in several mouse tissues. A comparative study between WT and Emilin1-/- mice highlighted the fact that Emilin1 deficiency in both CD1 and C57BL/6 backgrounds results in hyperplasia, enlargement, and frequently an irregular pattern of superficial and visceral lymphatic vessels and in a significant reduction of anchoring filaments. Emilin1-deficient mice also develop larger lymphangiomas than WT mice. Lymphatic vascular morphological alterations are accompanied by functional defects, such as mild lymphedema, a highly significant drop in lymph drainage, and enhanced lymph leakage. Our findings demonstrate that EMILIN1 is involved in the regulation of the growth and in the maintenance of the integrity of lymphatic vessels, a fundamental requirement for efficient function. The phenotype displayed by Emilin1(-/-) mice is the first abnormal lymphatic phenotype associated with the deficiency of an ECM protein and identifies EMILIN1 as a novel local regulator of lymphangiogenesis.  相似文献   

9.
The aim of this study was to analyze the expression of microfibril-associated protein 2 (MFAP2), microfibril-associated protein 5 (MFAP5) and nuclear localized factor 2 (NLF2) genes in patients with repeated IVF failure and compare with fertile population. Total RNA was isolated from 38 patients (repeated implantation failure, group 1, n = 22; fertile patients, group 2, n = 16). mRNA expression levels were measured quantitatively using real-time polymerase chain reaction. Our results showed that mRNA expression of NLF2 significantly decreased in the infertility group as compared to control group (P = 0.023). In addition a marked decrease was observed in the expression of MFAP2 in women with repeated implantation failure. In conclusion, NLF2 gene expression levels and differences in MFAP2 and MFAP5 gene expressions (albeit being insignificant) between infertile group and control group draw attention to a genetic basis under implantation failure.  相似文献   

10.
Microfibril-associated glycoprotein-1 (MAGP1) is found associated with microfibrils in the extracellular matrix (ECM). In humans, MAGP1 is expressed as two alternatively spliced isoforms: MAGP1A, the extracellular microfibril-associated form; and MAGP1B, an exclusively intracellular isoform derived from the skipping of exon 3. The biological function of MAGP1B is unknown. We performed gene expression profiling to study the cellular response to MAGP1B using whole-genome genechips. We found that MAGP1B specifically induces the expression of genes linked to cell adhesion, motility, metabolism, gene expression, development and signal transduction. Versican, a gene product involved in the structure and functional regulation of the ECM, showed the highest up-regulation in response to MAGP1B. These studies suggest a dual role for MAGP1, with extracellular MAGP1A involved in ECM function, and intracellular MAGP1B modulating the expression of genes that function in cell adhesion, migration and control of ECM deposition.  相似文献   

11.
Elastin is an extracellular matrix protein found in adult and neonatal vasculature, lung, skin and connective tissue. It is secreted as tropoelastin, a soluble protein that is cross-linked in the tissue space to form an insoluble elastin matrix. Cross-linked elastin can be found in association with several microfibril-associated proteins including fibrillin-1, fibrillin-2 and fibulin-1 suggesting that these proteins contribute to elastic fiber assembly, structure or function. To date, the earliest reported elastin expression was in the conotruncal region of the developing avian heart at 3.5 days of gestation. Here we report that elastin expression begins at significantly earlier developmental stages. Using a novel immunolabeling method, the deposition of elastin, fibrillin-1 and -2 and fibulin-1 was analyzed in avian embryos at several time points during the first 2 days of development. Elastin was found at the midline associated with axial structures such as the notochord and somites at 23 h of development. Fibrillin-1 and -2 and fibulin-1 were also expressed at the embryonic midline at this stage with fibrillin-1 and fibulin-1 showing a high degree of colocalization with elastin in fibers surrounding midline structures. The expression of these genes was confirmed by conventional immunoblotting and mRNA detection methods. Our results demonstrate that elastin polypeptide deposition occurs much earlier than was previously appreciated. Furthermore, the results suggest that elastin deposition at the early embryonic midline is accompanied by the deposition and organization of a number of extracellular matrix polypeptides. These filamentous extracellular matrix structures may act to transduce or otherwise stabilize dynamic forces generated during embryogenesis.  相似文献   

