首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four known and nine new ceftazidime-resistance β-lactamases were generated by a novel, contaminating codon-based mutagenesis approach. In this method, wild-type codons are spiked with a set of mutant codons during oligonucleotide synthesis, generating random combinatorial libraries of primers that contain few codon replacements per variant. Mutant codons are assembled by tandem addition of a diluted mixture of five Fmoc-dimer amidites to the growing oligo and a mixture of four DMTr-monomer amidites to generate 20 trinucleotides that encode a set of 18 amino acids. Wild-type codons are assembled with conventional chemistry and the whole process takes place in only one synthesis column, making its automation feasible. The random and binomial behavior of this approach was tested in the polylinker region of plasmid pUC19 by the synthesis of three oligonucleotide libraries mutagenized at different rates and cloned as mutagenic cassettes. Additionally, the method was biologically assessed by mutating six contiguous codons that encode amino acids 237–243 (ABL numbering) of the TEMpUC19 β-lactamase, which is functionally equivalent to the clinically important TEM-1 β-lactamase. The best ceftazidime-recognizing variant was a triple mutant, R164H:E240K: R241A, displaying a 333-fold higher resistance than the wild-type enzyme.  相似文献   

2.
Combinatorial codon-based amino acid substitutions   总被引:1,自引:0,他引:1       下载免费PDF全文
Twenty Fmoc-protected trinucleotide phosphoramidites representing a complete set of codons for the natural amino acids were chemically synthesized for the first time. A pool of these reagents was incorporated into oligonucleotides at substoichiometric levels to generate two libraries of variants that randomly carry either few or many codon replacements on a region encoding nine amino acids of the bacterial enzyme TEM-1 β-lactamase. Assembly of the libraries was performed in a completely automated mode through a simple modification of ordinary protocols. This technology eliminates codon redundancy, stop codons and enables complete exploration of sequence space for single, double and triple mutations throughout a protein region spanning several residues. Sequence analysis of many non-selected clones revealed a good incorporation of the trinucleotides, producing combinations of mutations quite different from those obtained using conventional degenerate oligonucleotides. Ceftazidime-selection experiments yielded several never before reported variants containing novel amino acid combinations in the β-lactamase omega loop region.  相似文献   

3.
Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.  相似文献   

4.
Bacterial resistance is a serious threat to human health. The production of β-lactamase, which inactivates β-lactams is most common cause of resistance to the β-lactam antibiotics. The Class A enzymes are most frequently encountered among the four β-lactamases in the clinic isolates. Mutations in class A β-lactamases play a crucial role in substrate and inhibitor specificity. SHV and TEM type are known to be most common class A β-lactamases. In the present study, we have analyzed the effect of inhibitor resistant S130G point mutation of SHV type Class-A β-lactamase using molecular dynamics and other in silico approaches. Our study involved the use of different in silico methods to investigate the affect of S130G point mutation on the major physico-chemical properties of SHV type class A β-lactamase. We have used molecular dynamics approach to compare the dynamic behaviour of native and S130G mutant form of SHV β-lactamase by analyzing different properties like root mean square deviation (RMSD), H-bond, Radius of gyration (Rg) and RMS fluctuation of mutation. The results clearly suggest notable loss in the stability of S130G mutant that may further lead to decrease in substrate specificity of SHV. Molecular docking further indicates that S130G mutation decreases the binding affinity of all the three inhibitors in clinical practice.  相似文献   

5.
Absorption of antiserum to crude β-lactamase with a mutant strain lacking the enzyme produced specific β-lactamase antiserum.  相似文献   

6.

Background

Studies on the association between antibiotic treatment and outcomes in outpatients with chronic obstructive pulmonary disease (COPD) and pneumonia are scarce. This study aimed to evaluate the effectiveness of fluoroquinolones and β-lactam/β-lactamase inhibitors for pneumonia in COPD outpatients.

Methods

We conducted a retrospective cohort study and identified 4,851 episodes of pneumonia among COPD outpatients treated with fluoroquinolones or β-lactam/β-lactamase inhibitors from the Taiwan National Health Insurance Research Database during 2002–2011. Using the propensity score analysis, 1,296 pairs of episodes were matched for the demographic and clinical characteristics. The primary outcome was pneumonia/empyema-related hospitalization or emergency department (ED) visits, and the secondary outcomes were treatment failure, all-cause mortality and medical costs within 30 days.

