首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elaine and Gary Ostrander spent their youth in New Jersey and New York before heading to Nebraska for their teen years and eventually Washington State for High School and college, as their father moved around in library administration. Elaine was an undergraduate at the University of Washington, a graduate student at the Oregon Health Sciences University and a postdoc with James Wang at Harvard, studying DNA supercoiling. She next went to Berkeley, where she began the canine genome project, initiating the meiotic linkage map and working on human chromosome 21 at the Lawrence Berkeley National Labs. In 1993 she moved to the Fred Hutchinson Cancer Research Center where she is now a Member of the Divisions of Clinical Research and Human Biology. She is also an Affiliate Professor of Genome Sciences and Biology at the University of Washington, and heads the Program in Genetics at the Hutchinson Center. Gary completed his undergraduate degree in Biology at Seattle University, a M.S. degree at Illinois State University and a Ph.D at the University of Washington in Ocean and Fisheries Science. He went on to be a postdoc in the Department of Pathology at the University of Washington Medical School while being mentored by Senitroh Hakomori of the Fred Hutchinson Cancer Research Center and Eric Holmes of the Pacific Northwest Research Foundation. His work focused on using novel aspects of the biology of fishes to address fundamental questions about cancer. He subsequently held both faculty and administrative positions at Oklahoma State University. Since 1996, he has been at the Johns Hopkins University, where he currently holds academic appointments in the Departments of Biology and Comparative Medicine and is the Associate Provost for Research.  相似文献   

2.
H H Pattee 《Bio Systems》2002,64(1-3):5-11
This paper summarizes Michael Conrad's academic and professional career from the time he began his Ph.D. studies in 1964 to his appointment at Wayne State University in 1979. It describes the origins of several of his major research interests and presents a personal evaluation of how this early work continues to be of fundamental importance.  相似文献   

3.
The career of Marc Mareel is a synthesis of scientific research and clinical activity. During his medical studies, he already made his first enthusiastic steps in research via experimental work on avian developmental biology. Later, during his training as a radiotherapist, he founded his own laboratory for experimental cancer research. There he built up his international reputation as a pioneer in invasion research. Although invasion is the hallmark of tumor malignancy, he also kept an open mind about invasion in non-cancer conditions, such as in placental behavior, developmental biology, immunology and parasitology. His contribution to our understanding of invasion mechanisms has been both technical and conceptual. A number of assays have been developed in his lab, such as the embryonic chick heart and collagen gel invasion models, that have been (and still are) useful for many other research teams. He also contributed to the discovery of a number of key elements in the process of invasion, such as the stromal influence (including its extracellular matrix) and the cadherin family of cell-cell adhesion molecules. Concerning metastasis formation, he developed the original concept that a number of interacting eco-systems are implicated, such as the primary tumor, regional lymph nodes, the bone marrow and the (pre)metastatic niches in distant organs. Since his retirement, Marc Mareel has continued to integrate clinical practice with research creativity. He favours the idea of translational research bringing the results of laboratory findings to medical applications, and exploiting the feedback to the laboratory. The team in the Laboratory of Experimental Cancer Research at Ghent University currently consists of about 25 collaborators, who continue to appreciate his inspiring ideas and suggestions.  相似文献   

4.
Philip Cohen     
Cohen P 《Current biology : CB》2004,14(15):R597-R598
Philip Cohen trained at University College London and, after postdoctoral research at the University of Washington, joined the University of Dundee Scotland, in 1971, where he has worked ever since. He is a Royal Society Research Professor and Director of the Medical Research Council Protein Phosphorylation Unit. His main contributions have been in the area of protein phosphorylation and its role in cell regulation and human disease. In 1998, he was knighted for his contributions to biochemistry and the development of Life Sciences at Dundee.  相似文献   