12.
13.
14.
The fine distribution of the extracellular matrix glycoprotein emilin (previously known as glycoprotein gp115) (Bressan, G. M., I. Castellani, A. Colombatti, and D. Volpin. 1983. J. Biol. Chem. 258: 13262-13267) has been studied at the ultrastructural level with specific antibodies. In newborn chick aorta the protein was exclusively found within elastic fibers. In both post- and pre-embedding immunolabeling emilin was mainly associated with regions where elastin and microfibrils are in close contact, such as the periphery of the fibers. This localization of emilin in aorta has been confirmed by quantitative evaluation of the distribution of gold particles within elastic fibers. In other tissues, besides being associated with typical elastic fibers, staining for emilin was found in structures lacking amorphous elastin, but where the presence of tropoelastin has been demonstrated by immunoelectron microscopy. This was particularly evident in the oxitalan fibers of the corneal stroma, in the Descemet's membrane, and in the ciliary zonule. Analysis of embryonic aorta revealed the presence of emilin at early stages of elastogenesis, before the appearance of amorphous elastin. Immunofluorescence studies have shown that emilin produced by chick embryo aorta cells in culture is strictly associated with elastin and that the process of elastin deposition is severely altered by the presence of antiemilin antibodies in the culture medium. The name of the protein was derived from its localization at sites where elastin and microfibrils are in proximity (emilin, elastin microfibril interface located protein).  相似文献   

15.
Oxidatively modified LDL mimics several aspects of atherogenesis. In this disease, degradation of the matrix proteins' network also occurs. By a new morphological ex vivo approach, not requiring sample processing, we explored the relationship between the degradation of matrix protein and oxidatively modified LDL. Two-photon excitation fluorescence microscopy images of fresh cross-section rings of rat aorta, acquired while the sample was maintained in a glucose- and oxygen-supplemented buffer, showed straight, parallel, thick, long extracellular matrix proteins. Traditional microscopic examination, requiring sample fixation and staining, shows smaller and curved fibers. Instead, we observed curved and broken fibers after a 30-min incubation of aorta with either LDL containing lipid hydroperoxides, or tert-butyl-hydroperoxide. The adhesion of LDL to the endothelium and its internalization was directly visualized by using a lipid fluorophore. The damage to aorta matrix proteins induced by LDL and tert-butyl-hydroperoxide was fully prevented by antioxidants, such as ascorbate or Trolox C, or inhibitors of proteases. The image spectroscopy of the fibers' autofluorescence (polarization and lifetime) revealed an increased mobility of the fluorescent cross-link in fibers. Damaged matrix proteins were also imaged in aorta samples from apolipoprotein E knock-out mice. Our ex vivo images directly visualized the activation of a fast redox-sensitive proteolytic process in the arterial wall triggered by lipid hydroperoxides in LDL.  相似文献   

16.
The 67-kD elastin-binding protein (EBP) mediates cell adhesion to elastin and elastin fiber assembly, and it is similar, if not identical, to the 67-kD enzymatically inactive, alternatively spliced beta-galactosidase. The latter contains an elastin binding domain (S- GAL) homologous both to the aorta EBP and to NH2-terminal sequences of serine proteinases (Hinek, A., M. Rabinovitch, F. W. Keeley, and J. Callahan. 1993. J. Clin. Invest. 91:1198-1205). We now confirm the functional importance of this homology by showing that elastolytic activity of a representative serine elastase, porcine pancreatic elastase, was prevented by an antibody (anti-S-GAL) and by competing with purified EBP or S-GAL peptide. Immunohistochemistry of adult aorta indicates that the EBP exists as a permanent component of mature elastic fibers. This observation, together with the in vitro studies, suggests that the EBP could protect insoluble elastin from extracellular proteolysis and contribute to the extraordinary stability of this protein. Double immunolabeling of fetal lamb aorta with anti-S- GAL and antitropoelastin antibodies demonstrated, under light and electron microscopy, intracellular colocalization of the proteins in smooth muscle cells (SMC). Incubation of SMC with galactosugars to dissociate tropoelastin from EBP caused intracellular aggregation of tropoelastin. A tropoelastin/EBP complex was extracted from SMC lysates by coimmunoprecipitation and cross-linking, and its functional significance was addressed by showing that its dissociation by galactosugars caused degradation of tropoelastin by endogenous serine proteinase(s). This suggests that the EBP may also serve as a "companion" to intracellular tropoelastin, protecting this highly hydrophobic protein from self-aggregation and proteolytic degradation.  相似文献   