Results

Compared with episodes treated with β-lactam/β-lactamase inhibitors, episodes treated with fluoroquinolones had similar clinical outcomes. The rates of pneumonia/empyema-related hospitalization or ED visits were 3.9% and 3.5% in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively (adjusted hazard ratio [aHR], 1.11; 95% confidence interval [CI], 0.74–1.66). The percentage of treatment failure and all-cause mortality were 28.2% versus 31.3% (adjusted odds ratio, 0.86; 95% CI, 0.73–1.02) and 0.5% versus 0.4% (aHR, 1.40; 95% CI, 0.45–4.41) in the fluoroquinolone and β-lactam/β-lactamase inhibitor groups, respectively. The medical expenditures, including total medical costs (528 versus 455 US dollars) and pneumonia-related costs (202 vs. 155 USD) were also balanced between the two treatment groups (both P >0.05).

Conclusions

For pneumonia in COPD outpatients, fluoroquinolones were associated with similar clinical outcomes and medical expenditures compared with β-lactam/β-lactamase inhibitors.  相似文献   

7.
We characterized 12 clinical isolates of Klebsiella oxytoca with the extended-spectrum β-lactamase (ESBL) phenotype (high minimum inhibitory concentration [MIC] values of ceftriaxone) recovered over 9 months at a university hospital in Japan. To determine the clonality of the isolates, we used pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST), and PCR analyses to detect bla RBI, which encodes the β-lactamase RbiA, OXY-2-4 with overproduce-type promoter. Moreover, we performed the isoelectric focusing (IEF) of β-lactamases, and the determination of the MICs of β-lactams including piperacillin/tazobactam for 12 clinical isolates and E. coli HB101 with pKOB23, which contains bla RBI, by the agar dilution method. Finally, we performed the initial screening and phenotypic confirmatory tests for ESBLs. Each of the 12 clinical isolates had an identical PFGE pulsotype and MLST sequence type (ST9). All 12 clinical isolates harbored identical bla RBI. The IEF revealed that the clinical isolate produced only one β-lactamase. E. coli HB101 (pKOB23) and all 12 isolates demonstrated equally resistance to piperacillin/tazobactam (MICs, >128 μg/ml). The phenotypic confirmatory test after the initial screening test for ESBLs can discriminate β-lactamase RbiA-producing K. oxytoca from β-lactamase CTX-M-producing K. oxytoca. Twelve clinical isolates of K. oxytoca, which were recovered from an outbreak at one university hospital, had identical genotypes and produced β-lactamase RbiA that conferred resistance to piperacillin/tazobactam. In order to detect K. oxytoca isolates that produce RbiA to promote research concerning β-lactamase RbiA-producing K. oxytoca, the phenotypic confirmatory test after the initial screening test for ESBLs would be useful.  相似文献   

8.
β-Lactamases are bacterial enzymes that hydrolyze β-lactam antibiotics. TEM-1 is a prevalent plasmid-encoded β-lactamase in Gram-negative bacteria that efficiently catalyzes the hydrolysis of penicillins and early cephalosporins but not oxyimino-cephalosporins. A previous random mutagenesis study identified a W165Y/E166Y/P167G triple mutant that displays greatly altered substrate specificity with increased activity for the oxyimino-cephalosporin, ceftazidime, and decreased activity toward all other β-lactams tested. Surprisingly, this mutant lacks the conserved Glu-166 residue critical for enzyme function. Ceftazidime contains a large, bulky side chain that does not fit optimally in the wild-type TEM-1 active site. Therefore, it was hypothesized that the substitutions in the mutant expand the binding site in the enzyme. To investigate structural changes and address whether there is an enlargement in the active site, the crystal structure of the triple mutant was solved to 1.44 Å. The structure reveals a large conformational change of the active site Ω-loop structure to create additional space for the ceftazidime side chain. The position of the hydroxyl group of Tyr-166 and an observed shift in the pH profile of the triple mutant suggests that Tyr-166 participates in the hydrolytic mechanism of the enzyme. These findings indicate that the highly conserved Glu-166 residue can be substituted in the mechanism of serine β-lactamases. The results reveal that the robustness of the overall β-lactamase fold coupled with the plasticity of an active site loop facilitates the evolution of enzyme specificity and mechanism.  相似文献   