5.
SYNOPSIS. This symposium on arthropod development is dedicatedto the memory of Howard A. Schneiderman, who died on December5, 1990. Howard devoted much of his professional life to researchon arthropods and was the author of numerous publications onthe developmental biology of moths and flies. At Case-WesternReserve University and at the University of California-Irvinehe founded research institutes devoted to developmental biologyon arthropods as well as other organisms. Howard Schneidermanchampioned the use of insect growth regulators, which derivedfrom his research on the chemistry and physiology of juvenilehormone, as environmentally innocuous methods of controllinginsect pests of our food and fiber. In recent years he was aproponent of the use of molecular biology to alter the plantgenome so that insect-resistant crops might be grown and therebyreduce the use of insecticides. His global perspective was evidentin his understanding of how biotechnology could be applied toworld agriculture. Moreover, he quickly achieved prominencein promoting industry-university relations in his capacity asSenior Vice President for Research and Development at the MonsantoCompany. The cooperation among academic and industrial institutionsthat he fostered stands as a model for such relationships. HowardSchneiderman's influence on science and its applications, andon the universityindustry interface was profound and will befelt for many years to come.  相似文献   

6.
Believe it or not, as a boy Carlo Croce liked to hang out in art museums, to his mother’s chagrin. There are a lot of art museums in Italy, so his mother started dropping him off and going off to the coffee bar to find more interesting company. He bought his first painting, an old master, at age 12 and that used all his savings. He didn't resume his old master collection until he was in his 30s and had saved some money from his job at the Wistar Institute in Philadelphia. He now has an exciting and growing collection.In the meantime, he received his MD degree from the University of Rome “La Sapienza” while reading textbooks and journals in English to supplement the old style medical education. He planned to join Karl Habel at Scripps Clinic in 1970 for a research fellowship just as Dr. Habel was struck in his prime by a monkey B virus infection, so Carlo was diverted from California to Philadelphia to join Hilary Koprowski's internationally known Wistar Institute of Anatomy and Biology. I was a Ph.D. student at Wistar at the time and witnessed the arrival of the quiet 25 yr. old Italian who was too shy to try out his textbook English.He began his work in somatic cell genetics and virology in a large laboratory where a number of us worked on related projects, including Barbara Knowles (now Associate Director for Research at Jackson Laboratory) and Davor Solter (now Director of Developmental Biology, Max Planck Institute, Freiburg, Germany).One of his first accomplishments was to map the very first viral integration site on chromosome 7q in an SV40 transformed fibroblast cell line, using human-mouse somatic cell hybrids that retained human chromosome 7, the SV40 T-antigen and the SV40 genome. Very recently, one of his hybrid clones was used by others to clone the SV40 genome integration site and to show that the SV40 genome had integrated into a common fragile site.Still using somatic cell hybrids, Carlo Croce and his laboratory began in the late 70s and early 80s to map genes important in cancer, such as the immunoglobulin genes that are rearranged in lymphomas, along with the MYC and BCL2 genes among others. These experiments took advantage of the leukemia/lymphoma specific translocation to walk from immunoglobulin loci, and later TCR loci, into the oncogene loci juxtaposed by translocation, the beginning of positional cloning of translocation breakpoints. These studies involved collaborations with valued colleagues, including Peter Nowell, the co-discoverer with David Hungerford, of the Philadelphia chromosome, the first reported cancer specific chromosome alteration. In the exciting decode of the 1980s, the Croce laboratory published 23 reports in Science, including the discovery of the BCL2 gene with Yoshiide Tsujimoto (now University of Osaka). They also observed that mistakes by immunoglobulin family rearrangement/recombination machinery was responsible for the type of chromosome translocations that involved the IG and TCR genes.Carlo Croce has been not only an outstanding laboratory scientist with numerous important discoveries to his credit; he has also been the Director of an NCI designated Cancer Center, first at the Fels Institute for Cancer Research, where he built a first class basic cancer research faculty from the ground up. In 1991, he moved his cancer research faculty to Jefferson Medical College, where it took the name of its benefactor, Sidney Kimmel, and became the Kimmel Cancer Center. At KCI the Croce laboratory continued to find and study genes involved in cancer development: oncogenes activated by translocation such as ALL1, involved in biphenotypic leukemias, discovered with another important collaborator, Eli Canaani and TCL1 (with Gianni Russo’s lab) activated by translocation to the TCRa locus in lymphomas of ataxia telangiectasia patients; or tumor suppressor genes, lost usually through deletions in epithelial cancers, such as FEZ1/LZTS1 at 8p22 lost in prostate, breast and other cancers and the FHIT gene at the 3p14.2 common fragile site (discovered in a collaboration with my laboratory), confirming a long held hypothesis that genes at chromosome fragile sites could contribute to cancer development through frequent chromosomal rearrangements. At the same time, Carlo Croce was living the nearly always tumultuous life of a Director of a Cancer Center, involving recruitment of faculty, constant bargaining with Deans, department chairman, University administrators, but he still manages to fit in a few skiing meetings, gossip sessions with colleagues like Web Cavenee, visits for good coffee, good food and TV appearances in his beloved Italy and most of all, he still manages to study, examine, buy, transport, restore, reframe and admire his old master paintings. I think he loves it as much as science because discovering a beautiful but misattributed painting at an obscure or even well known auction house, buying it and then proving that it is actually a painting by a Gentileschi or a Cavallino is as thrilling and elegant as discovering the connection between a specific gene alteration and its cancer.  相似文献   