17.
Mutations in the microfibrillar protein fibrillin-1 or the absence of its binding partner microfibril-associated glycoprotein (MAGP1) lead to increased TGFβ signaling due to an inability to sequester latent or active forms of TGFβ, respectively. Mouse models of excess TGFβ signaling display increased adiposity and predisposition to type-2 diabetes. It is therefore interesting that individuals with Marfan syndrome, a disease in which fibrillin-1 mutation leads to aberrant TGFβ signaling, typically present with extreme fat hypoplasia. The goal of this project was to characterize multiple fibrillin-1 mutant mouse strains to understand how fibrillin-1 contributes to metabolic health. The results of this study demonstrate that fibrillin-1 contributes little to lipid storage and metabolic homeostasis, which is in contrast to the obesity and metabolic changes associated with MAGP1 deficiency. MAGP1 but not fibrillin-1 mutant mice had elevated TGFβ signaling in their adipose tissue, which is consistent with the difference in obesity phenotypes. However, fibrillin-1 mutant strains and MAGP1-deficient mice all exhibit increased bone length and reduced bone mineralization which are characteristic of Marfan syndrome. Our findings suggest that Marfan-associated adipocyte hypoplasia is likely not due to microfibril-associated changes in adipose tissue, and provide evidence that MAGP1 may function independently of fibrillin in some tissues.  相似文献   

18.
The synthesis and extracellular deposition of elastin by cultured neonatal rat aorta smooth muscle cells has been followed. The addition of beta-aminopropionitrile to the culture medium promotes accumulation of soluble precursors of elastin. Under such conditions, a protein possessing characteristics of a soluble elastin precursor with an apparent molecular weight of 77,000 was detected and partially purified. Pulse-chase studies suggested that this 77-kDa protein undergoes an extracellular, enzymatically catalyzed process to a 71-kDa protein. This 71-kDa protein is strikingly similar to tropoelastins isolated from other tissue systems, in which no evidence for higher molecular weight soluble precursors is at present available. Data presented in this communication suggest that the 77-kDa protein, which we have designated protropoelastin, represents a precursor to the tropoelastin moiety produced in the neonatal rat smooth muscle cell culture.  相似文献   

19.
Marfan syndrome (MFS) is a systemic disorder of the connective tissues caused by insufficient fibrillin-1 microfibril formation and can cause cardiac complications, emphysema, ocular lens dislocation, and severe periodontal disease. ADAMTSL6β (A disintegrin-like metalloprotease domain with thrombospondin type I motifs-like 6β) is a microfibril-associated extracellular matrix protein expressed in various connective tissues that has been implicated in fibrillin-1 microfibril assembly. We here report that ADAMTSL6β plays an essential role in the development and regeneration of connective tissues. ADAMTSL6β expression rescues microfibril disorder after periodontal ligament injury in an MFS mouse model through the promotion of fibrillin-1 microfibril assembly. In addition, improved fibrillin-1 assembly in MFS mice following the administration of ADAMTSL6β attenuates the overactivation of TGF-β signals associated with the increased release of active TGF-β from disrupted fibrillin-1 microfibrils within periodontal ligaments. Our current data thus demonstrate the essential contribution of ADAMTSL6β to fibrillin-1 microfibril formation. These findings also suggest a new therapeutic strategy for the treatment of MFS through ADAMTSL6β-mediated fibrillin-1 microfibril assembly.  相似文献   

20.
We have shown previously that the 67-kDa elastin binding protein (EBP) colocalizes intracellularly and extracellularly with tropoelastin in fetal sheep aorta, suggesting that these two proteins associate along the secretory pathway. Moreover, we have established that association with EBP protects tropoelastin from serine proteinases and from intracellular coacervation, and is necessary for its proper extracellular assembly. Since the production of tropoelastin by aortic smooth muscle cells (Ao SMC) exceeds production of the EBP, we speculated that this binding protein might recycle back into the cell, associating again with newly synthesized tropoelastin. In this report we labeled cultured Ao SMC externally with the F(ab′)2 fragments of immunoglobulin which recognizes sheep EBP and followed trafficking of EBP by immunofluorescence and electron microscopy. Our results indicate that the majority of the EBP residing on the cell surface can be internalized to endocytic compartments (but not to lysosomes) and recycled back to the plasma membrane within 45-60 min. We have also determined that reagents disturbing pH of distinct endocytic compartments (chloroquine and bafilomycin A1, but not ammonium chloride) arrest recycling of the EBP and, at the same time, strongly inhibit deposition of insoluble elastin in cultures of sheep Ao SMC and in organ cultures of chicken aorta. In contrast, neither chloroquine nor bafilomycin A1 inhibit total protein synthesis or synthesis of tropoelastin. Our results suggest that the EBP serves as a reusable shuttle protein for tropoelastin and that its recycling is essential for effective deposition of insoluble elastin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号