首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dendrobaena octaedra is a freeze tolerant earthworm widely distributed in boreal regions. Specimens collected in Sweden were cold acclimated and then frozen at -7 degrees C to examine the influence of body mass on survival of freezing. Results showed that survival was negatively correlated to body mass. Glycogen content of the worms was variable and seemed to decrease with increasing body mass consistent with the hypothesis that freeze survival is dependent on the ability to rapidly break down glycogen and accumulate high concentrations of glucose. The results suggest that large worms (subadults and adults) invest energy in production of cocoons at the expense of glycogen storage for cryoprotectant production, whereas juvenile worms increase their survival chances by investing energy in glycogen storage at the expense of growth as a preparation for winter.  相似文献   

2.
The earthworm, Dendrobaena octaedra, is a common species in the uppermost soil and humus layers of coniferous forests and tundra in temperate and subarctic regions. The species is freeze-tolerant and may survive several months in a frozen state. Upon freezing, glycogen reserves are rapidly converted to glucose serving as a cryoprotectant and fuel for metabolism. In the present study we investigated the induction of freeze-tolerance under field conditions, and sought to find relationships between temperature, glycogen and fat reserves, membrane phospholipid composition and the degree of freeze-tolerance. Freeze-tolerance was induced when worms had experienced temperatures below 5°C for 2 weeks or more. Freeze-tolerance was linked to the magnitude of glycogen reserves, which also fluctuated with field temperatures being highest in autumn and winter. On the other hand fat reserves seemed not to be linked with freeze-tolerance at all. However, high glycogen alone did not confer freeze-tolerance; alterations in the membrane phospholipid fatty acid composition (PLFA) were also necessary in order to secure freeze-tolerance. The changes in PLFA composition were generally similar to changes occurring in other ectothermic animals during winter acclimation with an increased degree of unsaturation of the PLFAs.  相似文献   

3.
Freeze-tolerance and some of the underlying biochemical defence mechanisms in the earthworm Dendrobaena octaedra was investigated. Survival after slow cooling to -2 degrees C, -4 degrees C, or -6 degrees C was analysed in D. octaedra from three geographic regions representing large differences in winter temperature (Denmark, Finland and Greenland). A large variation in freeze-tolerance between the three populations of D. octaedra was found. Earthworms from the northern populations (Finland and Greenland) tolerated lower temperatures (-6 degrees C) than earthworms from the Danish population (poor survival at -4 degrees C and -2 degrees C). In the Finnish population, freezing led to the production of high concentrations of glucose, which reached values much higher than controls (94 mg g(-1) vs. 2 mg g(-1) dry weight). Other potential cryoprotectants were not elevated after freezing. The Danish and Greenlandic populations had substantially lower mean glucose levels after freezing than the Finnish population (about 15 mg g(-1)). Danish earthworms rapidly frozen did not accumulate glucose, and did not survive freezing at -2 degrees C. Danish earthworms exposed to osmotic stress in Ringer's solutions, containing different concentrations of glycerol, showed significantly elevated glucose levels, but did not survive rapid freezing. It was determined if freezing had an influence on the reproduction of the earthworms. After warming to summer temperatures (15 degrees C), survivors of freezing produced viable cocoons. In a field experiment it was tested if natural acclimatization during autumn and winter months had an effect on freeze-tolerance in the Danish population. There was a significant increase of post-freeze survival during this period. The results of the freezing experiments are discussed in relation to the general ecology of D. octaedra.  相似文献   