7.
The Bernard Distinguished Lecturers are individuals who have a history of experience and expertise in teaching that impacts multiple levels of health science education. Dr. Joel Michael more than meets these criteria. Joel earned a BS in biology from CalTech and a PhD in physiology from MIT following which he vigorously pursued his fascination with the mammalian central nervous system under continuous National Institutes of Health funding for a 15-yr period. At the same time, he became increasingly involved in teaching physiology, with the computer being his bridge between laboratory science and classroom teaching. Soon after incorporating computers into his laboratory, he began developing computer-based learning resources for his students. Observing students using these resources to solve problems led to an interest in the learning process itself. This in turn led to a research and development program, funded by the Office of Naval Research (ONR), that applied artificial intelligence to develop smart computer tutors. The impact of problem solving on student learning became the defining theme of National Science Foundation (NSF)-supported research in health science education that gradually moved all of Dr. Michael's academic efforts from neurophysiology to physiology education by the early 1980's. More recently, Joel has been instrumental in developing and maintaining the Physiology Education Research Consortium, a group of physiology teachers from around the nation who collaborate on diverse projects designed to enhance learning of the life sciences. In addition to research in education and learning science, Dr. Michael has devoted much of his time to helping physiology teachers adopt modern approaches to helping students learn. He has organized and presented faculty development workshops at many national and international venues. The topics for these workshops have included computer-based education, active learning, problem-based learning, and the use of general models in teaching physiology.  相似文献   

8.
Since 1953, illustrations have been inserted as "tailpieces" at the ends of articles in The American Journal of Physiology and The Journal of Applied Physiology. The drawings were made by Homer Wheelon, a member of the American Physiological Society from 1919 until his death in 1960. Forty-five years after his death, Wheelon is unknown, but he contributed 32 publications to the medical literature and trained J. Earl Thomas, an important 20th century gastrointestinal physiologist. Wheelon was born into poverty in 1883 to itinerant Methodist preachers, circumstances that guided his education and career choices. Throughout his life, Wheelon exhibited a fondness and talent for art and photography and an unusual breadth of intellectual interests and knowledge. Wheelon received a bachelor's degree from the University of Washington, then studied at the University of Oregon, Northwestern University, and St. Louis University. Earning his M.D. from St. Louis University and assuming a faculty position there, Wheelon and his graduate student, Thomas, conducted widely recognized gastrointestinal research. Returning to Seattle in 1921, Wheelon became a highly respected physician and hospital administrator, but he also found time to indulge his interest in visual art and poetry. In 1933, inspired by observing a rabbit being used in a pregnancy test, Wheelon began to write and illustrate an epic, 322-page poem, Rabbit No. 202, illustrations from which became the journals' tailpieces. The present study traces Wheelon's personal life and scientific career in an attempt to understand this complex man and the origins of his unusual poem and its drawings.  相似文献   