9.
β-Lactamase inhibition is an important clinical strategy in overcoming β-lactamase-mediated resistance to β-lactam antibiotics in Gram negative bacteria. A new β-lactamase inhibitor, avibactam, is entering the clinical arena and promising to be a major step forward in our antibiotic armamentarium. Avibactam has remarkable broad-spectrum activity in being able to inhibit classes A, C, and some class D β-lactamases. We present here structural investigations into class A β-lactamase inhibition by avibactam as we report the crystal structures of SHV-1, the chromosomal penicillinase of Klebsiella pneumoniae, and KPC-2, an acquired carbapenemase found in the same pathogen, complexed with avibactam. The 1.80 Å KPC-2 and 1.42 Å resolution SHV-1 β-lactamase avibactam complex structures reveal avibactam covalently bonded to the catalytic S70 residue. Analysis of the interactions and chair-shaped conformation of avibactam bound to the active sites of KPC-2 and SHV-1 provides structural insights into recently laboratory-generated amino acid substitutions that result in resistance to avibactam in KPC-2 and SHV-1. Furthermore, we observed several important differences in the interactions with amino acid residues, in particular that avibactam forms hydrogen bonds to S130 in KPC-2 but not in SHV-1, that can possibly explain some of the different kinetic constants of inhibition. Our observations provide a possible reason for the ability of KPC-2 β-lactamase to slowly desulfate avibactam with a potential role for the stereochemistry around the N1 atom of avibactam and/or the presence of an active site water molecule that could aid in avibactam desulfation, an unexpected consequence of novel inhibition chemistry.  相似文献   

10.
1. Mycobacterium smegmatis (N.C.T.C. 8158), M. fortuitum and M. phlei (MPI) produce a constitutive β-lactamase that has penicillinase and cephalosporinase activity. 2. The β-lactamases of these three species of acid-fast bacteria were mainly cell-bound, only small amounts of activity being liberated into the extracellular fluid. The total β-lactamase activity of these mycobacteria was much lower than that of certain Gram-positive organisms, but comparable with that reported for species of Gram-negative bacteria. 3. The β-lactamases of intact cells of the mycobacteria were not freely accessible to any of the substrates tested, but the apparent crypticity factor to benzylpenicillin was greater than that to cephaloridine and cephalosporin C. 4. Attempts to induce β-lactamase activity in M. smegmatis and M. phlei failed even with high concentrations of inducer. 5. The β-lactamases obtained from the three species of mycobacteria showed different substrate specificities, including different relative activities as cephalosporinases and penicillinases respectively. 6. Certain derivatives of 6-aminopenicillanic acid and 7-aminocephalosporanic acid were found to be resistant to hydrolysis by β-lactamases of M. smegmatis and M. fortuitum. 7. The β-lactamase of M. smegmatis was competitively inhibited by a number of β-lactamase-resistant derivatives of 6-aminopenicillanic acid, but not by similar derivatives of 7-aminocephalosporanic acid.  相似文献   

11.
Expansion or shrinkage of existing tandem repeats (TRs) associated with various biological processes has been actively studied in both prokaryotic and eukaryotic genomes, while their origin and biological implications remain mostly unknown. Here we describe various duplications (de novo TRs) that occurred in the coding region of a β-lactamase gene, where a conserved structure called the omega loop is encoded. These duplications that occurred under selection using ceftazidime conferred substrate spectrum extension to include the antibiotic. Under selective pressure with one of the original substrates (amoxicillin), a high level of reversion occurred in the mutant β-lactamase genes completing a cycle back to the original substrate spectrum. The de novo TRs coupled with reversion makes a genetic toggling mechanism enabling reversible switching between the two phases of the substrate spectrum of β-lactamases. This toggle exemplifies the effective adaptation of de novo TRs for enhanced bacterial survival. We found pairs of direct repeats that mediated the DNA duplication (TR formation). In addition, we found different duos of sequences that mediated the DNA duplication. These novel elements—that we named SCSs (same-strand complementary sequences)—were also found associated with β-lactamase TR mutations from clinical isolates. Both direct repeats and SCSs had a high correlation with TRs in diverse bacterial genomes throughout the major phylogenetic lineages, suggesting that they comprise a fundamental mechanism shaping the bacterial evolution.  相似文献   