4.
Increases in liver glycogen phosphorylase activity, along with inhibition of glycogen synthetase and phosphofructokinase-1, are associated with elevated cryoprotectant (glucose) levels during freezing in some freeze-tolerant anurans. In contrast, freeze-tolerant chorus frogs, Pseudacris triseriata, accumulate glucose during freezing but exhibit no increase in phosphorylase activity following 24-h freezing bouts. In the present study, chorus frogs were frozen for 5- and 30-min and 2- and 24-h durations. After freezing, glucose, glycogen, and glycogen phosphorylase and synthetase activities were measured in leg muscle and liver to determine if enzyme activities varied over shorter freezing durations, along with glucose accumulation. Liver and muscle glucose levels rose significantly (5-12-fold) during freezing. Glycogen showed no significant temporal variation in liver, but in muscle, glycogen was significantly elevated after 24 h of freezing relative to 5 and 30 min-frozen treatments. Hepatic phosphorylase a and total phosphorylase activities, as well as the percent of the enzyme in the active form, showed no significant temporal variation following freezing. Muscle phosphorylase a activity and percent active form increased significantly after 24 h of freezing, suggesting some enhancement of enzyme function following freezing in muscle. However, the significance of this enhanced activity is uncertain because of the concurrent increase in muscle glycogen with freezing. Neither glucose 6-phosphate independent (I) nor total glycogen synthetase activities were reduced in liver or muscle during freezing. Thus, chorus frogs displayed typical cryoprotectant accumulation compared with other freeze-tolerant anurans, but freezing did not significantly alter activities of hepatic enzymes associated with glycogen metabolism.  相似文献   

5.
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

6.
Earthworms that live in subarctic and cold temperate areas must deal with frost even though winter temperatures in the soil are often more moderate than air temperatures. Most lumbricid earthworms can survive temperatures down to the melting point of their body fluids but only few species are freeze tolerant, i.e. tolerate internal ice formation. In the present study, earthworms from Finland were tested for freeze tolerance, and the glycogen reserves and glucose mobilization (as a cryoprotectant) was investigated. Freeze tolerance was observed in Aporrectodea caliginosa, Dendrobaena octaedra, and Dendrodrilus rubidus, but not in Lumbricus rubellus. A. caliginosa tolerated freezing at -5 degrees C with about 40% survival. Some individuals of D. octaedra tolerated freezing even at -20 degrees C. Glycogen storage was largest in D. octaedra where up to 13% of dry weight consisted of this carbohydrate, whereas the other species had only 3-4% glycogen of tissue dry weight. Also glucose accumulation was largest in D. octaedra which was the most freeze-tolerant species, but occurred in all four species upon freezing. It is discussed that freeze tolerance may be a more common phenomenon in earthworms than previously thought.  相似文献   

7.
《Cryobiology》2009,58(3):286-291
The freeze tolerance and accumulation of cryoprotectants was investigated in three geographically different populations of the enchytraeid Enchytraeus albidus (Oligochaeta). E. albidus is widely distributed from the high Arctic to temperate Western Europe. Our results show that E. albidus is freeze tolerant, with freeze tolerance varying extensively between Greenlandic and European populations. Two populations from sub Arctic (Nuuk) and high Arctic Greenland (Zackenberg) survived freezing at −15 °C, whereas only 30% of a German population survived this temperature. When frozen, E. albidus responded by catabolising glycogen to glucose, which likely acted as a cryoprotectant. The average glucose concentrations were similar in the three populations when worms were frozen at −2 °C, approximately 50 μg glucose mg−1 tissue dry weight (DW). At −14 °C the glucose concentrations increased to between 110 and 170 μg mg−1 DW in worms from Greenland. The average glycogen content of worms from Zackenberg and Nuuk were about 300 μg mg−1 DW, but only 230 μg mg−1 DW in worms from Germany showing that not all glycogen was catabolised during the experiment. Nuclear magnetic resonance spectrometry (NMR) was used to screen for other putative cryoprotectants. Proline, glutamine and alanine were up regulated in frozen worms at −2 °C but only in relatively small concentrations suggesting that they were of little significance for freeze survival. The present study confirms earlier reports that freeze tolerant enchytraeids, like other freeze tolerant oligochaete earthworms, accumulate high concentrations of glucose as a primary cryoprotectant.  相似文献   