9.
Gal J 《Chirality》2008,20(1):5-19
Nearly a decade after discovering molecular chirality in 1848, Louis Pasteur changed research direction and began investigating fermentations. Conflicting explanations have been given for this switch to microbiology, but the evidence strongly suggests that Pasteur's appointment in 1854 to the University of Lille--an agricultural-industrial region where fermentation-based manufacturing was of great importance--and an appeal for help in 1856 by a local manufacturer experiencing problems in his beetroot-fermentation-based alcohol production played a significant role. Thus began, in late 1856, Pasteur's pioneering studies of lactic and alcoholic fermentations. In 1857, reportedly as a result of a laboratory mishap, he found that in incubations of ammonium (+/-)-tartrate with unidentified microorganisms (+)-tartaric acid was consumed with considerable preference over (-)-tartaric acid. In 1860, he demonstrated a similar enantioselectivity in the metabolism of tartaric acid by Penicillium glaucum, a common mold. Chance likely played a significant role both in Pasteur's shift to microbiology and his discovery of enantioselective tartrate fermentations, but he rejected pure serendipity as a significant factor in experimental science and in his own career. Pasteur's milestone discovery of biological enantioselectivity began the process that in the long run established the fundamental importance of molecular chirality in biology.  相似文献   

10.
11.
Charles F. Yocum has been a leader in the applications of biochemical techniques to the resolution and reconstitution of Photosystem II. His formal science education began as an undergraduate in biochemistry at Iowa State University and continued with graduate work in photosynthesis, first at the Illinois Institute of Technology and later at Indiana University. Following postdoctoral work at Cornell University, he joined the faculty of the University of Michigan where he has remained throughout his academic career. Charlie's contributions to a biochemical understanding of photosynthesis, particularly Photosystem II have been considerable, but most notably include his initial isolation of the first highly active oxygen-evolving particle from higher plant chloroplasts, the well-known and widely utilized `BBY particles'. In the aftermath of that isolation, Charlie's research further resolved these particles into ever finer and simpler, but active, Photosystem II complexes. In addition, Charlie's research has provided significant insight into the roles of both Cl and Ca2+ as required cofactors in photosynthetic oxygen evolution. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Jonathon Howard.     
Jonathon 'Joe' Howard (Fig. 1) is Group Leader and Director at the Max Planck Institute of Molecular Cell Biology and Genetics; he and his research group moved to Dresden, Germany, in July 2001. Howard received his PhD in neurobiology in 1983 from the Australian National University in Canberra. He did postdoctoral research there and also at the University of Bristol, UK, and at the University of California, San Francisco. In 1989, he joined the faculty at the University of Washington. His book "Mechanics of Motor Proteins and the Cytoskeleton" was published earlier this year. [interview by Mari N. Jensen]  相似文献   

13.
Synopsis Bill Ricker’s career went through many twists in his academic years. He had taken botany in his senior matriculation year at high school and he had collected over 100 species of flora before commencement of university life. At the conclusion of his first university year, he set out over the summer to collect a much larger sample of species, primarily from the Great Lakes-St. Lawrence ecoregion, to fulfil a requirement for a second year botany course (spermatophytes). He identified about 390 species, and some 254 were collected and pooled with those from previous years to make a final submission of 354 spermatophyte species. Field plant identification continued in each academic year thereafter, in concert with collections and identifications of aquatic invertebrates in his summer projects while under the employment of the Ontario Fisheries Research Laboratory. At the conclusion of his undergraduate years, Bill had taken more courses in botany than in zoology, and it was the summer employment that had really prepared him for postgraduate work in fisheries biology, which was ecologically oriented. When Bill left Ontario in the autumn of 1931 he had identified over 600 species of plants, excluding lower cryptogams, but including many aquatic species of higher plants. In western North America Bill’s botanical career began at Cultus Lake in 1931. He again studied all aspects of the basin while employed with the federal government, and from the work he assembled a Ph.D. thesis. At the time of thesis completion he had identified over 300 species of flora, including alpine plants at timberline, 1500 – 1800 m above lake level, and planktonic algae in its water column. In 1939, after more field fisheries work in the Fraser River basin of British Columbia, Bill accepted a position with the biological staff at Indiana University. In this period which concluded in 1950 he identified another 50 – 110 species of flora, all in the Carolinian ecoregion, and hitherto not seen by him. Considering all floral classes, Bill’s eastern North American repertoire had by then added up to 791 species, representative of more than 112 families of plants. Returning west for the remainder of his life, new identifications elsewhere added to his Cultus Lake list which slowly added up to about 1000 species for the west coastal region of North America. Flora was also identified elsewhere in the mid-continental region of North America, in Eurasia where the Abisko region of Lappland was a highlight, and in South America and New Zealand. Records of his botanical prowess, were kept primarily in his diaries, which began in 1923 and were maintained consistently to the end of 1934, and thereafter intermittently to 1949. The diaries reveal that his career as a budding botanist was subtly hijacked by a wily Professor W.H.K. Harkness in the rival Biology Department who out-manoeuvred Drs. R.B. Thompson and R.A. Sifton in the Botany Department. The former always managed to employ Bill in summer and keep him occupied in the department’s labs during the autumn and winter and spring, tying up any free time when the botanist had approached him on lab work. Certainly, the botany courses taken and which he excelled at were more appropriate for his aquatic ecological pursuits. Salesmanship won the day for the zoologists, but Bill was a life-long botanist regardless of whatever else he studied or managed throughout his professional career. The last days of his life had a botanical conclusion.  相似文献   