12.
Bacterial β-lactamase enzymes are in large part responsible for the decreased ability of β-lactam antibiotics to combat infections. The inability to overcome β-lactamase mediated resistance spurred the development of inhibitors with penems and penam sulfones being amongst the most potent and broad spectrum mechanism-based inactivators. These inhibitors form covalent, “suicide-type” inhibitory intermediates that are attached to the catalytic S70 residue. To further probe the details of the mechanism of β-lactamase inhibition by these novel compounds, we determined the crystal structures of SHV-1 bound with penem 1, and penam sulfones SA1-204 and SA3-53. Comparison with each other and with previously determined crystal structures of members of these classes of inhibitors suggests that the final conformation of the covalent adduct can vary greatly amongst the complex structures. In contrast, a common theme of carbonyl conjugation as a mechanism to avoid deacylation emerges despite that the penem and penam sulfone inhibitors form different types of intermediates. The detailed insights gained from this study could be used to further improve new mechanism-based inhibitors of these common class A serine β-lactamases.  相似文献   

13.
The interactions between β-lactamase inhibitory proteins (BLIPs) and β-lactamases have been used as model systems to understand the principles of affinity and specificity in protein-protein interactions. The most extensively studied tight binding inhibitor, BLIP, has been characterized with respect to amino acid determinants of affinity and specificity for binding β-lactamases. BLIP-II, however, shares no sequence or structural homology to BLIP and is a femtomolar to picomolar potency inhibitor, and the amino acid determinants of binding affinity and specificity are unknown. In this study, alanine scanning mutagenesis was used in combination with determinations of on and off rates for each mutant to define the contribution of residues on the BLIP-II binding surface to both affinity and specificity toward four β-lactamases of diverse sequence. The residues making the largest contribution to binding energy are heavily biased toward aromatic amino acids near the center of the binding surface. In addition, substitutions that reduce binding energy do so by increasing off rates without impacting on rates. Also, residues with large contributions to binding energy generally exhibit low temperature factors in the structures of complexes. Finally, with the exception of D206A, BLIP-II alanine substitutions exhibit a similar trend of effect for all β-lactamases, i.e., a substitution that reduces affinity for one β-lactamase usually reduces affinity for all β-lactamases tested.  相似文献   

14.
Enzyme engineering has been facilitated by recombination of close homologues, followed by functional screening. In one such effort, chimeras of two class-A β-lactamases – TEM-1 and PSE-4 – were created according to structure-guided protein recombination and selected for their capacity to promote bacterial proliferation in the presence of ampicillin (Voigt et al., Nat. Struct. Biol. 2002 9:553). To provide a more detailed assessment of the effects of protein recombination on the structure and function of the resulting chimeric enzymes, we characterized a series of functional TEM-1/PSE-4 chimeras possessing between 17 and 92 substitutions relative to TEM-1 β-lactamase. Circular dichroism and thermal scanning fluorimetry revealed that the chimeras were generally well folded. Despite harbouring important sequence variation relative to either of the two ‘parental’ β-lactamases, the chimeric β-lactamases displayed substrate recognition spectra and reactivity similar to their most closely-related parent. To gain further insight into the changes induced by chimerization, the chimera with 17 substitutions was investigated by NMR spin relaxation. While high order was conserved on the ps-ns timescale, a hallmark of class A β-lactamases, evidence of additional slow motions on the µs-ms timescale was extracted from model-free calculations. This is consistent with the greater number of resonances that could not be assigned in this chimera relative to the parental β-lactamases, and is consistent with this well-folded and functional chimeric β-lactamase displaying increased slow time-scale motions.  相似文献   

15.
A novel (+)-γ-lactamase used for the resolution of racemic γ-lactam from Bradyrhizobium japonicum USDA 6 was found as a result of sequence-structure guided genome mining. It consists of 409 amino acids, only 49% of which are identical to the amino acid sequences of the known (+)-γ-lactamase from Sulfolobus solfataricus. This is only the third (+)-γ-lactamase gene to be reported.  相似文献   