8.
We have investigated the lipid chemistry during cold acclimation in the freeze tolerant earthworm Dendrobaena octaedra. The dominant phospholipid fatty acids (PLFA) of D. octaedra were 20:4, 20:5 and 20:1 (50% of total PLFA) followed by 18:0, 18:1 and 18:2omega6,9 (25% of total PLFA). The ability to tolerate freezing in this species was acquired after acclimation at low temperature for 2-4 weeks. During this period one particular membrane PLFA, 18:2omega6,9, increased significantly and there was a good correlation between the proportion of this PLFA and the survival of freezing. The composition of neutral lipid fatty acids (NLFA), most likely representing storage lipids (triacylglycerides), also changed during cold acclimation so that the overall degree of unsaturation increased. Using a common-garden experiment approach, we compared lipid composition of three genetically different populations (Denmark, Finland and Greenland) that differed in their freeze tolerance. Inter-populational differences and differences due to cold acclimation in overall fatty acid composition were evident in both PLFAs and NLFAs. Specifically, the PLFAs, 20:4 and 20:5, were considerably more represented in worms from Greenland, and this contributed to a higher UI of PLFAs in this population.  相似文献   

9.
We compared liver glycogen stores and glucose mobilization during freezing among winters in chorus frogs, Pseudacris triseriata, where populations varied in freezing survival. We also characterized tissue glycogen levels across the annual cycle. Frogs with low liver glycogen stores mobilized low amounts of glucose during freezing, and these were correlated with population variation in freezing survival. Moreover, liver glycogen stores were significantly and positively related to body mass. These data suggest that chorus frogs store liver glycogen in preparation for hibernation and that body size and glycogen stores must reach threshold levels for successful survival of freezing bouts during the winter.  相似文献   

10.
Summary Wood frogs,Rana sylvatica, were sampled after freezing at –4°C (a short time course from 2 to 70 min after the appearance of the freezing exotherm) and thawing (20 h at 3°C after 70 min of freezing) and the regulation of liver glycolysis with respect to cryoprotectant glucose synthesis was examined. Within 5 min of the initiation of freezing, cryoprotectant concentrations in blood and liver had begun to increase. This was correlated with a rapid rise in the levels of hexose monophosphates in liver, including a 2.5 fold increase in glucose-6-P and 10 fold rise in fructose-6-P contents within the first 5 min post-exotherm. Contents of fructose-1,6-P2, fructose-2,6-P2, triose phosphates, P-enolpyruvate, and pyruvate did not significantly change over the course of freezing. Thawing sharply reduced the levels of hexose monophosphates in liver but raised P-enolpyruvate content by 2.3 fold. Changes in the contents of glycolytic intermediates over the freeze/thaw course are consistent with an inhibitory block of glycolysis at phosphofructokinase during freezing in order to facilitate a rapid glycogenolysis and production of cryoprotectant; during thawing, however, glycolysis appears to be inhibited at the level of pyruvate kinase.Possible regulatory control of cryoprotectant synthesis by covalent modification of liver glycolytic enzymes was examined. Glycogenolysis during freezing was facilitated by an increase in the percentage of glycogen phosphorylase in the activea (phosphorylated) form and also by an increase in the total amount (a+b) of enzyme expressed. For phosphofructokinase, kinetic changes as a result of freezing included a 40% reduction inK m for fructose-6-P, a 60% decrease inK a for fructose-2,6-P2, and a 2 fold increase in I50 for ATP. These changes imply a freezing-induced covalent modification of the enzyme but are not, apparently, the factors responsible for inhibition of glycolytic flux at the phosphofructokinase locus during glucose synthesis. Kinetic parameters of pyruvate kinase were not altered over the freeze/thaw course.  相似文献   