14.
Albert Harris was educated at The Norfolk Academy, Norfolk, Virginia, USA (1961). He then earned a Batchelor of Arts Degree in Biology from Swarthmore College, in Pennsylvania, USA (1965), followed by a Ph.D. in Biology (1971) from Yale University, where his Dissertation Advisor was the great John Phillip Trinkaus. He held a Damon-Runyon Postdoctoral Fellowship in Cancer Research in 1970-72, under Michael Abercrombie, FRS, at the Strangeways Research Laboratory of Cambridge University, England. Then he accepted a position as Assistant Professor in the Zoology Department of the University of North Carolina at Chapel Hill, N.C. USA. In 1977, he was promoted to Associate Professor of Zoology, and in 1983 was promoted to Full Professor of Biology. In Oct.-Nov. 1991 he was honored to be Distinguished Visiting Professor of Zoology at the University of California at Davis.  相似文献   

15.
The career of Richard Clothier is reviewed in the light of his long-standing collaboration with Michael Balls and Laurens Ruben at the University of East Anglia (UEA), the University of Nottingham, and Reed College, Portland, Oregon, USA. It began with work at UEA on the aetiology of the lymphosarcoma of Xenopus laevis, followed by studies on the effects of exposure to N-nitroso-N-methylurea on T-cell functions, which led to many contributions to comparative immunology. This was followed by the establishment of the FRAME Research Programme, which led to participation in extensive studies on the development of in vitro cytotoxicity tests and their application in acute and topical toxicity testing. A FRAME Trustee since 1983, Richard Clothier was a co-founder, and subsequently Director, of the FRAME Alternatives Laboratory in the University of Nottingham Medical School, where he led successful collaborations with a number of industrial partners and, in particular, with the European Centre for the Validation of Alternative Methods (ECVAM).  相似文献   