16.
The use of three classical β-lactamase inhibitors (Clavulanic acid, tazobactam and sulbactam) in combination with β-lactam antibiotics is presently the mainstay of antibiotic therapy against Gram-negative bacterial infections. However these inhibitors are unable to inhibit carbapenemase KPC-2 effectively. They being β-lactam derivatives behave as substrates for this enzyme instead of inactivating it. We have initiated our study to check the in vitro inhibition activity of the two novel screened inhibitors (ZINC01807204 and ZINC02318494) in combination with carbapenems against KPC-2 expressing bacterial strain and their effect on purified enzyme KPC-2. The MIC values of meropenem and ertapenem showed maximum reduction (8 folds) in combination with screened compounds (ZINC01807204 and ZINC02318494). CLSM images also depicted their strong antibacterial activity in comparison to conventional β-lactamase inhibitors. Moreover no toxic effect has been shown on HeLa cell line. Though the IC50 value of ZINC01807204 was high (200 µM), it exhibited fairly good affinity for KPC-2 (Ki = 43.82 µM). With promising results this study identifies ZINC01807204 as a lead molecule for further optimization and development of more potent non β-lactam inhibitors against KPC-2.  相似文献   

17.
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.  相似文献   

18.
β-lactamase mediated antibiotic resistance is an important health issue and the discovery of new β-lactam type antibiotics or β-lactamase inhibitors is an area of intense research. Today, there are about a thousand β-lactamases due to the evolutionary pressure exerted by these ligands. While β-lactamases hydrolyse the β-lactam ring of antibiotics, rendering them ineffective, Penicillin-Binding Proteins (PBPs), which share high structural similarity with β-lactamases, also confer antibiotic resistance to their host organism by acquiring mutations that allow them to continue their participation in cell wall biosynthesis. In this paper, we propose a novel approach to include ligand sharing information for classifying and clustering β-lactamases and PBPs in an effort to elucidate the ligand induced evolution of these β-lactam binding proteins. We first present a detailed summary of the β-lactamase and PBP families in the Protein Data Bank, as well as the compounds they bind to. Then, we build two different types of networks in which the proteins are represented as nodes, and two proteins are connected by an edge with a weight that depends on the number of shared identical or similar ligands. These models are analyzed under three different edge weight settings, namely unweighted, weighted, and normalized weighted. A detailed comparison of these six networks showed that the use of ligand sharing information to cluster proteins resulted in modules comprising proteins with not only sequence similarity but also functional similarity. Consideration of ligand similarity highlighted some interactions that were not detected in the identical ligand network. Analysing the β-lactamases and PBPs using ligand-centric network models enabled the identification of novel relationships, suggesting that these models can be used to examine other protein families to obtain information on their ligand induced evolutionary paths.  相似文献   

19.
Six strains of multidrug-resistant Stenotrophomonas maltophilia were isolated from cultured yellowtail. The strains were divided into two clusters based on the 16S rRNA genes, and all of them contained L1 metallo-β-lactamase and L2 β-lactamase genes. Differences in the intercluster divergence between the lactamase genes suggest that horizontal transfer of the genes occurred.  相似文献   

20.
New Delhi metallo-β-lactamase (NDM-1) is a new metallo-β-lactamase (MBL) that has recently emerged as a global threat because it confers bacteria with resistance to almost all clinically used β-lactam antibiotics. To determine the molecular basis of this threat, NDM-1 was purified from Escherichia coli TransB (DE3) carrying cloned blaNDM-1 gene by an anion-exchange chromatography step followed by a gel permeation chromatography step. The purified enzyme was stable even in extremely alkaline buffer (pH 11) and reached its highest activity at a low temperature (15°C), which was different from other MBLs. The 50% inhibition concentration of EDTA against NDM-1 was 412 nM, which showed that NDM-1 was more susceptible to EDTA than other MBLs. The effects of zinc on NDM-1 differed between cephem and carbapenem complexes, but inhibition at high Zn2+ concentration was observed for all of tested β-lactam compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号