11.
As observed for most stresses, tree frost resistance can be split into two main processes: avoidance and tolerance. Avoidance of freezing is achieved by introducing species only in the climatic context in which the probability of freezing events is very low for the sensitive stages of buds or stems; i.e., when good synchronism exists between the annual cycle and the critical climatic periods. Buds become able to grow only after chilling requirements have been satisfied (endodormancy released) during winter; they subsequently break after heat requirements have been completed (end of ecodormancy) in early spring. Actually, this period is often subject to more or less severe freezing events. Trees are also able to adjust their freezing tolerance by increasing their capacity of extracellular freezing and decreasing the possibility of intracellular freezing through the process of frost acclimation. Both freezing resistance processes (avoidance and tolerance) are environmentally driven (by photoperiod and temperature), but there are also genotypic effects among species or cultivars. Here, we evaluated the degree to which differences in dormancy release and frost acclimation were related to environmental and genetic influences by comparing trees growing in common garden conditions. This investigation was carried out for two winters in lowland and mountain locations on different walnut genotypes differing significantly for budburst dates. Chilling requirement for endodormancy release and heat requirement during ecodormancy were evaluated in all situations. In addition, frost acclimation was assessed by the electrolyte leakage method on stems from the same trees before leaf fall through budburst. No significant differences were observed in chilling requirements among genotypes. Moreover, frost acclimation dynamics were similar between genotypes or locations when expressed depending on chilling units accumulated since 15 September as a time basis instead of Julian day. The only exception was for maximal frost hardiness observed during winter with the timber-oriented being significantly more resistant than fruit-oriented genotypes. Heat requirement was significantly different among genotypes. Thus, growth was significantly faster in fruit-oriented than in wood-oriented genotypes. Furthermore, among wood-oriented genotypes, differences in growth rate were observed only at cold temperatures. Frost acclimation changes differed significantly between fruit- and wood- walnuts from January through budburst. In conclusion, from September through January, the acclimation dynamic was driven mainly by environmental factors whereas from January through budburst a significant genotype effect was identified in both frost tolerance and avoidance processes.  相似文献   

12.
Freeze tolerance in the frog Rana sylvatica is supported by nonanticipatory mobilization of cryoprotectant (glucose) and redistribution of organ water. Other freeze-tolerant frogs may manifest these responses but differences exist. For example, the gray treefrog (Hyla versicolor) accumulates mostly glycerol as opposed to glucose. The current study reports additional novel features about cryoprotection in H. versicolor. Frogs were acclimated to low temperature for 12 weeks and frozen for 3 days at -2.4 degrees C. Some frogs were then thawed at 3 degrees C for 4 hr. Calorimetry revealed that frozen frogs had 53.9% +/- 11.1% of their body water in ice, and all frogs recovered following this procedure. Plasma glucose was low prior to the onset of freezing (1.1 +/- 0.9 micromol/ml) and it was 20x higher in postfreeze frogs. Constituting nearly 30% of plasma solute, glycerol was 117.2 +/- 13.6 micromol/ml prior to freezing and it remained equally high in postfreeze frogs. Liver water content was moderately lower in frozen frogs when compared to controls (62.9% +/- 3.7% vs. 68.6% +/- 1.7%), whereas postfreeze frogs excessively hydrated their livers (75.7% +/- 2.1%). Less-pronounced changes were seen in muscle water content. H. versicolor can mobilize its major cryoprotectant, glycerol, in response to extended cold acclimation, which is unique in comparison to other freeze-tolerant frogs, and it experiences only moderate organ dehydration during freezing. This species conforms with other freeze-tolerant frogs, however, by mobilizing glucose as a direct response to tissue freezing.  相似文献   