16.
Professor T. C. Tung (Fig. 1) was a prominent experimental embryologist in China. He was born in Jin County, Zhejiang Province, China in 1902. After he obtained his Bachelor's degree from the Department of Biology, Fudan University, Shanghai in 1927, he was appointed as a teaching assistant in that department until he moved to Belgium in 1930. He studied as a graduate student in Professors A. Brachet and A. M. Dalcq's laboratory at the Universite Libre de Bruxelles, Belgium and obtained his Doctor of Science degree there in 1934. During that period, he made two short working visits to the Institute of Marine Biology in France and took one training course at Cambridge University (UK). In 1934, he was invited to return to China as a Full Professor to teach at several Chinese universities, (Shandong University in Qingdao, Shandong Province; the National University in Nanjing; and Fudan University in Shanghai). He spent 1 year at Yale University (USA) between 1948 and 1949 as an invited scientist in a joint research project and finally returned to China in 1949. He was Chairman of the Department of Zoology, Shandong University in Qingdao (1949-1952), Vice-President of Shandong University (1952-1960), Director of the Marine Biological Institute, the Chinese Academy of Sciences (CAS) in Qingdao (1949-1958), Director of the Institute of Oceanology (CAS) in Qingdao (1959-1966), Director of the Institute of Zoology (CAS) in Beijing (1960-1962), member of CAS since 1955, Vice-Chairman of the Biological and Geographical Division of CAS (1955-1958), Chairman of the Biological Division of CAS (1959-1979) and Vice-President of CAS in Beijing (1978-1979). In spite of his administrative duties, he spent most of his life conducting bench work in his laboratories at the Institutes of Oceanology and Zoology, CAS, respectively, until he passed away in March 1979. Professor Tung's main research interest was with classic experimental studies on the determination of the egg axis and symmetry planes of fertilized eggs, early differentiation and organizing substances of egg cytoplasm, induction between embryonic cells and cytoplasm in embryogenesis, immunological studies on nuclear transplanted eggs, and cell fusion etc., in several types of animals. He conducted his experiments on a number of invertebrates (ascidians and Amphioxus) and vertebrates (fish and amphibians) by means of very skillful microsurgical operations and the nuclear transplantation method. Among these topics, his studies on the organization and developmental potency of Amphioxus eggs were unique. His important contribution to this research field involved not only establishing a practical method for collecting and using this rare animal for experimental purposes, but also clarifying controversy about the nature and early development of its eggs. He also provided conclusive evidence to determine its evolutionary position between invertebrates and vertebrates. The present article briefly reviews the main results obtained by Professor Tung and his colleagues on Amphioxus. Although their original articles were written both in Chinese and English, many international readers may not even know those original works because they were only published in scientific journals inside China from the 1950s. Comments and discussion on the experimental results of Amphioxus research by Tung's group and those from other earlier authors are also included.  相似文献   

17.
Inge-Vechtomov SG 《Genetika》2007,43(10):1287-1298
Mikhail E. Lobashev (1907-1971), Head of the Department of Genetics and Breeding with the Leningrad (now, St. Petersburg) State University from 1957 to 1971, had traveled a long way from a homeless to an Honored Scientist of the Russian Federation. Lobashev was among the discoverers of chemical mutagenesis in Drosophila; he pioneered in connecting the mutation process and the repair of genetic material and developed the concept of signal inheritance. Through the entire Great Patriotic War, he served with the field forces, and defended his doctoral dissertation on the physiological hypothesis of mutation process in 1946 on the return to the University. In 1948, Mikhail Efimovich was discharged from the University, where he was the Dean of the Biological Faculty, as a Morganist. On his return to the University in 1957, Lobashev devoted all his energies to the restoration of genetic education in this country, wrote the first domestic genetic textbook in the post-Lysenko period, organized the research at the Department of Genetics and Breeding, and created the scientific school, whose representatives are still successfully working in the field of genetics.  相似文献   

18.
Software Component Frameworks are well known in the commercial business application world and now this technology is being explored with great interest as a way to build large-scale scientific applications on parallel computers. In the case of Grid systems, the current architectural model is based on the emerging web services framework. In this paper we describe progress that has been made on the Common Component Architecture model (CCA) and discuss its success and limitations when applied to problems in Grid computing. Our primary conclusion is that a component model fits very well with a services-oriented Grid, but the model of composition must allow for a very dynamic (both in space and in time) control of composition. We note that this adds a new dimension to conventional service workflow and it extends the “Inversion of Control” aspects of most component systems. Dennis Gannon is a professor of Computer Science at Indiana University. He received his Ph.D. in Computer Science from the University of Illinois in 1980 and his Ph.D. in Mathematics from the University of California in 1974. From 1980 to 1985, he was on the faculty at Purdue University. His research interests include software tools for high performance distributed systems and problem solving environments for scientific computation. Sriram Krishnan received his Ph.D. in Computer Science from Indiana University in 2004. He is currently in the Grid Development Group at the San Diego Supercomputer Center where he is working on designing a Web services based architecture for biomedical applications that is secure and scalable, and is conducive to the creation of complex workflows. He received my undergraduate degree in Computer Engineering from the University of Mumbai, India. Liang Fang is a Ph.D. student in Computer Science at Indiana University. His research interests include Grid computing, Web services, portals, their security and scalability issues. He is a Research Assistant in Computer Science at Indiana University, currently responsible for investigating authorization and other security solutions to the project of Linked Environments for Atmospheric Discovery (LEAD). Gopi Kandaswamy is a Ph.D. student in the Computer Science Department at Indiana University where he is current a Research Assistant. His research interests include Web services and workflow systems for the Grid. Yogesh Simmhan received his B.E. degree in Computer Science from Madras University, India in 2000, and is a doctoral candidate in Computer Science at Indiana University. He is currently working as a Research Assistant at Indiana University, investigating data management issues in the LEAD project. His interests lie in data provenance for workflow systems and its use in data quality estimation. Aleksander Slominski is a Ph.D. student in the Computer Science at Indiana University. His research interests include Grid and Web Services, streaming XML Pull Parsing and performance, Grid security, asynchronous messaging, events, and notifications brokers, component technologies, and workflow composition. He is currently working as a Research Assistant investigating creation and execution of dynamic workflows using Grid Process Execution Language (GPEL) based on WS-BPEL.  相似文献   

19.
Malcolm J Morrison 《Génome》2008,51(6):465-469
Charles Edward Saunders was born in London, Ontario, in 1867. His father, Sir William Saunders, was the first director of the Dominion Experimental Farms (1886-1911). Charles received his B.A. with honours in science from the University of Toronto in 1888 and his Ph.D. in chemistry from Johns Hopkins University in Baltimore, Maryland, in 1891. He attempted a career in music, his first love, from 1893 to 1902. With his father, Charles attended the 1902 International Conference on Plant Breeding and Hybridization in New York, where he learned of Mendel's theories of inheritance and their applicability to plant breeding. When he began work in 1903 in the Division of Cereal Breeding and Experimentation at the Central Experimental Farm in Ottawa, he used the knowledge he had gained at that conference. It was Charles's goal to achieve "fixity" in the varieties that had been bred and released using phenotypic mass selection, prior to his tenure as Cerealist. He selected four heads from the wheat variety Markham and in the winter of 1904 he performed a "chewing test" to select for gluten elasticity and colour. Seeds from two heads were chosen, and seeds from one went on to produce the variety Marquis after extensive yield trials on the Prairies. Marquis was 7 to 10 days earlier than Red Fife, the standard bread wheat of the Prairies. The earliness and tremendous yield of Marquis wheat resulted in the rapid and successful settlement of the Great Plains and countless billions of dollars in revenue to Canada. By 1923, 90% of the spring wheat in Canada and 70% in the USA was Marquis. Charles continued as Dominion Cerealist until his retirement in 1922. He was knighted in 1934, and died in 1937.  相似文献   

20.
Summary The transport of calcium from mineralized granules stored in the Malpighian tubules to the puparium of the face fly,Musca autumnalis De Geer, was studied. Calcium was transported directly from the tubules to the cuticle via the hemolymph. Little, if any, calcium entered the hindgut or other tissues during or prior to transport. A total of approximately 0.8 mg of calcium per larva was transported, beginning at the wandering stage; peak hemolymph concentrations occurred at anterior retraction. Hemolymph calcium levels subsequently decreased as puparial calcium increased. Puparial mineralization utilized most of the minerals stored during the larval stage, with lesser amounts of minerals being recovered in the adult or excreted. Deposition of mineral salts in the cuticle was accompanied by an increase in cuticular pH from 7.0 to 8.4. The house fly,Musca domestica L., which contains much lower concentrations of minerals in the puparial cuticle, exhibited no increase in cuticular pH during pupariation. Biomineralization of the face fly puparial cuticle appears to occur, in part, as a result of ionic equilibria involving calcium and magnesium phosphates and carbonates, which have relatively low solubility products at alkaline pH.Contribution No. 87-237-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas. Cooperative investigation between Agricultural Research Service, U.S. Department of Agriculture and the Kansas Agricultural Experiment Station. K.J.K. is a research chemist and adjunct professor at U.S. Grain Marketing Research Laboratory and Kansas State University, respectively. Mention of a proprietary product in this paper does not imply its approval by the USDA to the exclusion of other products that may also be suitable. Reprint requests to A.B. Broce  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号