13.
14.
Summary Inorganic ions (Ca, Mg, Na, K, Cl, SO4) and free amino acids of the body fluids of the normal, cold and warm acclimated worms (laboratory as well as seasonal populations) are estimated. Calcium increased and chloride and sodium decreased on both cold and warm acclimation in relation to normal. But magnesium and sulphate and free amino acids increased on warm acclimation whereas potassium increased and magnesium decreased on cold acclimation. Changes in different ions in the same direction are observed in the seasonal populations. Attention is drawn to the adaptive significance of these changes in the different ions during thermal acclimation.Changes in the glycogen, RNA, protein and non-protein nitrogen, and water content in the tissues of normal and acclimated worms are studied. Glycogen increased on warm and cold acclimation, whereas RNA content, protein nitrogen and dry weight of the cold worms increased over normal. No change is observed in non-protein nitrogen on thermal acclimation. The role of these substances and the significance of the changes observed, in the operation of homeostatic mechanism compensating to temperature changes in the metabolic rate of the worms, are also discussed.Changes in the pattern of neurosecretory activity are followed with thermal acclimation and it is shown that the activity of the neurosecretory cells increased on cold and warm acclimation, but the positions of these cells, which are active, are different from normal worms in warm acclimated worms.Studies on the effect of the body fluids of acclimated worms on the tissues of normal and acclimated worms showed that the body fluids of cold acclimated worms increased the respiration of the tissues of normal and warm acclimated worms and vice-versa.  相似文献   

15.
In this review, the results of a series of NMR experiments investigating glucose storage and synthesis in NIDDM patients and normal controls have been summarized. These have shown: 1. The deficit in nonoxidative glucose disposal in NIDDM subjects results from a defect in the muscle glycogen synthesis pathway. 2. Reduced activity of glucose transporter/hexokinase step in this pathway accounts for the reduced rate of glycogen synthesis in NIDDM patients. 3. This reduced activity of GT/Hk is a genetic defect present before the clinical onset of disease in prediabetic descendants of diabetic parents. 4. In muscle from normal, healthy subjects the rate of glycogen synthesis is controlled by the glucose transport/hexokinase activity step and not by the activity of the muscle glycogen synthase enzyme. 5. Hepatic gluconeogenesis is responsible for most hepatic glucose production during an overnight fast in both normal and NIDDM subjects, and increases in gluconeogenic flux are responsible for the increased rate of hepatic glucose production in NIDDM subjects. 6. In contrast to human muscle, where glycogenesis ceases at rest, in the liver gluconeogenesis and glycogenolysis are always active. Numerous previous studies were considered prior to embarking in each of these NMR experiments. In the original research articles we published, the earlier studies were discussed in terms of the relevant literature. Here, however, I have chosen to present the NMR data as simply as possible, in the hope of exposing the significance of these studies by disentangling the results from the complexities of NMR methodology.  相似文献   

16.
As an adaptation for overwinter survival, the wood frog, Rana sylvatica is able to tolerate the freezing of extracellular body fluids. Tolerance is made possible by the production of very high amounts of glucose in liver which is then sent to other organs where it acts as a cryoprotectant. Cryoprotectant synthesis is under the control of glycogen phosphorylase which in turn is activated in response to ice formation. To determine the mechanism of phosphorylase activation, a quantitative analysis of phosphorylase protein concentration and enzymatic activity in liver was carried out following separation of the phosphorylated a and nonphosphorylated b forms of the enzyme on native polyacrylamide gels. The results suggest that in gels, the b form is completely inactive, even in the presence of AMP and sodium sulfate, whereas the a form is active and stimulated 3-fold by these substances. Further, phosphorylase activation appears to arise solely from conversion of the b to a form of the enzyme without an increase in phosphorylase concentration or activation of a second isozyme. The quantitative analysis presented here should prove generally useful as a simple and rapid method for examining the physiological and genetic regulation of phosphorylase in animal cells.  相似文献   

17.
In many plants raffinose family oligosaccharides are accumulated during cold acclimation. The contribution of raffinose accumulation to freezing tolerance is not clear. Here, we investigated whether synthesis of raffinose is an essential component for acquiring frost tolerance. We created transgenic lines of Arabidopsis thaliana accessions Columbia-0 and Cape Verde Islands constitutively overexpressing a galactinol synthase (GS) gene from cucumber. GS overexpressing lines contained up to 20 times as much raffinose as the respective wild-type under non-acclimated conditions and up to 2.3 times more after 14 days of cold acclimation at 4 degrees C. Furthermore, we used a mutant carrying a knockout of the endogenous raffinose synthase (RS) gene. Raffinose was completely absent in this mutant. However, neither the freezing tolerance of non-acclimated leaves, nor their ability to cold acclimate were influenced in the RS mutant or in the GS overexpressing lines. We conclude that raffinose is not essential for basic freezing tolerance or for cold acclimation of A. thaliana.  相似文献   

18.
Molecular control of cold acclimation in trees   总被引:8,自引:0,他引:8  
Frost tolerance is an acquired characteristic of plants that is induced in response to environmental cues preceding the onset of freezing temperatures and activation of a cold acclimation program. In addition to transient acclimation to low non-freezing temperatures and enhancing survival to short frost episodes during the growth season, perennial woody plants need additionally to survive the cold winter months. Trees have evolved a complex dynamic process controlling the development of dormancy and freezing tolerance that secures accurate initiation and termination of the overwintering process. Although the phenology of overwintering has been known for decades, only recently has there been progress in elucidating the molecular mechanisms of dormancy and freezing tolerance development in perennial plants. Current molecular and genomic studies indicate that herbaceous annual and woody perennial plants share similar cold acclimation mechanisms. Both the signal processes controlling cold acclimation and the cold-regulated target genes appear to be shared by herbaceous and woody plants. However, the dormancy development during overwintering brings new players in the molecular control of seasonal cold acclimation of woody perennials.  相似文献   

19.
Two populations of the gall fly Eurosta solidaginsis utilize different strategies to endure seasonal exposure to temperatures below freezing. Both populations are freezing tolerant. In north temperate populations, supercooling points rise from ?10.2°C to ?6.2°C following exposures to temperatures below freezing. This level is maintained throughout winter and ensures frequent and prolonged periods of tissue freezing. South temperate populations depress the supercooling point to ?14.2°C during autumn and early winter, and this depression precludes extracellular ice formation during periods of supra-optimal temperature fluctuations. During mid-winter, supercooling points rise to the same level as in northern groups.Both populations accumulate three principal cryoprotective agents following first frost exposures (glycerol, sorbitol and trehalose). Cryoprotectants levels do not peak in northern populations until 4–6 weeks after first frost. In southern populations the accumulation profile is characterized by a high initial rate of synthesis, a protective overshoot and pronounced seasonal fluctuations. The relative survival advantages of each strategy are discussed.  相似文献   

20.
Steinernema feltiae is a moderately freeze-tolerant entomopathogenic nematode which survives intracellular freezing. We have detected by gas chromatography that infective juveniles of S. feltiae produce cryoprotectants in response to cold acclimation and to freezing. Since the survival of this nematode varies with temperature, we analyzed their cryoprotectant profiles under different acclimation and freezing regimes. The principal cryoprotectants detected were trehalose and glycerol with glucose being the minor component. The amount of cryoprotectants varied with the temperature and duration of exposure. Trehalose was accumulated in higher concentrations when nematodes were acclimated at 5°C for two weeks whereas glycerol level decreased from that of the non-acclimated controls. Nematodes were seeded with a small ice crystal and held at -1°C, a regime that does not produce freezing of the nematodes but their bodies lose water to the surrounding ice (cryoprotective dehydration). This increased the levels of both trehalose and glycerol, with glycerol reaching a higher concentration than trehalose. Nematodes frozen at -3°C, a regime that produces freezing of the nematodes and results in intracellular ice formation, had elevated glycerol levels while trehalose levels did not change. Steinernema feltiae thus has two strategies of cryoprotectant accumulation: one is an acclimation response to low temperature when the body fluids are in a cooled or supercooled state and the infective juveniles produce trehalose before freezing. During this process a portion of the glycerol is converted to trehalose. The second strategy is a rapid response to freezing which induces the production of glycerol but trehalose levels do not change. These low molecular weight compounds are surmised to act as cryoprotectants for this species and to play an important role in its freezing tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号